Synthesis and Excited-State Properties of an Oligophenylenevinylene Heptamer Substituted with Two Fullerene Moieties

Aline Gégout,^a Teresa M. Figueira-Duarte,^a Jean-François Nierengarten,^{*a} Andrea Listorti,^b Nicola Armaroli^{*b}

- ^a Groupe de Chimie des Fullerènes et des Systèmes Conjugués, Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
 Fax +33(5)61553003; E-mail: jfnierengarten@lcc-toulouse.fr
- ^b Istituto per la Sintesi Organica e la Fotoreattività, Molecular Photoscience Group, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129 Bologna, Italy

Fax +39(051)6399844; E-mail: armaroli@isof.cnr.it

Received 7 April 2006

Dedicated to Prof. Heck in recognition of his pioneering work in the field of metal-catalyzed cross-coupling reactions

Abstract: An oligophenylenevinylene (OPV) derivative substituted with two fullerene subunits has been prepared starting from a fullerene carboxylic acid derivative and an OPV heptamer bearing two alcohol functions. Photophysical investigations have revealed the occurrence of intramolecular photoinduced energy- and electron-transfer processes in this hybrid compound.

Key words: fullerene, conjugated system, energy transfer, electron transfer, singlet oxygen

The past several years have seen a considerable interest in the synthesis of new monodisperse π -conjugated oligomers with the aim of generating new advanced materials for optoelectronic applications.¹ If one important challenge of this research is to comprehensively investigate many physical properties relevant to materials science (charge transport, nonlinear optical effects, etc.), the characteristic features of these compounds make them also versatile photo- and/or electroactive components for the preparation of photochemical molecular devices.² Effectively, π -conjugated oligomers possess a broad range of attractive optical properties as well as the ability to accept or donate charges. In addition, their physical properties can be easily modulated by changing the length of the conjugated backbone or the nature of the substituents. Over the last few years, we have developed efficient synthetic procedures for the synthesis of oligophenylenevinylene (OPV) building blocks³ and shown that they can be used for the preparation of molecular devices which perform light-induced functions such as electron or energy transfer.⁴ In particular, the combination of OPV derivatives with fullerene subunits led to hybrid systems with interesting excited-state properties.⁵ Some of these compounds have also found applications in the field of solar energy conversion.^{5,6} Even if the energy conversion efficiency obtained with some of these organic photodiodes is quite promising,⁶ it has to be improved dramatically for a commercial use. This is clearly an important challenge for materials scientists in general and for organic chemists in particular as new hybrid materials with a stronger absorption in the visible range are needed.

SYNLETT 2006, No. 18, pp 3095–3099 Advanced online publication: 04.08.2006 DOI: 10.1055/s-2006-947327; Art ID: S06106ST © Georg Thieme Verlag Stuttgart · New York In this paper, we report the synthesis and the excited-state properties of an OPV heptamer bearing two fullerene moieties. The C_{60} -OPV conjugates reported so far combine the fullerene accepting unit with relatively short OPV oligomers.⁵ By increasing the length of the OPV conjugated backbone, its absorption is extended to the red thus providing a new hybrid material with improved absorption properties for photovoltaic applications.

The synthesis of the C_{60} -OPV conjugate is based on the esterification reaction of fullerene carboxylic acid **4** with an OPV heptamer bearing two hydroxy groups. The preparation of methanofullerene derivative **4** is depicted in Scheme 1.

N,N'-dicyclohexylcarbodiimide (DCC)-mediated esterification of *tert*-butyl 2-hydroxyacetate with carboxylic acid 1^7 yielded malonate **2**. The reaction of C₆₀ with compound **2**, iodine and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)

Scheme 1 Reagents and conditions: a) tert-butyl 2-hydroxyacetate, DCC, DMAP, CH_2Cl_2 , 0 °C to r.t., 24 h (70%); b) C_{60} , DBU, I_2 , PhMe, r.t., 3 h (70%); c) CF_3CO_2H , CH_2Cl_2 , r.t., 4 h (94%).

under Bingel conditions⁸ then gave methanofullerene **3** in 70% yield. Subsequent hydrolysis of the *tert*-butyl ester group with CF_3CO_2H gave carboxylic acid **4** in 94% yield. The preparation of the OPV heptamer bearing two hydroxy groups was achieved in twelve steps from *p*-methylstyrene (Scheme 2, Scheme 3, and Scheme 4). The

first step leading to stilbene **6** was based on Heck type chemistry.⁹ Thus, the reaction of *p*-methylstyrene (**5**) with *p*-iodobenzaldehyde in xylene– Et_3N in the presence of tri*o*-tolylphosphine (POT) with a catalytic amount of Pd(OAc)₂ afforded **6** in 86% yield. Treatment of aldehyde **6** with 2,2-dimethylpropane-1,3-diol then gave **7** in 95% yield.

Scheme 2 Reagents and conditions: a) p-iodobenzaldehyde, Pd(OAc)₂, POT, Et₃N, xylene, 130 °C, 24 h (86%); b) 2,2-dimethyl-propane-1,3-diol, p-TsOH, C₆H₆, reflux, Dean–Stark trap, 24 h (95%).

Benzaldimine $\mathbf{8}^{10}$ was subjected to the Siegrist reaction with stilbene 7 to give the protected OPV trimer. Subsequent deprotection with CF₃CO₂H in CH₂Cl₂-H₂O afforded aldehyde 9. Reduction of aldehyde 9 with $LiAlH_4$, reaction of the resulting benzylic alcohol with trimethylsilyl bromide (TMSBr) in CHCl₃ and treatment of the benzylic bromide thus obtained with P(OEt)₃ under Arbuzov conditions gave phosphonate 10 in a 87% overall yield. It is worth noting that the choice of the appropriate conditions for the preparation of the benzylic bromide was the key to this synthesis.¹¹ Actually, this intermediate was found to be unstable. Under bromination conditions using TMSBr, the volatile by-products can be eliminated by simple evaporation and no purification step was required. Therefore, the product could be used in the next step as received.

Reduction of dialdehyde **11** with LiAlH_4 followed by treatment of the resulting **12** with triisopropylsilyl chloride (TIPSCI) in the presence of imidazole afforded protected derivative **13** (Scheme 4). Reaction of **13** with an excess of *t*-BuLi in THF followed by quenching with *N*,*N*-dimethylformamide (DMF) gave **14** in 83% yield. The protected OPV heptamer **15** was then prepared under Wadsworth–Emmons conditions from dialdehyde **14** and phosphonate **10**. Diol **16** was finally obtained in 48%

Synlett 2006, No. 18, 3095–3099 © Thieme Stuttgart · New York

yield by treatment with tetra-*n*-butylammonium fluoride (TBAF) in THF at 0 °C. The moderate yields for the two last steps are mainly associated with difficulties encountered during the purification of the OPV heptamer derivatives **15** and **16**.

Scheme 3 Reagents and conditions: a) t-BuOK, DMF, 80 °C, 2 h (91%); b) TFA, CH_2Cl_2 , H_2O , r.t., 4 h (96%); c) LiAlH₄, THF, 0 °C, 2 h (98%); d) TMSBr, $CHCl_3$, 0 °C, 3 h; e) P(OEt)_3, 150 °C, 12 h (88% from 9).

Reaction of diol **16** with carboxylic acid **4** under esterification conditions using DCC and 4-dimethylaminopyridine (DMAP) afforded compound **17** in 71% yield. Both ¹H NMR and ¹³C NMR spectra were in full agreement with the centrosymmetric structure of compound **17**.¹² In addition, the molecular constitution of **17** was further confirmed by its MALDI-TOF mass spectrum which depicted the expected molecular ion peak at m/z = 4501 (MH⁺, calcd for C₃₂₀H₃₀₃O₂₂: 4500.82).

The electronic absorption spectra of the reference compounds 3 and 15, and of the multicomponent system 17 in CH_2Cl_2 solution are reported in Figure 1. The spectrum of 17 is fairly similar to the profile obtained by summing the

Figure 1 Electronic absorption spectra in CH₂Cl₂ solution of **3** (dashed-dotted line), **15** (grey full line), **17** (dashed line) and the sum of $2 \times 3 + 15$ (full line). Inset: Fluorescence spectra of **15** (grey full line) and **17** (dashed line) in the OPV emission region in CH₂Cl₂, $\lambda_{\text{exc}} = 415$ nm, O.D. = 0.07.

spectra of **3** and **15** suggesting no substantial ground state electronic interactions between the carbon spheres and the OPV-type rod.

On the contrary, **17** exhibits intercomponent excited-state interactions upon light excitation. Compound **15** is characterized by a very intense and short-lived ($\Phi_{fluo} = 0.36$; $\tau = 700$ ps) fluorescence spectrum peaked at $\lambda = 476$ nm, due to the deactivation of the lowest lying OPV singlet excited state^{4a,4b} (Figure 1). This level is dramatically quenched (>350 times) in **17**, owing to an OPV \rightarrow fullerene singlet energy transfer, as derived by excitation spectra at $\lambda_{em} = 705$ nm on the maximum of the fullerene fluorescence (see below) and in agreement with numerous findings in dyads containing the same chromophores. 5b,5c,5e The rate constant of the process is estimated to be $5.0\cdot10^{11}~s^{-1}$ from fluorescence data. 13

In Figure 2 are reported the fluorescence spectrum of the fullerene moiety of **17** and the corresponding band of the reference molecule **3** under the same experimental conditions. Such spectra are reported in three solvents of increasing polarity, namely toluene, CH_2Cl_2 , and benzonitrile.

In any solvents **3** is characterized by a fluorescence band centered at $\lambda = 705$ nm with $\tau = 1.5 \pm 0.1$ ns, corresponding to the deactivation of the lowest-lying singlet level (${}^{1}C_{60}^{*}$). In apolar toluene medium ${}^{1}C_{60}^{*}$ is unquenched in

Scheme 4 *Reagents and conditions*: a) LiAlH₄, THF, 0 °C, 2 h (91%); b) TIPSCl, imidazole, DMF, 0 °C, 24 h (88%); c) t-BuLi, THF, -78 °C, 3 h then DMF, -78 to 0 °C, 3 h (83%); d) **10**, t-BuOK, THF, 0 °C to r.t., 3 h (46%); e) TBAF, THF, 0 °C, 2 h (48%); f) **4**, DCC, DMAP, CH₂Cl₂, 0 °C to r.t., 12 h (71%).

triad 17, compared to reference 3. By contrast, the same comparison shows a substantial quenching of the fluorescence band (ca. 70%) in more polar CH₂Cl₂ and benzonitrile. The fullerene singlet lifetime of 17 is shortened accordingly to 0.7 ± 0.1 ns in both solvents. This medium polarity dependent quenching is attributable to intramolecular photoinduced electron transfer from the OPV moiety to the carbon sphere.^{5c-5e} The experimental rate for charge separation, as determined with lifetime data, turns out to be $7.6 \cdot 10^8$ s⁻¹. In an attempt to detect the charge recombination processes we carried out transient absorption measurements on the nanosecond timescale to detect fingerprints of the cationic (OPV⁺) and anionic species (C_{60}^{-}) in the charge separated state.

Down to a scale of 10 ns no such signals were detected indicating that back electron transfer occurs on the subnanosecond timescale, as observed earlier for OPV- C_{60} arrays.5b,c,e,13 Nanosecond time resolved absorption spectra of 17 in the three solvents show only the features of the lowest fullerene triplet level (${}^{3}C_{60}^{*}$). In air equilibrated solution the lifetimes of the excited states of 3 and 17 are identical in each solvent (670 ns in CH₂Cl₂). In oxygen free solution they turn out to be shorter for 17 compared to **3** (8 and 30 μ s, respectively, in CH₂Cl₂), probably due to intramolecular excited-state interactions among the two fullerene subunits of $17.^{14} {}^{3}C_{60}^{*}$ is a potent singlet oxygen $({}^{1}O_{2}^{*})$ sensitizer^{5e} and the sensitization process was monitored in air equilibrated solutions of 17 and 3 by recording the singlet oxygen luminescence spectra in the near infrared region (Figure 2). Notably, the ratio of ${}^{1}O_{2}*$ luminescence intensity between 17 and 3 is pretty much the same as that measured for C_{60} fluorescence spectra. These findings show that the lower extent of triplet formation in 17 is only due to reduced intersystem crossing from the singlet level, which is depleted due to electron transfer (see above). It must be pointed out that the trend of emission spectra in Figure 2 is exactly the same either by excitation of the C₆₀ (λ = 520 nm) or of the OPV moiety (λ = 415 nm), clearly indicating that the OPV rod of 17 simply

Figure 2 Fluorescence spectra (left) and sensitized singlet oxygen luminescence (right) of 17 (triangles) and 3 (empty circles) in three different solvents. From top to bottom toluene, CH2Cl2 and benzonitrile; in all cases $\lambda_{exc} = 520$ nm, 298 K.

Synlett 2006, No. 18, 3095-3099 © Thieme Stuttgart · New York

acts as a light harvesting antenna unit and electron transfer only takes place upon direct or indirect excitation of the fullerene fragment.

In conclusion we have synthesized a novel OPV derivative substituted with two fullerene subunits, which exhibit light induced energy and electron transfer processes from the OPV central unit to the appended C_{60} fragments. The charge separation process shows a strong solvent-polarity dependence.

Acknowledgment

This work was supported by the CNRS, the CNR (commessa PM-P04-ISTM-C1-ISOF-M5) and the EU (RTN Contract HPRN-CT-2002-00171). We further thank the Région Alsace - ADEME for a fellowship to A.G.

References and Notes

- (1) Müllen, K.; Wegner, G. Electronic Materials: The Oligomer Approach; Wiley-VCH: Weinheim, 1998.
- (2) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491.
- (3) Eckert, J.-F.; Nicoud, J.-F.; Guillon, D.; Nierengarten, J.-F. Tetrahedron Lett. 2000, 41, 6411.
- (4) (a) Armaroli, N.; Eckert, J.-F.; Nierengarten, J.-F. Chem. Commun. 2000, 2105. (b) Gu, T.; Ceroni, P.; Marconi, G.; Armaroli, N.; Nierengarten, J.-F. J. Org. Chem. 2001, 66, 6432. (c) Armaroli, N.; Accorsi, G.; Gisselbrecht, J.-P.; Gross, M.; Eckert, J.-F.; Nierengarten, J.-F. New J. Chem. 2003, 27, 1470.
- (5) (a) Nierengarten, J.-F.; Eckert, J.-F.; Nicoud, J.-F.; Ouali, L.; Krasnikov, V.; Hadziioannou, G. Chem. Commun. 1999, 617. (b) Eckert, J.-F.; Nicoud, J.-F.; Nierengarten, J.-F.; Liu, S.-G.; Echegoyen, L.; Barigelletti, F.; Armaroli, N.; Ouali, L.; Krasnikov, V.; Hadziioannou, G. J. Am. Chem. Soc. 2000, 122, 7467. (c) Peeters, E.; van Hal, P. A.; Knol, J.; Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C.; Janssen, R. A. J. J. Phys. Chem. B 2000, 104, 10174. (d) Guldi, D. M.; Luo, C.; Swartz, A.; Gomez, R.; Segura, J. L.; Martín, N.; Brabec, C.; Sariciftci, S. J. Org. Chem. 2002, 67, 1141. (e) Armaroli, N.; Accorsi, G.; Gisselbrecht, J.-P.; Gross, M.; Krasnikov, V.; Tsamouras, D.; Hadziioannou, G.; Gomez-Escalonilla, M. J.; Langa, F.; Eckert, J.-F.; Nierengarten, J.-F. J. Mater. Chem. 2002, 12, 2077. (f) Camaioni, N.; Fabbrini, G.; Menna, E.; Maggini, M.; Ridolfi, G.; Zanelli, A. New J. Chem. 2006, 30, 335.
- (6) (a) Segura, J. L.; Martín, N.; Guldi, D. M. Chem. Soc. Rev. 2005, 34, 31. (b) Nierengarten, J.-F. New J. Chem. 2004, 28, 1177. (c) Nierengarten, J.-F. Solar Energy Materials and Solar Cells 2004, 83, 187.
- (7)Nierengarten, J.-F.; Nicoud, J.-F. Tetrahedron Lett. 1997, 38, 7737.
- (8) Bingel, C. Chem. Ber. 1993, 126, 1957.
- (9) Heck, F. H. Palladium Reagents in Organic Synthesis; Academic Press: London, 1985.
- (10) Zerban, G.; Meier, H. Z. Naturforsch., B: Chem. Sci. 1993, 48.171.
- (11) Gutiérrez-Nava, M.; Nierengarten, H.; Masson, P.; Van Dorsselaer, A.; Nierengarten, J.-F. Tetrahedron Lett. 2003, 44, 3043.
- (12) Compound **17**: ¹H NMR (300 MHz, CDCl₃): $\delta = 7.69$ (s, 2 H), 7.48 (m, 16 H), 7.32 (d, ${}^{3}J = 16.0$ Hz, 2 H), 7.15 (d, ${}^{3}J = 16.0$ Hz, 2 H), 7.08 (s, 4 H), 7.04 (d, ${}^{3}J = 16.0$ Hz, 2 H), $6.94 (d, {}^{3}J = 16.0 Hz, 2 H), 6.72 (s, 4 H), 6.57 (d, {}^{4}J = 1.5 Hz,$

4 H), 6.38 (t, ${}^{4}J$ = 1.5 Hz, 2 H), 5.44 (s, 4 H), 5.39 (s, 4 H), 5.02 (s, 4 H), 4.03 (t, ${}^{3}J$ = 6.5 Hz, 8 H), 3.98 (t, ${}^{3}J$ = 6.5 Hz, 4 H), 3.85 (t, ${}^{3}J$ = 6.5 Hz, 8 H), 1.80 (m, 20 H), 1.32 (m, 180 H), 0.87 (2t, ${}^{3}J$ = 6.0 Hz, 30 H). ${}^{13}C$ NMR (75 MHz, CDCl₃): δ = 166.9, 163.4, 163.3, 160.9, 153.7, 145.6, 145.55, 145.5, 145.4, 145.35, 145.3, 145.0, 144.9, 144.85, 144.2, 143.4, 143.3, 142.5, 141.25, 141.2, 127.8, 127.4, 127.3, 127.1, 107.7, 105.7, 102.0, 73.9, 71.6, 69.6, 69.5, 68.6, 63.1, 51.7, 32.4, 30.8, 30.15, 30.1, 29.9, 29.8, 29.7, 26.6, 23.1, 14.6, 14.5. IR (ATR): 1702 (C=O). MS (MALDI-TOF): 4501 [MH⁺]. Anal. Calcd for $C_{320}H_{302}O_{22}$: C, 85.41; H, 6.76. Found: C, 85.68; H, 6.73.

- (13) Langa, F.; Gomez-Escalonilla, M. J.; Rueff, J. M.; Duarte, T. M. F.; Nierengarten, J. F.; Palermo, V.; Samorì, P.; Rio, Y.; Accorsi, G.; Armaroli, N. *Chem. Eur. J.* **2005**, *11*, 4405.
- (14) Biju, V.; Sudeep, P. K.; Thomas, K. G.; George, M. V. *Langmuir* **2002**, *18*, 1831.