REACTION OF CHALCONES WITH 2,4-BIS(4-METHOXYPHENYL)-1,3,2,4-DITHIADIPHOSPHETANE-2,4-DISULFIDE

Shunichi KAMETANI, Haruo OHMURA, Hideyuki TANAKA, and Shinichi MOTOKI* Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162

Though the reaction of chalcones 2 with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide 1 in refluxing benzene gave the corresponding thiochalcone dimers 3, the reaction in refluxing xylene gave new phosphorus-containing compounds, $2-(4-methoxyphenyl)-3,5-diaryl-\Delta^4-1,2-thiaphospholene-2-sulfides 4.$

We have previously reported that thiochalcone dimers and 2-arylmethylenel-tetralinthione dimers are readily prepared by treatment of chalcones and 2-arylmethylene-l-tetralones with tetraphosphorus decasulfide (P_4S_{10}) in the presence of triethylamine.^{1,2})

In recent years, 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4disulfide $\underline{1}$ was found to be an effective thionation reagent for ketones and many reports referring to the utilization of this reagent were presented by Lawesson and his co-workers.³⁾ Accordingly the reaction of $\underline{1}$ with chalcones and 2-arylmethylene-1-tetralones has been studied in the present paper.

Treatment of chalcone $\underline{2}$ (0.01 mol) with $\underline{1}$ (2.4 g, 0.006 mol) in refluxing benzene (30 cm³) gave the corresponding thione dimer $\underline{3}$ as in the case of the reaction with P_4S_{10} and Et_3N (Table-1).

Table-1 Prepapration of thiochalcone dimers 3 with 1

Product	Ar	Reaction time	Yield(%)
<u>3a</u>	с ₆ н ₅	2 h	20
<u>3b</u>	p-CH ₃ OC ₆ H ₄	15 min	16
<u>3c</u>	p-ClC ₆ H ₄	3 h	27

However, when the reaction of $\underline{2a}$ with twice amount of $\underline{1}$ was carried out in refluxing xylene, new phosphorus-containing compound $\underline{4a}$ was obtained in relatively good yield.

A mixture of 2a (2.1 g, 0.01 mol) and 1 (4.8 g, 0.012 mol) in xylene (20 cm³) was refluxed for 30 min. After cooling, the reaction mixture was filtered and the filtrate was evaporated. The residue was chromatographed on Wakogel C-200 using benzene as an eluent. The solvent was evaporated and the residue was recrystal-lized from ethanol to give colorless crystals of 2-(4-methoxyphenyl)-3,5-diphenyl- Δ^4 -1,2-thiaphospholene-2-sulfide <u>4a</u> (2.22 g, 56% yield, mp 204-205 °C dec).

Found: C, 67.08; H, 4.88; S, 16.34; P, 7.90%; Calcd for $C_{22}H_{19}OS_2P$: C, 66.98; H, 4.85; S, 16.25; P, 7.85%. The mass spectral fragmentation pattern and the NMR

 $(^{1}\text{H}, \text{ and } ^{13}\text{C})$ spectral data gave strong substantiation for the structure <u>4a</u>. Namely, the mass spectrum exhibited the molecular ion peak (394, 64%) and a fragment from the thione monomer <u>5a</u> (223, 99%, <u>5a</u>⁺- H)¹⁾ which would be formed by the cleavage of <u>4a</u>. The ¹H-NMR spectrum showed the signals of one olefinic proton (δ 6.32, dd, J_{PH}=32 Hz, J_{HH}=4 Hz, H(4)) and one methine proton (δ 5.17, dd, J_{PH}=18 Hz, J_{HH}=4 Hz, H(3)). In the ¹³C-NMR spectrum, a signal with a large coupling constant at δ 67.76 (J_{PC}=42.73 Hz) was easily assigned to the carbon atom [C(3)] directly attached to the phosphorus atom.⁴

The ${}^{31}P-NMR$ spectrum showed the presence of one kind of phosphorus atom (85% H₃PO₄, CDCl₃; δ 95.1).

5-p-Methoxyphenyl and 5-p-chlorophenyl analogues (<u>4b</u> and <u>4c</u>) were prepared similarly (Tables-2 and 3).

The reaction would proceed by the way similar to that of 1,3-diene and $\underline{1}^{5}$ as illustrated in Scheme-1.

Table-2 Preparation of 2-(4-methoxyphenyl)-3,5-diaryl- Δ^4 -1,2-

	1 1	<u> </u>		
Product	Ar	Reaction time	Yield(%)	Mp(°C)
4a	C ₆ H ₅	30 min	56	204-205
<u>4b</u>	p-CH ₃ OC ₆ H ₄	30 min	56	137-138
<u>4c</u>	p-ClC ₆ H ₄	30 min	21	169-171

thiaphospholene-2-sulfides $\underline{4}$

Table-3	¹ H-NMR	and	¹ ³ C-NMR	spectral	data	of	4

δ Н(З)	δ Н(4)	J _{HH}	J _{PH(3)}	J _{PH(4)}	δ C(3)	J _{PC(3)}
5.17	6.32	4 Hz	18 Hz	32 Hz	67.76	42.73 Hz
5.14	6.18	4 Hz	20 Hz	32 Hz	67.66	42.73 Hz
5.14	6.31	4 Hz	20 Hz	32 Hz	67.86	42.73 Hz
	δ H(3) 5.17 5.14 5.14	δ H(3) δ H(4) 5.17 6.32 5.14 6.18 5.14 6.31	δ H(3) δ H(4) J _{HH} 5.17 6.32 4 Hz 5.14 6.18 4 Hz 5.14 6.31 4 Hz	δ H(3) δ H(4) J _{HH} J _{PH(3)} 5.17 6.32 4 Hz 18 Hz 5.14 6.18 4 Hz 20 Hz 5.14 6.31 4 Hz 20 Hz	δ H(3) δ H(4) J _{HH} J _{PH(3)} J _{PH(4)} 5.17 6.32 4 Hz 18 Hz 32 Hz 5.14 6.18 4 Hz 20 Hz 32 Hz 5.14 6.31 4 Hz 20 Hz 32 Hz	δ H(3)δ H(4) J_{HH} $J_{PH}(3)$ $J_{PH}(4)$ δ C(3)5.176.324 Hz18 Hz32 Hz67.765.146.184 Hz20 Hz32 Hz67.665.146.314 Hz20 Hz32 Hz67.86

When thiochalcone dimer $\underline{3a}$ (2.3 g, 0.01 mol as the monomer) was allowed to react with $\underline{1}$ (4.8 g, 0.012 mol) in refluxing xylene (10 cm³) for 2h, 4a was obtained in 36% yield.

The result also indicates that the reaction of $\frac{2}{2}$ with $\frac{1}{2}$ proceed via thione monomer $\frac{3}{2}$.

The reaction of 2-phenylmethylene-l-tetralone $\underline{6}$ with $\underline{1}$ in refluxing benzene also gave the corresponding thione dimer 7.

In refluxing xylene, the reaction of $\underline{6}$ with $\underline{1}$ did not afford any identified product, however, $\underline{7}$ reacted with $\underline{1}$ to give the corresponding phosphorus compound $\underline{8}$ (0.26 g, 31% yield, mp 156-157 °C dec).

The assignment were as follows: MS(70eV); $420(54\%,M^+)$, 387(100), $250(17, M^+ - p-MeOC_6H_4PS)$, 249(77), 215(25); ¹H-NMR (CDCl₃) & 2.22-2.39 (m, $-CH_2CH_2-)$, & 3.81 (s, OCH_3), & 4.42 (d, $J_{PH}=8$ Hz, 1H, H(3)), & 6.84-8.05 (m, 13H, Ar-H); ¹³C-NMR (CDCl₃) & 26.58 [d, $J_{PC}=13.21$ Hz, C(6)], & 28.17, & 55.46 [OCH₃], & 6.6.30 [d, $J_{PC}=49.97$ Hz, C(3)].

References

- 1) T. Karakasa and S. Motoki, J. Org. Chem., <u>43</u>, 4147 (1978).
- 2) T. Karakasa and S. Motoki, J. Org. Chem., 44, 4151 (1979).
- B. S. Perdersen, S. Scheibye, N. H. Nilsson, and S. O. Lawesson, Bull. Soc. Chim. Belg., <u>87</u>, 223 (1978) and later papers.
- 4) E. F. Moony, "ANNUAL REPORTS ON NMR SPECTROSCOPY," Vol. 5B, Academic Press, New York (1973), P. 12.
- 5) A. Ecker, I. Boie, and U. Schmidt, Angew. Chem., Int. Ed. Engl., <u>10</u>, 191 (1971).

(Received February 19, 1982)