

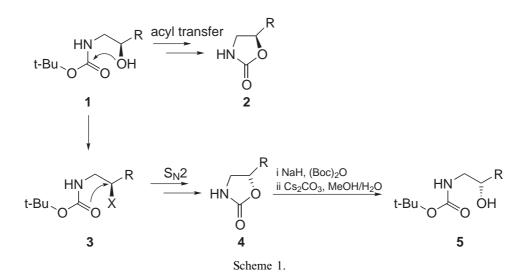
Tetrahedron Letters 41 (2000) 10071-10074

TETRAHEDRON LETTERS

Facile inversion of configuration of N-Boc- β -aminoalcohols via S_N2 cyclization to oxazolidinones

Fabio Benedetti* and Stefano Norbedo

Department of Chemical Sciences, University of Trieste, via Giorgieri 1, I-34127 Trieste, Italy


Received 3 October 2000; accepted 9 October 2000

Abstract

Oxazolidinones are obtained by the cyclization of mesylates derived from *N*-Boc- β -aminoalcohols. Hydrolysis of the *N*-Boc-oxazolidinones regenerates the protected aminoalcohols with inverted configuration at the hydroxy group. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: amino alcohols; oxazolidinones; inversion reactions; cyclization.

N-Boc- β -Aminoalcohols (1) readily cyclize to oxazolidinones (2) by a base catalyzed intramolecular acyl transfer (Scheme 1).¹ However, when the hydroxy group is converted into a

* Corresponding author. Fax: +39 040 6763903; e-mail: benedett@univ.trieste.it

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01753-6

suitable leaving group, as in 3, cyclization can take place by an intramolecular $S_N 2$ displacement, thus leading to the formation of the epimeric product 4^{2-4} As oxazolidinones 4 can be readily converted into *N*-Boc aminoalcohols 5,⁵ this reaction sequence $(1 \rightarrow 5)$ can be exploited to invert the configuration of the hydroxy group (Scheme 1).

Recently this approach has been used by Ghosh in the synthesis of the core unit of ritonavir, a potent HIV-protease inhibitor, and cyclization was obtained by treating the *N*-Boc aminoalcohol with thionyl chloride.⁶ This prompted us to report on a parallel study which we undertook

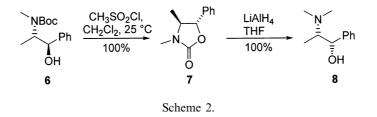
Entry	N-Boc aminoalcohol	Oxazolidinone ^a	Inverted aminoalcohol	Yield % ^b
1	NHBoc OH 1a	HN O 4a ¹⁰	NHBoc OH 5a	47
2	NHBoc OH 1b ⁸		OH 5b ¹⁴	76
3	Ph Ph OH 1c ⁹	$\begin{array}{c} Ph_{HN} \\ HN_{O} \\ O \\ 4c^{12} \end{array}$	Ph Ph OH 5c	45
4	Ph Ph OH 1d	$\begin{array}{c} Ph, Ph Ph, Ph Ph, Ph $		
5	BocHN Ph OH 1e	$HN O O O 4e^{13}$	BocHN Ţ OH 5e	74 [°]
6	NHBoc 		NHBoc E ÖH 5f	53
7	NHBoc - - - - - - - - - - - - -	HN O + HN O O (3:1) O O (3:1) O O O O O O O O O O O O O O O O O O O	NHBoc - OH 5g	45 ^d

 Table 1

 Inversion of configuration of N-Boc aminoalcohols

^aDiastereoisomer ratios were calculated by NMR.

^b Overall yields of inverted products (single isomers, by NMR).


^c 97% e.e., from optical rotations.

^d Based on 1g. The *N*-Boc derivatives of oxazolidinones 4g and 2g were separated by crystallization.

as part of an investigation into the synthesis of dipeptide isosteres. We have found that S_N^2 cyclization to oxazolidinones takes place smoothly when the β -aminoalcohol **1** is converted in situ into the corresponding mesylate **3** (X=OMs, Scheme 1), thus avoiding the use of thionyl chloride which may lead to undesired side reactions. The inverted *N*-Boc aminoalcohol is then restored by *t*-butoxycarbonylation and hydrolysis of the *N*-Boc oxazolidinones with cesium carbonate.^{5,7} The results on a representative series of *N*-Boc β -aminoalcohols are reported in Table 1.^{8–14}

It can be seen from the Table that cyclization of the N-Boc aminoalcohols is completely stereospecific giving the oxazolidinones with inversion of configuration at C₅, with the two exceptions of entries 4 and 7. In the case of the *threo* aminoalcohol 1d (entry 4), the reaction leads to a 6:1 mixture of isomeric oxazolidinones 4c and $4d^{12}$ with retention and inversion of configuration, respectively. The main product 4c is identical to that obtained from the cyclization (with inversion of configuration) of the *erythro* aminoalcohol 1c. The $S_N 2$ pathway is probably disfavoured in the threo isomer 1d by steric interactions between the syn phenyl groups; formation of the *anti* oxazolidinone 4c is thus preferred, probably via a S_N cyclization of the benzylic mesylate. Competition between S_N1 and S_N2 mechanisms is also likely to be responsible for the partial epimerization observed in the cyclization of the very reactive mesylate derived from alcohol 1g (entry 7) leading to a 3:1 mixture of inverted and retained oxazolidinones 4g and 2g, respectively. A similar result was obtained when the cyclization was carried out with thionyl chloride.⁶ Entries 5–7 in Table 1 illustrate the application of our methodology to the inversion of configuration of enantiopure 1,2-aminoalcohols. Thus, for example, N-Boc aminoalcohol 1e ($[\alpha]_D^{25} = -2.62$, c = 4, EtOH) was smoothly converted into its enantiomer 5e $([\alpha]_{D}^{25} = +2.53, c=4, EtOH)$ via known oxazolidinone **4e** $([\alpha]_{D}^{25} = +23, c=4.3, EtOH)^{13}$ in 74% overall yield and 97% e.e. (entry 5). In the case of the allylic alcohol 1f (entry 6), our methodology proved superior to that described by Ghosh.⁶ When the cyclization of this alcohol was performed with thionyl chloride, a 1:1 mixture of oxazolidinone 4f and the chloride derived by a $S_N 1$ displacement at the allylic position was obtained, while under our conditions 4f is the only product.

The synthetic utility of this method is further illustrated by the two-step synthesis of N-methyl-pseudoephedrine **8** from N-Boc-ephedrine **6** (Scheme 2). The latter aminoalcohol, when treated with methanesulfonyl chloride, readily cyclizes, at 25°C in 4 hours, to the known¹⁵ oxazolidinone **7**, with complete inversion of configuration. Reduction of the oxazolidinone with lithium aluminium hydride in THF gave N-methyl-pseudoephedrine **8**¹⁶ in quantitative yield.

1,2-Aminoalcohols are intermediates in the synthesis of biologically active products^{17–19} and are widely used as chiral auxiliaries in asymmetric synthesis;¹ the methodology described here may offer a useful tool for the interconversion of stereoisomers of this important class of compounds.

References

- 1. Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835-875.
- 2. Curran, T. P.; Pollastri, M. P.; Abelleira, S. M.; Messier, R. J.; McCollum, T. A.; Rowe, C. G. *Tetrahedron Lett.* **1994**, *35*, 5409–5412.
- 3. Bach, T.; Schröder, J. Tetrahedron Lett. 1997, 38, 3707-3710.
- 4. Lago, M. A.; Samanen, J.; Elliott, J. D. J. Org. Chem. 1992, 57, 3493-3496.
- 5. Ishizuka, T.; Kunieda, T. Tetrahedron Lett. 1987, 28, 4185-4188.
- 6. Ghosh, A. K.; Shin, D.; Mathivanan, P. J. Chem. Soc., Chem. Commun. 1999, 1025-1026.
- 7. In a typical experiment the *N*-Boc aminoalcohol was treated with 1.5 equiv. of MsCl and 3 equiv. of DIPEA in 1,2-dichloroethane at 25°C for 1 hour and then at 83°C until completion (1 hour at 0°C in CH₂Cl₂ was sufficient for the more reactive allylic alcohols of entries 6 and 7). The oxazolidinone thus obtained (50–100% yield), in THF, was treated with 1.1 equiv. of NaH and 1.2 equiv. of di-*tert*-butyl dicarbonate, in that order, for 2 hours at 25°C and then hydrolyzed with 2 equiv. Cs₂CO₃ in 4:1 aqueous methanol to regenerate the inverted *N*-Boc aminoalcohol in 82–100% yield. Overall yields are in Table 1.
- 8. Kotsuki, H.; Ohishi, T.; Araki, T. Tetrahedron Lett. 1997, 38, 2129-2132.
- 9. Ando, A.; Tatematsu, T.; Shioiri, T. Chem. Pharm. Bull. 1991, 39, 1967-1971.
- 10. Hu, N. X.; Aso, Y.; Otsubo, T.; Ogura, F. J. Chem. Soc., Chem. Commun. 1987, 1447-1448.
- 11. Knapp, S.; Kukkola, P. J.; Sharma, S.; Dhar, T. G. M.; Naughton, A. B. J. J. Org. Chem. 1990, 55, 5700–5710.
- 12. Hassner, A.; Burke, S. S. Tetrahedron 1974, 30, 2613-2626.
- 13. Schoepf, C.; Wuest, W. Justus Liebigs Ann. Chem. 1959, 626, 150-154.
- 14. Enders, D.; Haertwig, A.; Raabe, G.; Runsink, J. Eur. J. Org. Chem. 1998, 1771-1792.
- 15. Agami, C.; Couty, F.; Hamon, L.; Venier, O. Tetrahedron Lett. 1993, 34, 4509-4512.
- 16. Fujita, M.; Hiyama, T. J. Org. Chem. 1988, 53, 5405-5415.
- 17. Caron, M.; Carlier, P. R.; Sharpless, K. B. J. Org. Chem. 1988, 53, 5187-5189.
- 18. Pastó, M.; Castejón, P.; Moyano, A.; Pericàs, M. A.; Riera, A. J. Org. Chem. 1996, 61, 6033-6037.
- Kempf, D. J.; Sham, H. L.; Marsh, K. C.; Flentge, C. A.; Betebenner, D.; Green, B. E.; McDonald, E.; Vasavanonda, S.; Saldivar, A.; Wideburg, N. E.; Kati, W. M.; Ruiz, L.; Zhao, C.; Fino, L. M.; Patterson, J.; Molla, A.; Plattner, J. J.; Norbeck, D. W. J. Med. Chem. 1998, 41, 602–617.