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Abstract: Thionocarbonates and xanthates of alcohols, bromides, iodides and isonitriles can be transformed -
to the corresponding hydrocarbons with hypophosphorous acid or its salts in radical chain reactions.

Functional group transformations, such as decarboxylations, deoxygenations, deaminations and
dehalogenations are all important in the synthesis of organic molecules. These reactions can be carried out
effectively by mild radical methods that are more applicable to sensitive biomolecules then the relatively more
drastic ionic processes.! Based on the chemistry involved in the radical chain deoxygenation of alcohols by the
Barton-McCombie reaction,? numerous modifications were reported up till now.! In the original Barton-
McCombie method tributyltin hydride 1a was the hydrogen atom source and the tributyltin radical 2a, generated
from the hydride served as a chain carrier (Scheme 1).
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Scheme 1
Although the method gave good yields and found many applications, the problems associated with the price,
toxicity and removal of tin residues prompted a search for other hydrogen atom sources.!:3 We have explored a
wide variety of compounds. We have shown recently, that in addition to tris(trimethylsilyl)silane,4 and tri-n-
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propylsilane,5 other silanes e.g. tricthylsilane,6 phenylsilane,” diphenylsilane,8 triphenylsilane,8:9 (general
structure 1b), as well as dialkyl phosphites!® 1c, (R4 = alkyl, m = 1) are applicable in deoxygenations,
dideoxygenations, as well as dehalogenations. We have also proven by VT 29Si NMR experiments!! that the
silanes follow the deoxygenation pathway assumed and proven to operate in the case of Bu3SnH12 (Scheme 1).

Dialkyl phosphites are almost ideal as hydrogen atom sources and chain-carrier radical precursors.
However, the reaction requires the use of benzoyl peroxide as initiator. This is not a problem in small scale
reactions, but we attempted to find a method applicable on any scale for deoxygenations, deaminations and
dehalogenations. The reagent - we assumed - should be cheap (generally, and also on a per mole basis), effective
and non-toxic. We report herein the best method to date.

Radical chain deoxygenations, deaminations and dehalogenations can be carried out with phosphorus-
centered radicals, generated from hypophosphorous acid or its salts.13 The added advantage is that these reactions
can be initiated with o.,0t’-azobisisobutyronitrile (AIBN), thence the use of benzoyl peroxide can be avoided.

Thus, when treated with hypophosphorous acid (le, R4 = H, m = 0) and a tertiary nitrogen base (e.g.
triethylamine) in boiling dioxane, a series of alcohol thiocarbonyl derivatives were deoxygenated. The tertiary
nitrogen base protected the thionocarbonate moiety, as well as acid-labile protecting groups from acidic hydrolysis
during the reaction. The method was applicable to primary, secondary and tertiary alcohols. Bromides and iodides
also furnished the corresponding hydrocarbons in high yielding radical reactions. Deamination of a primary amine
was also achieved via the corresponding isonitrile14 (Table I).

A vicinal diol was dideoxygenated to the corresponding olefin via the bis-xanthate 10 (X = O-C=S(SMe)).
In this reaction, however, a so-called “sacrificial olefin’ was needed in order to protect the product olefin 12 from
an attack by the phosphorus-centered reagent radical 2¢. The presence of an excess of a terminal olefin prevents the
consumption of the olefin produced by the dideoxygenation process by. phosphonate radical addition (Scheme 2).
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Scheme 2

We have also observed this reactivity of phosphorus-centered radicals towards olefins in the case of dialkyl
phosphites. Thus, the dimethyl phosphite-generated radical added to the carbon-carbon double bond of cholesterol
acetate to give the 6a.-phosphonate of cholestanol acetate (m.p. 141-1430C, [aﬁ:? =-20.60" (¢ 1.15, CHCls),
yield: 79%). Cholestanol (4-fluorphenyl)thionocarbonate was deoxygenated in 93% (isolated) yield with H3PO,

Although the commercial hypophosphorous acid (50% aqueous solution) can be used for the radical reaction
‘as is’, the water can also be removed by distillation, evaporation or azeotropic distillation. The pure acid, thus
obtained can be transformed to various salts (DABCO, tricthylamine, DBU, N-cthylpyperidine, etc), but these salts
can also be produced iz situ in the reaction flask. These salts can then be used in non-aqueous systems for the
radical reaction. The excess reagent and and phosphorus-containing side-products are washed out easily from the
reaction mixture after the radical reaction. The organic base can then be recovered and recycled.



Table I Radical Chain Deoxygenation of Alcohol Thionocarbonates and Xanthates,
Dehalogenation of Halides and Deamination via the Primary Amine Derived Isonitrile.
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dequivalents relative to 1 eq. starting material. “Bl = tricthylamine, B2 = tri-n-butylamine,
B3 = DABCO, B4 = N-cthylpiperidine. The reactions were carried out in boiling dioxane.
*Initiator added in 20 min intervals (150 mL, of a solution of 0.2176 g AIBN (4 mmol) in dioxane). -
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It appears that hypophosphorous acid and its salts are excellent, low molecular weight, non-toxic hydrogen

atom sources in the AIBN-initiated radical chain deoxygenation, d¢halogenation and deamination reactions. Itis
reasonable to assume that these compounds will also find application in other functional group transformations
based on radical chain chemistry.

Typical procedure: The solution of 1,2:3,4-di-O-isopropylidene-D-galactopyranose-6-0O-(4-fluorophenyl)
thionocarbonate!5 (0.166 g, 0.4 mmol) and the N-ethylpiperidine salt of hypophosphorous acid (0.72 g, 4.0
mmol) in dioxane (3 mL) under argon was treated with 150 uL of AIBN solution (0.2176 g of AIBN in 3 mL of
dioxane) seven times (at every 30 min) during reflux. The solution was washed with water and dried over
anhydrous MgSO,. After evaporation of the solvent the residue was analyzed by NMR to give 91 % of the deoxy
product 1,2:3,4-di-O-isopropylidene-6-deoxy-D-galactopyranose.
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