

PHYTOCHEMISTRY

Phytochemistry 51 (1999) 825-828

Phenylpropanoid glycosides from Lamiophlomis rotata

Jin-Hai Yi^a, Guo-Lin Zhang^b, Bo-Gang Li^b, Yao-Zu Chen^{a,*}

^aThe Chemistry Department of Zhejiang University, Hangzhou 310027, People's Republic of China ^bChengdu Institute of Biology, Academia Sinica, Chengdu 610041, People's Republic of China

Received 30 March 1998; received in revised form 14 October 1998

Abstract

Two new phenypropanoid glycosides were isolated from the roots of *Lamiophlomis rotata*, together with a known compound, cistanoside C. On the basis of spectral and chemical evidence, the structures of two new compounds were identified as $6'-\beta$ -D-apiofuranosyl cistanoside C and *cis*-lamiophlomiside A. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Lamiophlomis rotata; Labiatae; Phenylpropanoid glycosides; 6'-β-D-apiofuranosyl cistanoside C; cis-Lamiophlomiside A

1. Introduction

The genus Lamiophlomis kudo (Labiatae) is represented by only one species, which is widely spread over high mountainous regions in Tibet (Wu, 1985). Lamiophlomis rotata (Benth.) kudo, a Chinese folk medicine, is used to promote blood circulation, remove blood stasis, subdue swelling and alleviate pain (Jiangsu New Medical College, 1977). In previous studies (Yi, Zhong, Luo, Wu, & Zheng, 1990; Yi, Zhong, Luo, & Xiao, 1991; Yi, Chen, Luo, & Yan, 1995; Yi, Yan, Luo, & Zhong, 1995) two phenylpropanoid glycosides and seven iridoids from L. rotata have been isolated. In this study, two new phenylpropanoid glycosides, $6'-\beta$ -D-apiofuranosyl cistanoside C (2) and cislamiophlomiside A (3) as well as a known compound, cistanoside C (1) were isolated from roots of the same plant. The structures of 1-3 were characterized by spectral and chemical evidence.

2. Results and discussion

Compound 2 was obtained as an off-white amorphous powder, whose molecular formula $C_{35}H_{46}O_{19}$

0031-9422/99/\$ - see front matter 0 1999 Elsevier Science Ltd. All rights reserved. PII: S0031-9422(99)00027-8

was determined by FABMS $(m/z 809 [M+K]^+, 793$ $[M + Na]^+$). It gave a positive visualization with ferric chloride and Molish reagent (Jin, Liu, & Wang, 1992), indicating that 2 is a glycoside with a phenolic hydroxyl group. The UV absorption at λ_{max} 333 and 220 nm confirmed the presence of hydroxycinnamic acid derivatives. The IR spectrum suggested the hydroxyl groups (br, 3410 cm⁻¹), an α , β -unsaturated ester (1700 and 1630 cm⁻¹) and aromatic rings (1600 and 1510 cm^{-1}). On exhaustive hydrolysis with 5 M hydrochloric acid, 2 afforded 2-(4-hydroxy-3-methoxyphenyl)ethanol, caffeic acid, glucose, rhamnose and apiose, identified by TLC. The ¹H NMR spectrum of 2 exhibited similar signals to lamiophlomiside A (4) (Yi et al., 1995), alyssonoside and forsythoside B (Calis, Hosny, Khalifa, & Ruedi, 1992), indicating its trisaccharide structure. Three signals for anomeric protons appearing at 4.37 (d, J = 8.0 Hz), 4.90 (d, J = 2.4 Hz) and 5.18 (d, J=1.0 Hz) provided the following configuration of C-1 in the sugar: β for D-glucose, β for Dapiose and α for L-rhamnose, respectively (Calis et al., 1992). Moreover, characteristic signals belonging to (E)-caffeic acid and 2-(4-hydroxy-3-methoxyphenyl)ethanol moieties (six aromatic protons as two ABX systems, and olefinic protons, AB system), as well as a benzylic methylene, two non-equivalent protons and a methoxyl group were observed. This spectrum also exhibits a well-resolved triplet at 4.94 (J=9.3 Hz),

^{*} Corresponding author.

which could be assigned to the ester bearing a methine proton as observed for lamiophlomiside A (4) (Yi et al., 1995), alyssonoside, forsythoside B (Calis et al., 1992) and cistanoside C (Kobayashi, Karasawa, Miyase, & Fukushima, 1984). This determined the acylation position. In the ¹H and ¹³C NMR spectra of 2, the signals due to the sugar moiety were also superimposable on those of lamiophlomiside A (Yi et al., 1995), alyssonoside and forsythoside B (Calis et al., 1992). Permethylation of 2 and 4 by dimethyl sulphate in acetone gave the same compound (5). Thus, compound 2 was identified as 6'- β -D-apiofuranosyl cistanoside C (Fig. 1).

Compound **3** was isolated as an off-white amorphous powder, with molecular formula $C_{36}H_{48}O_{19}$ as determined by FABMS (m/z 823 [M+K]⁺, 807 [M+Na]⁺). Its UV, IR, FABMS, ¹H and ¹³C NMR were very similar to those of lamiophomiside A (**4**), except that the α' and β' protons of their feruloyl moiety had different chemical shifts and coupling constants. In the ¹H NMR spectrum of **3**, a pair of signals for olefinic protons appeared at δ 5.79 and 6.93 (each 1H, d, J=13.0 Hz) as observed for (Z)-leucosecptoside A and (Z)-martynoside (Jia, Gao, & Liu, 1994), whereas the corresponding proton signals of **4** appeared at δ 6.37 and 7.64 (each 1H, d, J=16.0 Hz). The feruloyl moiety of **3** was further examined by

NOE difference experiments, which showed enhancement (5%) of H-2" (δ 7.87, d, J=2.0 Hz) on irradiation of the protons of OCH₃ (δ 3.89, s). On the basis of the above spectral data, compound **3** was identified as *cis*-lamiophlomiside A.

3. Experimental

3.1. General

UV: in MeOH; IR: KBr discs; NMR: 400 MHz for ¹H and 100 MHz for ¹³C, TMS as int. standard; CC: silica gel. HPLC was carried out in reverse-phase mode using a C-18 column (18×350 mm i.d.). Silica gel $60F_{254}$ TLC plates were used. Phenylpropanoid gly-cosides were detected by UV after spraying with vanil-lin–H₂SO₄ followed by heating at 100°C for 5 min.

3.2. Plant material

Lamiophlomis rotata (Benth.) Kudo was collected at Ganzhi, Sichuan Province, China, in October 1994 and identified by Professor J.H. Chen (Sichuan Institute of Chinese Materia Medica), where a voucher specimen is kept at Chengdu Institute of Biology.

Fig. 1. Structures of compounds 1-5.

3.3. Extraction and separation

The dried and powdered roots (2.5 kg) were extracted with 80% EtOH under reflux (10 1×3 , each 2 h). After the removal of solvent, the residue was successively fractionated with petroleum ether (b.p. 60–90°C), EtOAc and *n*-BuOH. The *n*-BuOH extract was chromatographed on silica gel with CHCl₃:MeOH:H₂O (3:6:2 lower layer) to give frs A–F. Fr. D was subjected to HPLC gradient-eluted with H₂O/MeOH (40–60%) at a flow rate of 5 ml/min to yield compounds **1** (30 mg), **2** (65 mg) and **3** (28 mg).

3.4. Compound 1

Off-white amorphous powder. UV v_{max} (nm): 332, 290, 220; IR v_{max} cm⁻¹: 3450 (OH), 1700 (C=O), 1630 (C=C), 1602 and 1510 (aromatic rings), 1445, 1265, 1155, 1035, 810; ¹H, ¹³C NMR (CD₃OD) and FABMS were identical to those reported for cistanoside C (Kobayashi et al., 1984).

3.5. Compound 2

Off-white amorphous powder. UV λ_{max} (nm): 333, 219; IR v_{max} cm⁻¹: 3420 (OH), 1700 (C=O), 1630 (C=C), 1600 and 1510 (aromatic rings), 1445, 1265, 1155, 1035, 810; ¹H NMR(CD₃OD) δ ppm: 6.85 (d, J=2.0 Hz, 1H, H-2), 6.70 (d, J=8.0 Hz, 1H, H-5), 6.67 (dd, J = 8.0/2.0 Hz, 1H, H-6), 4.04 (m, 1H, H- α), 3.72 (m, 1H, H- α), 2.85 (m, 2H, H- β), 3.84 (s, 3H, OMe), 7.05 (d, 1H, J=2.0 Hz, H-2"), 6.77 (d, 1H, J = 8.3 Hz, H-5"), 6.95 (dd, 1H, J = 8.3/2.0 Hz, H-6"), 6.27 (d, 1H, J = 16.0 Hz, H- α'), 7.59 (d, 1H, J = 16.0Hz, H- β'), 4.37 (d, 1H, J=8.0 Hz, H-1'), 3.38 (dd, 1H, J=9.3/8.0 Hz, H-2'), 3.80 (t, 1H, J=9.3 Hz, H-3'), 4.94 (t, 1H, J=9.3 Hz, H-4'), 5.18 (d, 1H, J=1.0 Hz, H-1 of Rha), 3.29 (t, 1H, J=9.5 Hz, H-4 of Rha), 1.09 (d, 3H, J = 6.0 Hz, H-6 of Rha), 4.90 (d, 1H, J = 2.4Hz, H-1 of Api), 3.86 (d, 1H, J=2.4 Hz, H-2 of Api), 3.53 (s, 3H, H-3' of Api). ¹³C NMR (CD₃OD) δ ppm: 132.4 (C-1), 114.5 (C-2), 149.6 (C-3), 146.7 (C-4), 116.9 (C-5), 123.2 (C-6), 73.1 (C-α), 37.6 (C-β), 57.2 (OMe), 128.4 (C-1"), 115.5 (C-2"), 150.6 (C-3"), 148.8 (C-4"), 117.3 (C-5"), 124.0 (C-6"), 116.0 (C-α'), 147.6 (C-β'), 169.0 (C=O), 105.0 (C-1'), 76.9 (C-2'), 82.4 (C-3'), 71.7 (C-4'), 75.4 (C-5'), 69.3 (C-6'), 103.8 (C-1 of Rha), 73.1 (C-2 of Rha), 72.8 (C-3 of Rha), 74.6 (C-4 of Rha), 71.2 (C-5 of Rha), 19.2 (C-6 of Rha), 111.9 (C-1 of Api), 78.9 (C-2 of Api), 81.4 (C-3 of Api), 75.9 (C-4 of Api), 66.4 (C-3' of Api). FABMS (m/z): 809 $[M+K]^+$, 793 $[M+Na]^+$.

3.6. Hydrolysis of compound 2

Compound 2 (10 mg) was dissolved in 5 M HCl (2

ml) and heated at 90°C for 2.5 h. After cooling, the reaction mixture was extracted with EtOAc. The organic layer was concentrated to dryness. 2-(4-Hydroxy-3-methoxyphenyl)ethanol and caffeic acid were identified in the EtOAc layer by TLC on Kieselgel 60 F_{254} (CHCl₃:EtOH, 9:1). Glucose, rhamnose and apiose were detected in the aqueous layer by TLC on silica gel G (lower phase of CHCl₃:MeOH:H₂O 15:6:2– HOAc (9:1)) and PC (*n*-BuOH–HOAc–H₂O (4:1:5), upper phase).

3.7. Permethylation of compound 2 and lamiophlomisde A(4)

Compound **2** and lamiophlomiside A (ca. 10 mg), Me₂SO₄ (0.2 ml) and K₂CO₃ (30 mg) in Me₂CO (6 ml) were stirred for 24 h. After filtration, the filtrate was concentrated and analysed by TLC. They both gave the same permethyl (tetramethyl) compound (5), which was obtained as an off-white amorphous powder by preparative TLC (CHCl₃:MeOH:H₂O, 13:5:2 lower layer). ¹H NMR (CD₃OD) was identical to those reported (Yi et al., 1995).

3.8. Compound 3

Off-white amorphous powder. UV λ_{max} (nm): 331, 289, 220; IR v_{max} cm⁻¹: 3440 (OH), 1670 (C=O), 1630 (C=C), 1595 and 1510 (aromatic rings), 1445, 1425, 1265, 1155, 1030, 810. ¹H NMR (CD₃OD) dppm: 6.85 (d, 1H, J = 2.0 Hz, H-2), 6.70 (d, 1H, J = 8.0 Hz, H-5), 6.67 (dd, 1H, J = 8.0/2.0 Hz, H-6), 4.04 (m, 1H, H- α 0), 3.72 (m, 1H, H- α) 2.85 (m, 2H, H- β), 3.83 (s, 3H, OMe), 7.87 (d, 1H, J=2.0 Hz, H-2"), 6.77 (d, 1H, J=8.3 Hz, H-5"), 7.15 (dd, 1H, J=8.3/2.0 Hz, H-6"), 5.79 (d, 1H, J=13.0 Hz, H- α'), 6.93 (d, 1H, J=13.0Hz, H- β'), 3.89 (s, 3H, OMe), 4.35 (d, 1H, J=8.0 Hz, H-1'), 3.38 (dd, 1H, J = 9.3/8.0 Hz, H-2'), 3.80 (t, 1H, J=9.3 Hz, H-3'), 4.94 (t, 1H, J=9.3 Hz, H-4'), 5.18 (d, 1H, J=1.0 Hz, H-1 of Rha), 3.29 (t, 1H, J=9.5Hz, H-4 of Rha), 1.08 (d, 3H, J = 6.0 Hz, H-6 of Rha), 4.90 (d, 1H, J=2.4 Hz, H-1 of Api), 3.87 (d, 1H, J=2.4 Hz, H-2 of Api), 3.53 (s, 3H, H-3' of Api). ¹³C NMR (CD₃OD) δ ppm: 132.3 (C-1), 114.5 (C-2), 149.6 (C-3), 146.7 (C-4), 116.9 (C-5), 123.2 (C-6), 73.1 (C-α), 37.6 (C-β), 57.2 (OMe), 128.7 (C-1"), 116.5 (C-2"), 150.6 (C-3"), 149.1 (C-4"), 116.4 (C-5"), 128.2 (C-6"), 116.2 (C-α'), 148.6 (C-β'), 167.6 (C=O), 57.3 (OMe), 105.0 (C-1'), 76.9 (C-2'), 82.7 (C-3'), 71.6 (C-4'), 75.4 (C-5'), 69.2 (C-6'), 104.0 (C-1 of Rha), 73.1 (C-2 of Rha), 72.9 (C-3 of Rha), 74.6 (C-4 of Rha), 71.2 (C-5 of Rha), 19.2 (C-6 of Rha), 111.7 (C-1 of Api), 78.9 (C-2 of Api), 81.4 (C-3 of Api), 75.8 (C-4 of Api), 66.4 (C-3' of Api). FABMS (m/z) 823 $[M+K]^+$, 807 $[M + Na]^+$.

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China, No. 29202012 and the Foundation of National Laboratory of Applied Organic Chemistry, Lanzhou University, China.

References

Calis, I., Hosny, M., Khalifa, T., & Ruedi, P. (1992). *Phytochemistry*, 31, 3624.

- Jiangsu New Medical College (1977). In *The Chinese medicine dictionary* (p. p.769). Shanghai People's Publishing House.
- Jin, Z. J., Liu, Z. M., & Wang, C. Z. (1992). *Phytochemistry*, 31, 263.
- Jia, Z. J., Gao, J. J., & Liu, Z. M. (1994). Ind. J. Chem., 33B, 460.
- Kobayashi, H., Karasawa, H., Miyase, T., & Fukushima, S. (1984). *Chem. Pharm. Bull.*, 32, 3880.
- Yi, J. H., Zhong, C. C., Luo, Z. Y., Wu, B., & Zheng, Q. T. (1990). Chin. Chem. Lett., 1, 23.
- Yi, J. H., Zhong, C. C., Luo, Z. Y., & Xiao, Z. Y. (1991). Yaoxue Xuebao, 26, 37.
- Yi, J. H., Chen, Y., Luo, Z. Y., & Yan, X. Z. (1995). Chin. Chem. Lett., 6, 779.
- Yi, J. H., Yan, X. Z., Luo, Z. Y., & Zhong, C. C. (1995). Yaoxue Xuebao, 30, 206.
- Wu, C. Y. (1985). Flora Xizangica, Vol. 4 (p. P.158). Science Press.