HIGHLY STEREOCONTROLLED SYNTHESIS OF THE 1β-METHYLCARBAPENEM KEY INTERMEDIATE BY THE REFORMATSKY REACTION OF 3-(2-BROMOPROPIONYL)-2-OXAZOLIDONE DERIVATIVES WITH A 4-ACETOXY-2-AZETIDINONE¹⁾

Yoshio Ito,^{a)2)} Akira Sasaki,^{b)} Kastumi Tamoto,^{b)} Makoto Sunagawa,^{b)} and Shiro Terashima^{a)*}

Sagami Chemical Research Center, Nishi-Ohnuma, Sagamihara, Kanagawa 229, Japan^{a)} Research Laboratories, Research and Development Division, Sumitomo Pharmaceuticals Co. Ltd., Kasugade, Naka, Konohana-ku, Osaka 554, Japan^{b)}

(Received in Japan 16 November 1990)

Abstract: The key synthetic intermediate (4) of 1 β -methylcarbapenems (1~3) was efficiently synthesized by employing highly stereocontrolled Reformatsky reaction (C4-alkylation) of 3-(2-bromopropionyl)-2-oxazolidone derivatives (6) with (3R,4R)-4-acetoxy-3-[(R)-1-(t-butyldimethylsilyloxy)ethyl]-2-azetidinone (5) in the presence of zinc dust followed by removal of 2-oxazolidone moieties. The best diastereoselectivity (β : α =95:5) could be realized by uses of sterically crowded achiral 2-oxazolidone derivatives such as 4,4-dimethyl-, 4,4,5,5-tetramethyl, and 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone and higher reaction temperatures (refluxing tetrahydrofran). The remarkable diastereoselectivities observed for the Reformatsky reactions could be explained by means of the weakly chelating transition state models.

The 1 β -methylcarbapenems represented by L-646591 (1),³) 1 β -methyl-RS-533 (2),⁴) and SM-7338 (3)⁵) were found as synthetic carbapenem antibiotics showing enhanced chemical and metabolic stabilities in addition to excellent antibacterial activity and broad spectra.³⁻⁵) Since these novel antibiotics which have intriguing structures involving four contiguous asymmetric centers are obtainable only by chemical synthesis, numerous synthetic endeavors have so far been devoted to them.⁶)

In the original synthesis of 1 reported by a research group at Merck,³) (3S,4S)-3-[(R)-1-(tbutyldimethylsilyloxy)ethyl]-4-[(R)-1-carboxyethyl]-2-azetidinone (4) was employed as a key synthetic intermediate. After that, synthetic studies have been focused exclusively on 4 since it has been disclosed that 4 can be also converted effectively to other 1 β -methylcarbapenems such as 2 and 3 which have the same frameworks as 1 and different C2-side chains. Introduction of the C2-side chain can be easily achieved after construction of the bicyclic carbapenem framework is completed.⁶⁾

Among a number of the synthetic methods of 4 so far reported,⁶) stereoselective substitution at the C4-position of (3R,4R)-4-acetoxy-3-[(R)-1-(t-butyldimethylsilyloxy)ethyl]-2-azetidinone (5) with various types of enolates obtainable from propionic acid derivatives is currently recognized as one of the most promising synthetic methods⁶) since several highly efficient synthetic routes to 5 or its equivalents have been recently explored.^{7,8})

Stereoselective introduction of the 1 β -methyl substituent into 5 has hitherto been accomplished using tin enolate of 3-propionyl-2-thiazolidinethione,⁹⁾ or 3-propionyl-2-oxazolidinethione derivative,^{9b)} boron enolate of 3-propionyl-2-oxazolidone¹⁰⁾ or 3-propionyl-2-benzoxazolidone derivative,^{4b)} zirconium enolate of the thiol ester of propionic acid,¹¹⁾ and so on.⁶⁾ However, these methods seem to accompany much difficulties in a large-scale preparation of 4 because precious chiral sources and/or expensive or toxic reagents such as tin trifluoromethanesulfonate, diethylboron trifluoromethanesulfonate, and bis(cyclopentadienyl)zirconium dichloride are required. With an aim to overcome these problems, we paid attention to the Reformatsky reaction of achiral 2-bromopropionic acid derivatives with 5 in the presence of cheap and less toxic zinc dust.¹⁾

This report details the highly stereocontrolled synthesis of 4 accomplished by the Reformatsky reation of 3-(2-bromopropionyl)-2-oxazolidone derivatives (6) with 5.

The Reformatsky reaction of various 3-(2-bromopropionyl)-2-oxazolidone derivatives (6) with (3R,4R)-4-acetoxy-3-[(R)-1-t-butyldimethylsilyloxy)ethyl]-2-azetidinone (5).

After accumulating numerous unsuccessful results on the reactions of various 2-bromopropionic acid esters with 5 in the presence of zinc dust,¹²⁾ we envisioned that stereochemical outcome of the C4-alkylation may depend largely upon the geometry of the zinc enolate produced from 2-bromopropionic acid derivatives and zinc dust. It was also expected that the enolate geometry can be effectively controlled as (Z)-configuration by changing ester group to imide group as reported for deprotonation of a 3-propionyl-2-oxazolidone derivative with lithium diisopropylamide.¹³⁾ Based on these considerations, the Reformatsky reactions of several kinds of 3-(2-bromopropionyl)-2-oxazolidone derivatives ($6a \sim g$) with 5 were attempted.

									Product (7)a)	
Run	6	R1	R ²	R ³	R4	Solvent	Temp (°C)	Time (min)	Yield ^{b)} (%)	Ratio ^{c)} 7β:7α
1	a	Н	н	н	H	THF	0	60	75	45:55
2	a	н	н	н	н	THF	25	10	97	45:55
3	a	н	н	н	н	THF	67d)	1	82	48:52
4	b	Me	Me	н	н	THF	0	30	90	63:37
5	b	Me	Me	Н	н	THF	0~67 ^{e)}) 30 (3)	e) 97	64:36
6	b	Me	Me	н	н	THF	25	5	95	73:27
7	b	Me	Me	H	н	THF	67 ^{d)}	1	94	79:21
8	b	Me	Me	н	н	DMF	25	10	81	69:31
9	b	Me	Мe	н	н	DME	25	10	88	62:38
10	b	Me	Мe	H	н	DME	70	1	96	81:19
11	b	Me	Me	H	н	Dioxane	25	10	99	62:38
12	b	Мe	Me	н	H	Dioxane	70	1	99	78:22
13	c (LM) ^{f)}	Me ₂ CH	н	Н	н	THF	0	30	99	91: 9
14	c (M) ^{f)}	Me ₂ CH	H	н	н	THF	25	10	99	87:13
15	c (L) ^{f)}	Me ₂ CH	н	H	H	THF	25	10	100	88:12
16	c (LM) ^{f)}	Me ₂ CH	H	н	н	THF	67d)	1	99	81:19
17	d (LM) ^{f)}	$PhCH_2$	н	Н	н	THF	0	30	91	90:10
18	e (LM) ^{f)}	н	Ph	н	н	THF	0	30	9 9	35:65
19	e (LM) ^{f)}	н	Ph	н	н	THF	67 ^{d)}	1	90	56:44
20	f	Me	Me	Me	Me	THF	67d)	5	92	87:13
21	g	ⁿ Bu	ⁿ Bu	-(CH ₂) ₅ -		THF	25	10	99	90:10
22	g	ⁿ Bu	ⁿ Bu	-(C)	H2)5-	THF	67d)	2	99	95: 5

Table 1. Reformatsky reaction of various 3-(2-bromopropionyl)-2-oxazolidones (6) with(3R,4R)-4-acetoxy-3-[(R)-1-(t-butyldimethylsilyloxy)ethyl]-2-azetidinone (5).

a) The two diastereomers (7 β and 7 α) were separated by column chromatography (see the experimental part).

b) Combined yields of 7β and 7α .

c) Determined by measuring the ¹H-NMR spectrum of the mixture of 7β and 7α or by the weights of 7β and 7α separated by column chromatography (see the experimental part).

d) The reaction was performed in refluxing THF.

e) The mixture obtained by the reaction performed at 0°C for 30 min was heated at reflux for 3 min before work-up.

f) L, M, and LM mean a less polar isomer, a more polar isomer, and a mixture of less and more polar isomers of 6c~e, respectively. See the text and experimental part. Preparations of **6a-g** were achieved by treating 2-bromopropionyl bromide with the 2-oxazolidone derivatives in the presence of bases such as sodium hydride and butyllithium. Among the 2-oxazolidone derivatives, 4,4-dimethyl-, (R)-4-phenyl-, 4,4,5,5-tetramethyl-, and 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone, all of which were commercially not available, were prepared from the corresponding amino alcohols (see the experimental part). Synthesis of 2-amino-1,2,2-trimethylpropanol and 2-amino-2-butyl-1,1-pentamethylene-1hexanol which afford 4,4,5,5-tetramethyl- and 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone, respectively, could be achieved starting from acetone and cyclohexanone according to the reported procedure (see the experimental part).¹⁴

As shown in **Table 1**, run 1, the zinc enolate produced *in situ* from 3-(2-bromopropionyl)-2oxazolidone (**6a**) and zinc dust could effectively react with **5** at 25°C in tetrahydrofuran (THF) to give the alkylation product (**7a**) in 97% yield. However, **7a** was found to be a mixture of two diastereomers (**7a** β and **7a** α) in a ratio of 45:55. This disappointingly low diastereoselectivity could not be improved by changing reaction conditions such as solvents and temperatures (runs 1~3) and by employing various Lewis acids.¹⁵) With an aim to further improve the desired β -methyl diastereoselectivity (β -diastereoselectivity), the effect of substituents involved in the 2-oxazolidone moiety on the diastereoselectivity was next studied.

While the use of 3-(2-bromopropionyl)-2-benzoxazolidone gave no improvement with regard to yield and diastereoselectivity,¹⁶) it was finally found that the reaction performed with 3-(2-bromopropionyl)-4,4-dimethyl-2-oxazolidone (**6b**) at 0°C could produce the desired 1 β -methyl β -lactam (**7b** β) as a major product (run 4). Interestingly, the diastereoselectivity was found to highly depend upon the reaction temperature. Thus, contrary to our expectation, the increased β -diastereoselectivity was obtained at higher reaction temperatures (runs 4~7) and the formation ratio of **7b** β to **7b** α reached to 79:21 in refluxing THF (run 7). Although the reaction of **6b** with **5** was further examined in various solvents, no further improvement of the β -diastereoselectivity could be realized (runs 8~12).

Since it had been uncovered that tin enolate of chiral 3-propionyl-2-thiazolidinethione derivative^{9a)} and boron enolate of chiral 3-(propionyl)-2-oxazolidone derivative¹⁰⁾ could effect highly stereoselective construction of the 1β-methyl substituent, the Reformatsky reaction of chiral 3-(2-bromopropionyl)-2-oxazolidone derivatives (6c~e) with 5 was similarly examined (runs 13~19). Since 2-bromopropionic acid moiety was used as a racemic form, 6c~e were obtained as mixtures of two diastereomers due to the asymmetric carbons involved in the 2bromopropionic acid and 2-oxazolidone moieties. These diastereomers could be readily separated by column chromatography to give a more polar isomer (M) and a less polar Although the relative configurations of these diastereomers could not be isomer (L). assigned, the reactivity, chemical yield, and diastereoselectivity of the next Reformatsky reaction were not affected substantially by the configurational difference (runs 14 and 15). The reaction of 6c,d having (S)-4-isopropyl or (S)-4-benzyl group with 5 improved the diastereomeric ratios up to ca. 9:1 at 0°C and 25°C (runs 13~15 and 17), but almost the same diastereomeric ratio as observed for 6b was obtained for 6c in refluxing THF (run 16). Being different from 6c,d, 6e carrying (R)-4-phenyl group gave low α -diastereoselectivity in the

reaction at 0°C. Similarly, to the results obtained for **6b**, the proportion of **7e** β increased up to 56% in refluxing THF (runs 18 and 19).

The results accumulated using 6a - e obviously suggest that increase of the steric bulkiness at the C₄-position of 6 may improve the β -diastereoselectivity of the Reformatsky reaction in refluxing THF. Based on this assumption, the sterically more crowded 2-oxazolidone derivatives (6f,g) were designed to enhance the β -diastereoselectivity. As expected, the Reformatsky reaction of 3-(2-bromopropionyl)-4,4,5,5-tetramethyloxazolidone (6f) with 5 gave higher β -diastereoselectivity in refluxing THF (7f β :7f α =87:13) (run 20). Ultimately, the highest β -diastereoselectivity (7g β :7g α =95:5) could be realized by the reaction of the most sterically crowded 3-(2-bromopropionyl)-4,4-dibutyl-5,5-pentamethylene-2-oxazolidone (6g) with 5 in refluxing THF (run 22). Similarly to the cases for 6b, the β -diastereoselectivity with 6g lowered at 25°C (run 21). A single recrystallization of the mixture of 7g β and 7g α (95:5) from methanol afforded an 85% yield of pure 7g β .

Mechanistic consideration of the Reformatsky reaction.

Firstly, the zinc enolate was assumed to have (Z)-configuration based on the results previously reported¹³⁾ and detailed in the accompanying paper.¹⁷⁾ That the Reformatsky reaction is kinetically controlled was also ascertained by the fact that the β -diastereoselectivity observed for the reaction at 0°C did not change after heating the reaction mixture at 67°C (**Table 1**, run 5). Taking into account these features, the six-membered chelating transition states (A and B) which correspond to a chair and a boat form, respectively, may be proposed to explain the unique diastereoselectivity of the Reformatsky reaction. In A and B, the (Z)-zinc enolate approaches the CN-double bond of the 1,4-dehydro-2-azetidinone derivative from the direction opposite to the bulky (R)-1-(t-butyldimethylsilyloxy)ethyl group, giving rise to 7 β and 7 α , respectively. The 1,4-dehydro-2-azetidinone derivative might be produced by removal of an acetic acid from 5 with the (Z)-zinc enolate and/or zinc bromide present in the reaction medium. Steric interaction between the R² group and the C4-H of 1,4-dehydro-2-azetidinone and that between the R¹ group and the C3-H of 1,4-dehydro-2-azetidinone should play key roles in determining the thermodynamic stability of A and B, respectively. Similar

transition states have been proposed for the reactions with tin enolate of 3-propionyl-2-thiazolidinethione^{9a)} and boron enolate of 3-propionyl-2-oxazolidone¹⁰⁾ with 5.

At lower reaction temperatures such as 0°C, the Reformatsky reactions with 6c,d having (S)-configurations $(\mathbb{R}^{1}=i\mathbb{P}r \text{ or }^{n}\mathbb{B}u, \mathbb{R}^{2}=\mathbb{H})$ proceeded more preferentially through **A**, producing 7c,d β as the major products (**Table 1**, runs 13 and 17). Selective formation of 7e α from the reaction with 6e bearing (R)-configuration $(\mathbb{R}^{1}=\mathbb{H}, \mathbb{R}^{2}=\mathbb{P}h)$ can be similarly explained by **B** (**Table 1**, run 18). Low β -diastereosesectivities observed for the reaction with 6a,b ($\mathbb{R}^{1}=\mathbb{R}^{2}=\mathbb{H}$ or Me) may reflect small thermodynamic differences between **A** and **B** (**Table 1**, runs 1 and 4).

On the other hand, the higher reaction temperatures such as 67°C may result in loosening of the intermolecular chelation between the zinc (II) cation and the nitrogen atom of CN double bond in A and B (arrow a and b). Steric interaction should be released more effectively in A than in B by the weakening of intermolecular chelation. Thus, the increases of β diastereoselectivities observed for the reactions with sterically crowded 2-oxazolidone derivatives (**6b,f,g**) (R¹=R²=Me or ⁿBu) by raising the reaction temperature (**Table 1**, runs 7, 20, and 25) may be explained by A in which the intermolecular chelation is weakened. Results obtained with **6e** having (R)-configuration (R¹=H, R²=Ph) by changing the reaction temperature (**Table 1**, runs 18 and 19) strongly suggest that pronounced release of the steric interaction occurs in A at higher reaction temperatures. The diastereoselectivities in the reactions with **6a**, c (R¹=ⁱPr or H, R²=H) at higher temperatures (**Table 1**, runs 3 and 16) disclose that the release of steric interaction in A by loosing the intermolecular chelation is not so much for the 2-oxazolidone derivative in which the R² group is hydrogen.

Results obtained at ambient temperatures such as 25° C (**Table 1**, runs 2, 6, 8, 9, 11, 14, 15, 21) may reflect the delicate balances between the chelating transition states (**A** and **B**) and those in which the intermolecular chelations (arrows a and b) become very weak.

Convertion of the Reformatsky products to the 1β -methylcarbapenem key intermediate (4) and determination of their stereochemistries.

At the last stage of our synthetic studies, the preparation of 4 from 7 β was attempted. While treatment of 7b β with sodium hydroxide in aqueous methanol accompanied hydrolysis of the 2-oxazolidone moiety to yield an amide derivative in addition to 4,¹⁸⁾ 7b β could be readily converted to the benzyl ester (8 β) in 98% yield by treating with lithium benzylate. As shown in Scheme 1, 8 β was similarly prepared in excellent yields from 7b,f,g β . However, fairly low yields were only obtained for 7a,c,d,e β . In the latter cases, the nucleophilic openings of 2oxazolidone moieties with lithium benzylate were always observed as side reactions.¹⁸⁾ These results obviously suggest that the C2-carbonyl groups of sterically crowded 7b,f,g β were protected from the nucleophilic attack by lithium benzylate more effectively than those of 7a,c,d,e β . Hydrogenolysis of 8 β on palladium catalyst produced 4 in 98% yield. From the most sterically crowded 7g β , it was also possible to obtain 4 directly in 91% yield by treating

a) BnOLi in THF, 54% (from 7aβ), 98% (from 7bβ), 67% (from 7cβ), 38% (from 7dβ), 27% (from 7eβ), 90% (from 7fβ), 97% (from 7gβ)
b) H₂-Pd/C in AcOEt, 98% c) CH₂N₂, 97% d) NaOH in THF-BuOH, 91% (from 7gβ)

Scheme 1

 $7g\beta$ with sodium hydroxide in aqueous *t*-butanol. Esterification of 4 with diazomethane produced the methyl ester (9β) in 97% yield. Physical and/or spectral data of 4 and 9β were identical with those reported.^{3,19,20}

Although the convergent syntheses of 4 and 9β from $7a-g\beta$ obviously established the stereochemistries of 7α and 7β , convertions of 7α to the methyl ester (9α) were also attempted by way of the benzyl ester (8α) and the carboxylic acid (10).²¹) Similarly to the previous results, the yields of the benzyl ester formation from $7a-e\alpha$ were found to highly depend upon the structures of 2-oxazolidone moieties. Thus, as shown in Scheme 2, while 8α could be produced from $7b,e\alpha$ in 95% and 51% yields, respectively, the benzyl ester formation did not take place for $7a\alpha$ or gave very low yields of 8α from $7c,d\alpha$. For $7a,c,d,e\alpha$, the ring openings of 2-oxazolidone moieties seemed to occur along with or in place of the desired alcoholyses.¹⁸) Hydrogenolysis of 8α over palladium catalyst afforded 10 in 98% yield. The methyl ester (9α) could be produced from 10 by treating with diazomethane. Comparisons of the physical and/or spectral data of 10 and 9α with those reported,^{3,22}) definitely established their structures.

a) BnOLi in THF, 0% (from 7aα), 95% (from 7bα), 13% (from 7cα), 8% (from 7dα), 51% (from 7eα).
b) H₂-Pd/C in AcOEt, 98% c) CH₂N₂, 98%

Scheme 2

Conclusion

As mentioned above, we have succeeded in exploring a highly stereoselective synthetic route to 4 by featuring the Reformatsky reaction with sterically crowded achiral **6b,f,g** with 5 in the presence of zinc dust. Remarkable increases of the β -diastereoselectivities at higher reaction temperatures could be explained by chelating transition state models. High β diastereoselectivity of the key step, high overall yield, mild reaction conditions, and uses of inexpensive and less toxic reagents makes this process highly promising as one of the most practical synthetic methods of 4.

Experimental

General. All melting points were measured by a Yamato MP-21 melting point apparatus or a Thomas Hoover capillary melting point apparatus and were uncorrected. Measurements of optical rotations were performed with a Horiba SEPA-200 automatic digital polarimeter or a JASCO DIP-370 digital polarimeter. IR spectral measurements were carried out with a JASCO A-202 diffraction grating infrared spectrometer, a JASCO A-102 IR spectrometer or a Hitachi 260-10 IR spectrometer. ¹H-NMR spectra were measured with a Hitachi R-90H (90 MHz), a JEOL JNM-GX270 FT-NMR spectrometer (270 MHz), or a Bruker AM-400 spectrometer (400 MHz). All signals were expressed as ppm down field from tetramethylsilane used as an internal standard (δ -value). Mass spectra were taken with a Hitachi RMU-6MG mass spectrometer. Wakogel C-200 and C-300 were used as an adsorbent for column chromatography. Kieselgel 60F254 (Merck) was used for preparative TLC.

3-(2-Bromopropionyl)-2-oxazolidone (**6a**) A solution of n-butyllithium in hexane (1.60M solution, 30.0 ml, 48 mmol) and 2-bromopropionyl bromide (5.83 ml, 46 mmol) were added successively to a solution of commercially available 2-oxazolidone (4.00 g, 46 mmol) in THF (70 ml) at 0°C. After stirring for 1 h, the mixture was diluted with saturated aqueous potassium dihydrogen phosphate solution and extracted with AcOEt. The combined extracts were dried over anhydrous Na2SO4 and concentrated *in vacuo*. The residue was purified by column chromatography (SiO2, hexane-CH2Cl2 1:1~0:1) to give **6a** as colorless crystals (8.68 g, 84%). An analytical sample obtained by recrystallization from ether showed mp 41°C. IR (KBr): 1779, 1707, 1400, 1372, 1269, 1240, 1230, 1070, 758 cm⁻¹. ¹H-NMR (CDCl3): 1.83 (3H, d, J=6.8 Hz, Me), 4.08 (2H, m, CH2O), 4.48 (2H, m, CH2N), 5.69 (1H, q, J=6.8 Hz, CH). MS m/z: 223, 221 (M)⁺, 142 (M-80)⁺. Found: C, 32.50; H, 3.59; N, 6.29%. Calcd for C6HsNO3Br: C, 32.46; H, 3.63; N, 6.31%.

3-(2-Bromopropionyl)-4,4-dimethyl-2-oxazolidone (6b). a) Preparation of 4,4-dimethyl-2oxazolidone. A mixture of commercially available 2-amino-2-methyl-1-propanol (4.00 g, 45 mmol), diethyl carbonate (10.9 ml, 90 mmol), and anhydrous potassium carbonate (0.100 g, 0.72 mmol) was heated at 120°C for 2h with stirring. After removal of resulting ethanol and excess of diethyl carbonate *in vacuo*, the residue was diluted with 1M HCl (8.0 ml) and extracted with AcOEt. The combined organic extracts were washed with saturated aqueous NaCl and dried over anhydrous MgSO4. Filtration and concentration *in vacuo* gave 4,4-dimethyl-2-oxazolidone as colorless crystals (5.07 g, 98%). An analytical sample obtained by recrystallization from AcOEt showed mp 56~58°C (*lit.*,²³⁾ 56.5~58°C). IR (KBr): 3250, 1760, 1414, 1220, 1040, 941, 777, 560 cm⁻¹. ¹H-NMR (CDCls): 1.36 (6H, s, Mex2), 4.08 (2H, s, CH₂), 5.91 (1H, bs, NH). MS m/z: 115 (M)⁺, 100 (M-Me)⁺. Found: C, 52.38; H, 7.85; N,12.13%. Calcd for C5H9NO2: C, 52.16; H, 7.88; N, 12.17%.

b) Preparation of **6b** by using sodium hydride. 4,4-Dimethyl-2-oxazolidone (1.15 g, 10 mmol) was added to a suspension of sodium hydride (0.24 g, 10 mmol) in THF (100 ml) and the mixture was stirred at rt for 5h. After cooling to 0°C, 2-bromopropionyl bromide (1.05 ml, 10 mmol) was added to the mixture and the stirring was continued for 1h at the same temperature. The mixture was worked-up in the same manner as described in c), affording **6b** as colorless crystals (2.35 g, 90%) after purification by column chromatography. The spectral data [IR (KBr), ¹H-NMR (CDCls), and MS] of this sample were identical with those described in c).

c) Preparation of **6b** by using *n*-butyllithium. Treatments of 4,4-dimethyl-2-oxazolidone (0.384 g, 3.3 mmol) in a similar manner to that described for the preparation of **6a** gave **6b** as color-less crystals (0.701g, 84%) after purification by column chromatography (SiO₂, hexane-CH₂Cl₂ 1:1~0:1). An analytical sample obtained by recrystallization from hexane showed mp 73~74°C. IR (KBr): 3030, 1775, 1709, 1370, 1310, 1183, 1105, 1069, 760, 702 cm⁻¹. ¹H-NMR (CDCl₃): 1.58, 1.60 (6H, two s, Me₂C), 1.81 (3H, d, J=6.8 Hz, <u>Me</u>CH), 4.06 (2H, s, CH₂), 5.74 (1H, q, J=6.8 Hz, CH). MS m/z: 251, 249 (M)⁺, 170 (M-80)⁺. Found: C, 38.39; H, 4.72; N,5.53%. Calcd for CsH₁₂NO₃Br: C, 38.42; H, 4.84; N, 5.60%.

(4S)-3-(2-Bromopropionyl)-4-isopropyl-2-oxazolidone (6c). Treatments of commercially available (S)-4-isopropyl-2-oxazolidone (0.156 g, 1.2 mmol) in a similar manner to that described for the preparation of 6a gave 6c as a mixture of two diastereomers after concentration of the AcOEt extracts in vacuo. The mixture (6c) could be separated into a less polar fraction (L) and a more polar faction (M) by column chromatography (SiO2, hexane-CH2Cl2 2:3~0:1). The less polar isomer [6c(L)] was obtained as colorless crystals (0.177 g, 55%). Recrystallization from hexane-ether gave an analytical sample of 6c(L), mp 41~43°C and [\alpha]D²⁶ +68.8° (c 1.48, AcOEt). IR (KBr): 2980, 1781, 1709, 1390, 1373, 1300, 1252, 1200, 1060, 775, 757, 698 cm⁻¹. ¹H-NMR (CDCl3): 0.89, 0.94 (6H, each d, J=7.0 Hz, <u>Me2</u>CH), 1.85 (3H, d, J=6.8 Hz, MeCHBr), 2.38 (1H, m, Me2CH), 4.33 (3H, m, CH2, CHN), 5.75 (1H, q, J=6.8 Hz, CHBr). MS m/z: 263, 265 (M)+. Found: C, 40.80; H, 5.34; N, 5.22%. Calcd for C9H14NO3Br: C, 40.93; H, 5.34; N, 5.30%. The more polar isomer [6c(M)] was obtained as colorless crystals (0.134 g, An analytical sample of 6c(M) obtained by recrystallization from hexane-AcOEt 42%). showed mp 56°C and [α]D²⁶ +92.0° (c 1.04, AcOEt). IR (KBr): 2970, 1784, 1768, 1710, 1400, 1370, 1250, 1210, 1120, 1062 cm⁻¹. ¹H-NMR (CDCl₃): 0.94 (6H, d, J=6.8 Hz, <u>Me2</u>CH), 1.82 (3H, <u>Me</u>CHBr), 2.40 (1H, m, Me2<u>CH</u>), 4.2~4.7 (3H, m, CH2, CHN), 5.76 (1H, q, J=6.8 Hz, CHBr). MS m/z: 263, 265 (M)⁺. Found: C, 40.75; H, 5.48; N, 5.26%. Calcd for C9H14NO3Br: C, 40.93; H, 5.34; N, 5.30%. The combined yield of **6c**(L) and **6c**(M) could be calculated as 97%.

(4S)-3-(2-Bromopropionyl)-4-benzyl-2-oxazolidone (6d). Treatments of commercially available (S)-4-benzyl-2-oxazolidone (0.164 g, 0.93 mmol) in a similar manner to that described for the preparation of 6a gave 6d as a mixture of two diastereomers after concentration of the AcOEt extracts in vacuo. The mixture (6d) could be separated into a less polar fraction (L) and a more polar fraction (M) by column chromatography (SiO2, hexane-CH2Cl2 2:3~0:1). The less polar isomer [6d(L)] was obtained as colorless crystals (0.137 g, 47%). Recrystallization from hexane-ether gave an analytical sample of 6d(L), mp 26~28°C and $[\alpha]D^{22}$ +68.4° (c 1.33, AcOEt). IR (KBr): 1786, 1709, 1394, 1373, 1251, 1200, 740, 700 cm⁻¹. ¹H-NMR (CDCl₃): 1.88 (3H, d, J=6.6 Hz, Me), 2.79 (1H, dd, J=9.7, 13.4 Hz, one of CH2Ph), 3.32 (1H, dd, J=3.3, 13.4 Hz, one of CH2Ph), 4.25 (2H, m, CH2O), 4.66 (1H, m, CHN), 5.72 (1H, q, J=6.6 Hz, CHBr), 7.29 (5H, m, Ph). MS m/z; 311, 313 (M)+. Found: C, 49.97; H, 4.67; N, 4.47%. Calcd for C13H14NO3Br: C, 50.02; H, 4.52; N, 4.49%. The more polar isomer [6d(M)] was obtained as colorless crystals (0.145 g, 50%). An analytical sample of 6d(M) obtained by recrystallization from hexane-AcOEt showed mp 142~144°C and [α]D²² +92.5° (c 1.25, AcOEt). IR (KBr): 1781, 1706, 1380, 1300, 1248, 1210, 1201, 1180, 1120, 1101, 1016, 991, 952, 760, 740, 701 cm⁻¹. ¹H-NMR (CDCls): 1.87 (3H, d, J=6.8 Hz, Me), 2.79 (1H, dd, J=9.4, 13.4 Hz, one of CH2Ph), 3.33 (1H, dd, J=3.3, 13.4 Hz, one of CH2Ph), 4.22 (2H, d, J=5.3 Hz, CH2O), 4.70 (1H, m, CHN), 5.73 (1H, q, J=6.8 Hz, CHMe), 7.30 (5H, m, Ph). MS m/z: 311, 313 (M)+. Found: C, 50.03; H, 4.49; N, 4.41%. Calcd for C13H14NO3Br: C, 50.02; H, 4.52; N, 4.49%. The combined yield of 6d(L) and 6d(M) could be calculated as 97%.

(4R)-3-(2-Bromopropionyl)-4-phenyl-2-oxazolidone (6e). a) Preparation of (R)-4-phenyl-2-oxazolidone. The same treatments of commercially available (R)-2-amino-2-phenylethanol (0.56 g, 4.1 mmol) as described for the preparation of 4,4-dimethyl-2-oxazolidone gave (R)-4-phenyl-2-oxazolidone (0.604 g, 91%) after concentration of the AcOEt extracts *in vacuo*. Recrystallization from toluene gave an analytical sample of (R)-4-phenyl-2-oxazolidone, mp 131~132°C (*lit.*,^{24a)} 135~136°C) and $[\alpha]_{D}^{23}$ -54.9° (c 1.40, CHCl₃) [*lit.*,^{24a)} [α]_D²⁴ -69.7° (c 0.86, AcOEt)]. IR (KBr): 1740,1710,1490, 1402, 1236, 1099, 1037, 1024, 970, 921 cm⁻¹. ¹H-NMR (CDCl₃): 4.19 (1H, dd, J=6.4, 7.9 Hz, CHN), 4.73 (1H, m, one of <u>CH2</u>O), 4.99 (1H, m, one of <u>CH2</u>O), 5.40 (1H, bs, NH), 7.37 (5H, s, Ph). MS m/z: 163 (M)⁺. Found: C, 66.25; H, 5.56; N, 8.58%. Calcd for C9H9NO2: C, 66.08; H, 5.57; N, 8.52%.

b) Preparation of **6e**. Treatments of (R)-4-phenyl-2-oxazolidone (0.277 g, 1.7 mmol) in a similar manner to that described for the preparation of **6a** gave **6e** as a mixture of two diastereomers after concentration of the AcOEt extracts *in vacuo*. The mixture (**6e**) could be separated into a less polar fraction (L) and a more polar faction (M) by column chromatography (SiO₂, hexane-CH₂Cl₂ 2:3~0:1). The less polar isomer [**6e**(L)] was obtained as colorless crystals (0.295 g, 59%). Recrystallization from hexane-AcOEt gave an analytical sample of **6e**(L), mp 136~137°C and [α]D²³-123° (c 1.31, AcOEt). IR (KBr): 1782, 1700, 1380, 1302, 1198, 1180,

1121, 1039, 701 cm⁻¹. ¹H-NMR (CDCl3): 1.76 (3H, d, J=6.8 Hz, Me), 4.33 (1H, dd, J=3.1, 8.8 Hz, one of CH2), 4.75 (1H, dd, J=8.4, 8.8 Hz, one of CH2), 5.42 (1H, dd, J=3.1, 8.4 Hz, <u>CH</u>Ph), 5.72 (1H, q, J=6.8 Hz, CHBr), 7.35 (5H, m, Ph). MS m/z: 297, 299 (M)⁺. Found: C, 48.31; H, 3.96; N, 4.61%. Calcd for C12H12NO3Br: C, 48.34; H, 4.06; N, 4.70%. The more polar isomer [**6e**(M)] was obtained as colorless crystals (0.196 g, 39%). An analytical sample of **6e**(M) obtained by recrystallization from hexane-AcOEt showed mp 151~154°C and $[\alpha]D^{22}$ -81.4° (c 1.06, AcOEt). IR (KBr): 1784, 1709, 1364, 1330, 1256, 1203, 1060, 757, 696 cm⁻¹. ¹H-NMR (CDCl3): 1.77 (3H, d, J=6.8 Hz, Me), 4.27 (1H, dd, J=5.1, 8.8 Hz, one of CH2), 4.72 (1H, t, J=8.8 Hz, one of CH₂), 5.46 (1H, dd, J=5.1, 8.8, CHN), 5.75 (1H, q, J=6.8 Hz, CHBr), 7.37 (5H, s, Ph). MS m/z: 297, 299 (M)⁺. Found: C, 48.27; H, 3.97; N, 4.61%. Calcd for C12H12NO3Br: C, 48.34; H, 4.06; N, 4.70%. The combined yield of **6e**(L) and **6e**(M) could be calculated as 98%.

3-(2-Bromopropionyl)-4,4,5,5-tetramethyl-2-oxazolidone (6f). a) Preparation of 4,4,5,5-tetramethyl-2-oxazolidone.¹⁴⁾ Acetone (1.82 g, 31 mmol) was added to a mixture of trimethylsilyl cyanide (3.05 g, 31 mmol) and a catalytic amount of zinc iodide (ca. 1 mg) at 0°C. After stirring at rt for 1h, the mixture was diluted with ether (10 ml). An ethereal solution of methyllithium (1.07 M solution, 64.0 ml, 68 mmol) was added at 0°C and the mixture was stirred overnight at rt. The mixture was cooled to 0°C and diluted with 10M NaOH (50 ml). The aqueous layer was separated and extracted with ether. The ethereal extracts were combined, dried over anhydrous MgSO4, then concentrated in vacuo. A part of the concentration residue (20%) containing 2-amino-1,2,2-trimethyl-1-propanol was diluted with THF (10 ml) without purification. N,N'-Carbonyldiimidazole (3.24 g, 20 mmol) was added to the THF solution and the stirring was continued at 65°C for 4h. After cooling to rt, the mixture was diluted with 1M NaOH (10 ml) and methanol (7.5 ml). After stirring for 4h at the same temperature, the mixture was acidified with concentrated HCl (5 ml) and extracted with AcOEt. The combined extracts were washed with saturated aqueous NaCl, dried over anhydrous MgSO4, then concentrated in vacuo. The residue was purified by column chromatography (SiO2, CHCl3-AcOEt 1:0-9:1) to give 4,4,5,5-tetramethyl-2-oxazolidone as colorless crystals (0.360 g, 41% from acetone after corrected for the amount of 2-amino-1,2,2-trimethyl-1propanol used), mp 109-110°C. IR (Nujol): 3370, 3250, 1755, 1720, 1178, 1022 cm⁻¹. ¹H-NMR (CDCl3): 1.25 (6H, s, Me2CO), 1.37 (6H, s, Me2CN), 5.77 (1H, bs, NH). Found: C, 58.89; H, 8.96; N, 9.81%. Calcd for C7H13NO2: C, 58.72; H, 9.15; N, 9.78%.

b) Preparation of **6f**. Treatments of 4,4,5,5-tetramethyl-2-oxazolidone (0.600 g, 4.2 mmol) in a similar manner to that described for the preparation of **6a** gave **6f** as colorless crystals (1.05 g, 90%), mp 59.0~60.5°C, after purification by column chromatography (SiO₂, PhMe-AcOEt 1:0~19:1). IR (nujol): 1760, 1693, 1300, 1275, 1142, 1083, 1055 cm⁻¹. ¹H-NMR (CDCl₃): 1.38, 1.41, 1.44, 1.45 (12H, each s, Me₂Cx₂), 1.81 (3H, d, J=6.6 Hz, <u>Me</u>CH), 5.81 (1H, q, J=6.6 Hz, CH). Found: C, 42.96; H, 5.66; N, 4.95%. Calcd for C10H16NO3Br: C, 43.18; H, 5.80; N, 5.04%.

3-(2-Bromopropionyl)-4,4-dibutyl-5,5-pentamethylene-2-oxazolidone (**6g**). a) Preparation of 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone.¹⁴) Trimethylsilyl cyanide (9.11 ml, 68 mmol)

was added to a mixture of cyclohexanone (6.10 g, 62 mmol) and a catalytic amount of zinc iodide (ca. 1 mg) at 0°C. After stirring at rt for 1 h, an excess amount of trimethylsilyl cyanide was removed in vacuo and the residue was dissolved in ether (60 ml). A solution of n-butyllithium in hexane (1.71 M solution, 82.0 ml, 0.14 mol) was added to the ethereal solution at 0°C. After stirring overnight at rt, the mixture was diluted with 4M HCl (100 ml). After being stirred for 1h, the mixture was further diluted with 8M NaOH (100 ml) and extracted with ether. The combined extracts were washed with saturated aqueous NaCl, dried over anhydrous MgSO4, then concentrated in vacuo. The concentration residue was purified by distillation (113~125°C, 1 mmHg), giving 2-amino-2-butyl-1,1-pentamethylene-1-hexanol as a colorless oil (13.2 g, 82%). Further purification by column chromatography (Al2O3, hexane-ether 9:1) gave an analytical sample of 2-amino-2-butyl-1,1-pentamethylene-1hexanol. IR (neat): 3420, 2950, 2880, 1588, 1470, 1460, 1447, 1400, 1380, 1261, 1140, 1042, 970, 850 cm⁻¹. ¹H-NMR (CDCl₃): 0.92 (6H, m, Mex2), 1.0~2.0 (25H, m, other protons). MS m/z: 241 (M)+, 224 (M-Me)+. Found: C, 74.78; H, 12.68; N,5.67%. Calcd for C15H31NO: C, 74.63; H, 12.94; N, 5.80%. N,N'-Carbonyldiimidazole (13.5 g, 83 mmol) was added to a solution of 2amino-2-butyl-1,1-pentamethylene-1-hexanol (10.0 g, 42 mmol) in THF (40 ml) at rt. After stirring at 65°C for 4 h, the mixture was cooled to rt, then diluted successively with 1M NaOH (40 ml) and methanol (30 ml). The mixture was stirred at rt for 4 h, acidified with concentrated HCl, then extracted with AcOEt. The combined extracts were washed with saturated aqueous NaCl and dried over anhydrous MgSO4. Filtration and concentration in vacuo gave 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone as colorless crystals (11.0 g, 99%). An analytical sample was obtained as colorless crystals by recrystallization from MeOH-H2O, mp 96~97°C. IR (KBr): 3240, 3150, 2950, 2880, 1750, 1473, 1378, 1360, 1322, 1280, 987, 950, 880, 735 cm⁻¹. ¹H-NMR (CDCl₃): 0.91 (6H, t, J=6.3 Hz, Mex2), 1.0~2.3 (23H, m, other protons), 5.89 (1H, bs, NH). MS m/z: 268 (M+1)⁺, 210 (M-Bu)⁺. Found: C, 71.95; H, 10.95; N, 5.20%. Calcd for C16H29NO2: C, 71.87; H, 10.93; N, 5.24%.

b) Preparation of **6g**. A solution of *n*-butyllithium in hexane (1.65 M solution, 6.59 ml, 11 mmol) was added to a solution of 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone (2.64 g, 9.9 mmol) in ether (12 ml) at 0°C. After stirring for 5 min, 2-bromopropionyl bromide (1.24 ml, 12 mmol) was added to the mixture. The stirring was continued for additional 10 min, then the mixture was diluted with aqueous phosphate buffer (pH 7, 5.0 ml). The organic layer was separated, washed successively with saturated aqueous NaHCO3 and saturated aqueous NaCl, dried over anhydrous MgSO4, then concentrated *in vacuo*. The concentration residue was dissolved in ethanol (4.5 ml) by heating. On cooling, the ethanolic solution precipitated pure **6g** as colorless crystals (2.49 g, 63%), mp 113~114°C. IR (KBr): 2960, 2880, 1761, 1710, 1450, 1375, 1360, 1290, 1275, 1255, 1240, 1180, 1113, 1060, 990, 960, 881, 770, 720, 643, 540 cm⁻¹. ¹H-NMR (CDCl3): 0.75~1.10 (6H, m, <u>Me</u>CH2x2), 1.1~2.5 (22H, m, other protons), 1.81 (3H, d, J=6.8 Hz, <u>Me</u>CH), 5.87 (1H, q, J=6.8 Hz, CHBr). MS m/z: 346, 344 (M-Bu)⁺, 210. Found: C, 56.66; H, 8.09; N, 3.43; Br, 19.57%. Calcd for C6HsNO3Br: C, 56.72; H, 8.02; N, 3.48; Br, 19.86%.

(3S,4R)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-(2-oxazolidone-3-carbonyl)ethyl]-2-azetidinone (7aβ) and its 4-[(S)-1-(2-oxazolidone-3-carbonyl)ethyl]-isomer (7aα) (Table 1, run 2). Zinc dust (0.140 g, 2.1 mmol) was added to a solution of 6a (0.318 g, 1.4 mmol) and 5 (0.205 g, 0.71 mmol) in THF (7 ml) at 25°C. After stirring for 10 min at the same temperature, the mixture was diluted with aqueous phosphate buffer (pH 7, 4.0 ml) and CH2Cl2. The organic layer was separated, washed with saturated aqueous NaCl, dried over anhydrous MgSO4, then concentrated in vacuo. The concentration residue was purified by column chromatography (SiO2, hexane-CH2Cl2 1:1, then CH2Cl2-acetone 9:1), affording 7aß as colorless crystals (0.116 g, 44%) from the less polar fraction and 7aa as colorless crystals (0.142 g, 53%) from the more polar fraction. The combined yield of $7a\beta$ and $7a\alpha$ was 97%. The ratio of $7a\beta$ to $7a\alpha$ estimated by the weights of the separated samples was 45:55. The minor product ($7a\beta$) recrystallized from hexane-AcOEt showed mp 66~67°C and $[\alpha]D^{27}$ -6.7° (c 0.63, CHCl3). IR (KBr): 2950, 1760, 1700, 1390, 1250, 1100, 833, 780 cm⁻¹. ¹H-NMR (CDCl₃): 0.07 (6H, s, Me₂Si), 0.87 (9H. s. Me3C), 1.21 1.23 (6H. each d. J=each 6.4 Hz, MeCHOSi, MeCHOCN), 3.02 (1H, m, C3-H), 3.8~4.6 (7H, m, other protons), 5.95 (1H, bs, NH). MS m/z: 355 (M-Me)⁺, 327, 313. Found: C, 55.06; H, 8.25; N, 7.20%. Calcd for C17H30N2O5Si: C, 55.11; H, 8.16; N, 7.56%. The major product (7a α) recrystallized from cyclohexane-AcOEt showed mp 177~180°C and [α]D²⁸ +31.4° (c 0.94, CHCl3). IR (KBr): 2950, 1780, 1762, 1694, 1390, 1107, 1047, 830 cm⁻¹. ¹H-NMR (CDCl3): 0.08 (6H, s, Me2Si), 0.89 (9H, s, Me3C), 1.25, 1.28 (6H, each d, J=6.2 and 6.6 Hz, MeCHOSi, MeCHOCN), 2.83 (1H, m, C3-H), 3.5~4.6 (7H, m, other protons), 5.98 (1H, bs, NH). MS m/z: 355 (M-Me)+, 327, 313. Found: C, 54.84; H, 8.24; N, 7.40%. Calcd for C17H30N2O5Si: C, 55.11; H, 8.16; N, 7.56%.

(3S,4R) - 3 - [(R) - 1 - (t - Butyldimethylsilyloxy) ethyl] - 4 - [(R) - 1 - (4,4 - dimethyl - 2 - oxazolidone - 3 - car-index of the second states and the second states and

bonyl)ethyl]-2-azetidinone (7bb) and its 4-[(S)-1-(4,4-dimethyl-2-oxazolidone-3-carbonyl)ethyl]isomer (7ba) (Table 1, run 7). Zinc dust (10.0 mg, 0.15 mmol) was added at once to a refluxing solution of 6b (24.4 mg, 0.098 mmol) and 5 (14.0 mg, 0.049 mmol) in THF (0.5 ml). After stirring for 1 min, the mixture was cooled to rt and diluted with aqueous phosphate buffer (pH 7, 0.3 ml) and CH2Cl2. The organic layer was separated, washed with saturated aqueous NaCl, dried over anhydrous MgSO4, then concentrated in vacuo. The residue was purified by column chromatography (SiO2, CH2Cl2-AcOEt 4:1), affording a mixture of $7b\beta$ and $7b\alpha$ as a colorless solid (18.4 mg, 94%). The ratio of $7b\beta$ to $7b\alpha$ could be calculated as 79:21 by the ¹H-NMR spectrum. Thus, the protons at the C3 positions appeared as two multiplets at 2.81 and 3.01 ppm with an integration ratio of 21:79. The pure samples of $7b\beta$ and $7b\alpha$ were obtained by separation of the mixture with medium pressure column chromatography (MPLC) (SiO2, lobar column, Merck art. 10401, hexane-CH2Cl2-Et2O 10:3:7~1:1:1). Recrystallization of less polar $7b\beta$ from hexane-AcOEt gave an analytical sample as colorless crystals, mp 189~190°C and [α]D²⁰ -19.2° (c 2.02, CHCl3). IR (KBr): 2950, 1760, 1717, 1460, 1400, 1386, 1342, 1312, 1312, 1228, 1186, 1087, 1054, 960, 840, 781, 770 cm⁻¹. ¹H-NMR (CDCl₃): 0.07 (6H, s, Me2Si), 0.87 (9H, s, Me3C), 1.19, 1.21 (6H, each d, J=6.8 and 6.2 Hz, <u>Me</u>CHOSi, MeCHCON), 1.54 (6H, s, Me2C), 3.01 (1H, m, C3-H), 3.90 (1H, m, C4-H), 4.01 (2H, s, CH2O), 4.0~4.4 (2H, m, MeCHOSi, MeCHCON), 5.87 (1H, bs, NH). MS m/z: 341 (M-Bu)⁺, 327, 313. Found: C, 57.31; H, 8.50; N, 6.99%. Calcd for C19H34N2O5Si: C, 57.26; H, 8.60; N, 7.03%. Recrystallization of more polar 7b α from hexane-AcOEt gave an analytical sample as colorless crystals, mp 176~177°C and [α]D²⁰ +31.4° (c 1.09, CHCls). IR (KBr): 2980, 1780, 1767, 1702, 1380, 1305, 1223, 1178, 1100, 1045, 962, 839, 778 cm⁻¹. ¹H-NMR (CDCls): 0.08 (6H, s, Me2Si), 0.89 (9H, s, Me3C), 1.25 (6H, d, J=6.3 Hz, <u>Me</u>CHx2), 1.56 (6H, s, Me2C), 2.81 (1H, m, C3-H), 3.72 (1H, m, C4-H), 4.03 (2H, s, CH2O), 4.1~4.4 (2H, m, <u>Me</u>CHOSi, <u>Me</u>CHCON), 5.81 (1H, bs, NH). MS m/z: 341 (M-Bu)⁺, 327, 313. Found: C, 57.29; H, 8.51; N, 6.96%. Calcd for C19H34N2O5Si: C, 57.26; H, 8.60; N, 7.03%.

(3S,4R)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-[(S)-4-isopropyl-2-oxazolidone-3-car-

bonyl]ethyl]-2-azetidinone (7cb) and its 4-[(S)-1-[(S)-4-isopropyl-2-oxazolidone-3-carbonyl]ethyl]-isomer (7ca) (Table 1, run 15). Zinc dust (13.0 mg, 0.20 mmol) was added to a solution of 6c(L) (26.2 mg, 0.099 mmol) and 5 (14.0 mg, 0.049 mmol) in THF (0.5 ml) at rt. After stirring for 10 min at the same temperature, the mixture was diluted with aqueous phosphate buffer (pH 7, 0.3 ml) and CH2Cl2. The organic layer was separated, washed with saturated aqueous NaCl, dried over anhydrous MgSO4, then concentrated in vacuo. The concentration residue was purified by column chromatography (SiO2, CH2Cl2, then CH2Cl2-AcOEt 4:1), affording $7c\beta$ as colorless crystals (17.4 mg, 88%) from the less polar fraction and $7c\alpha$ as colorless crystals (2.4 mg, 12%) from the more polar fraction. The combined yield of $7c\beta$ and 7ca was 100%. The ratio of 7c β to 7ca estimated by the weights of the separated samples was 88:12. The major product ($7c\beta$) recrystallized from hexane-AcOEt showed mp 123~124°C and $[\alpha]D^{23}+27.1^{\circ}$ (c 1.15, CHCl3). IR (KBr): 1780, 1699, 1390, 1206, 834, 777 cm⁻¹. ¹H-NMR (CDCl3): 0.07 (6H, s, Me2Si), 0.87 (9H, s, Me3C), 0.88, 0.93 (6H, each d, J=6.8 and 6.0 Hz, Me2CH), 1.19, 1.23 (6H, each d, J=6.8 and 6.2 Hz, MeCHOSi, MeCHCON), 2.34 (1H, m, Me2CH), 3.03 (1H, dd, J=2.2, 2.9 Hz, C3-H), 3.93 (1H, m, C4-H), 4.1~4.6 (5H, m, other protons), 5.99 (1H, bs, NH). MS m/z; 355 (M-Bu)+. Found: C, 58.07; H, 9.07; N, 7.68%. Calcd for C20H36N2O5Si: C, 58.22; H, 8.79; N, 6.79%. The minor product (7ca) recrystallized from cyclohexane-AcOEt showed mp 176~177°C and [α]D²² +80.8° (c 0.30, CHCl3). IR (KBr): 1781, 1765, 1700, 1390, 1261, 1103, 803 cm⁻¹. ¹H-NMR (CDCl₃): 0.08 (6H, s, Me₂Si), 0.88 (9H, s, MesC), 0.88, 0.92 (6H, each d, J=each 6.6 Hz, Me2CH), 1.25, 1.32 (6H, each d, J=6.2 and 5.9 Hz, MeCHOSi, MeCHON), 2.32 (1H, m, Me2CH), 2.80 (1H, dd, J=1.3, 5.3 Hz, C3-H), 3.8~4.6 (5H, m, other protons), 5.80 (1H, br s, NH). MS m/z: 355 (M-Bu)+. Found: C, 58.17; H, 8.97; N, 6.64%. Calcd for C20H36N2O5Si: C, 58.22; H, 8.79; N, 6.79%.

(3S,4R) - 3 - [(R) - 1 - (t - Butyldimethylsilyloxy) ethyl] - 4 - [(R) - 1 - [(S) - 4 - benzyl - 2 - oxazolidone - 3 - car-benzyl - 3 - car-benzyl - 2 - oxazolidone - 3 - car-benzyl - 2 - o

bonyl]ethyl]-2-azetidinone (7d β) and its 4-[(S)-1-[(S)-4-benzyl-2-oxazolidone-3-carbonyl]ethyl]isomer (7d α). (Table 1, run 17): Zinc dust (25 mg, 0.38 mmol) was added to a solution of 6d (LM) (68.3 mg, 0.22 mmol) and 5 (31.4 mg, 0.11 mmol) in THF (1.1 ml) at 0°C. After stirring for 0.5 h at the same temperature, the mixture was diluted with aqueous phosphate buffer (pH 7, 2.4 ml) and AcOEt. The organic layer was separated, washed with saturated aqueous NaCl. dried over anhydrous MgSO4, then concentrated in vacuo. The concentration residue was purified by column chromatography (SiO2), affording $7d\beta$ as colorless crystals (41.3 mg, 82%) from the less polar fraction and 7da as colorless crystals (4.6 mg, 9%) from the more polar fraction. The combined yield of $7d\beta$ and $7d\alpha$ was 91%. The ratio of $7d\beta$ to $7d\alpha$ estimated by the weights of the separated samples was 90:10. The major product $(7d\beta)$ recrystallized from hexane-AcOEt showed mp 115~116°C and $[\alpha]D^{20}$ +24.6° (c 0.74, CHCl3). IR (KBr): 2949, 1781, 1700, 1390, 1253, 1215, 1105, 837, 780, 703 cm⁻¹. ¹H-NMR (CDCl3): 0.09 (6H, s, Me2Sl), 0.90 (9H, s, Me3C), 1.23, 1.25 (6H, each d, J=6.8 and 6.2 Hz, MeCHOSi, MeCHCON), 2.69 (1H, dd, J=10.1, 13.4 Hz, one of CH2Ph), 3.08 (1H, m, C3-H), 3.33 (1H, dd, J=3.4, 13.4 Hz, one of <u>CH2</u>Ph), 3.96 (1H, m, C4-H), 4.1~4.8 (5H, m, other protons), 5.94 (1H, bs, NH), 7.29 (5H, m, Ph). MS m/z: 403 (M-Bu)⁺. Found: C, 62.53; H, 8.05; N, 6.01%. Calcd for C24H36N2O5Si: C, 62.58; H, 7.88; N, 6.08%. The minor product $(7d\alpha)$ recrystallized from hexane-AcOEt showed mp 143~144°C and [a]D²⁰ +78.5° (c 0.18, CHCl3). IR (KBr): 2950, 1780, 1763, 1700, 1390, 1254, 1236, 1190, 1106, 838, 778 cm⁻¹. ¹H-NMR (CDCl₃): 0.10 (6H, s, Me₂Si), 0.90 (9H, s, Me₃C), 1.27, 1.32 (6H, each d, J=6.3 and 6.6 Hz, MeCHOSi, MeCHCON), 2.79 (1H, dd, J=9.4, 13.4 Hz, one of <u>CH2</u>Ph), 2.81 (1H, m, C3-H), 3.25 (1H, dd, J=3.5, 13.4 Hz, one of <u>CH2</u>Ph), 3.6~4.8 (6H, m, other protons), 5.84 (1H, bs, NH), 7.28 (5H, m, Ph). MS m/z: 403 (M-Bu)+. Found: C, 62.60; H, 7.78; N, 6.03%. Calcd for C24H36N2O5Si: C, 62.58; H, 7.88; N, 6.08%.

(3S,4R)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-[(R)-4-phenyl-2-oxazolidone-3-car-

bonyl]ethyl]-2-azetidinone (**7e**β) and its 4-[(S)-1-[(R)-4-phenyl-2-oxazolidone-3-carbonyl]ethyl]isomer (7ea) (Table 1, run 18). Zinc dust (77 mg, 1.2 mmol) was added to a solution of 6e(LM) (0.236 g, 0.79 mmol) and 5 (0.114 g, 0.40 mmol) in THF at 0°C. After stirring for 0.5 h at the same temperature, the mixture was diluted with aqueous phosphate buffer (pH 7, 2.4 ml) and AcOEt. The organic layer was separated, washed with saturated aqueous NaCl, dried over anhydrous MgSO4, then concentrated in vacuo. The concentration residue was purified by column chromatography, affording a mixture of $7e\beta$ and $7e\alpha$ as a caramel (0.176 g, 99%). The ratio of $7e\beta$ to $7e\alpha$ could be calculated as 35:65 by the ¹H-NMR spectrum in a similar manner to that described for the mixture of $7b\beta$ and $7b\alpha$. The mixture was separated by MPLC (SiO₂, CH₂Cl₂-acetone 97:3). The major product ($7e\alpha$) obtained as a colorless caramel from the less polar fraction showed [a]p²⁰ -5.3° (c 1.37, CHCl3). IR (KBr): 2950, 1781, 1703, 1460, 1388, 1255, 1235, 1200, 1108, 1045, 990, 839, 780, 707 cm⁻¹. ¹H-NMR (CDCl₃): 0.11 (6H, s, Me2Si), 0.93 (9H, s, Me3C), 1.23, 1.35 (6H, each d, J=6.4 and 6.5 Hz, MeCHOSi, MeCHCON), 2.87 (1H, m, C3-H), 3.8~4.4 (4H, m, other protons), 4.78 (1H, t, J=8.8 Hz, one of CH2), 5.48 (1H, dd, J=3.8, 8.8 Hz, CHPh), 5.50 (1H, bs, NH), 7.42 (5H, m, Ph). MS m/z: 389 (M-Bu)⁺. Found: C, 61.64; H, 7.95; N, 6.30%. Calcd for C23H34N2O5Si: C, 61.85; H, 7.67; N, 6.27%. The minor product (7eb) obtained as a colorless caramel from the more polar fraction showed $[\alpha]D^{20}$ -70.4° (c 0.66, CHCl3). IR (KBr): 2950, 1783, 1709, 1460, 1388, 1330, 1255, 1201, 1110, 1047, 962, 840, 781, 703 cm⁻¹. ¹H-NMR (CDCl3): 0.11 (6H, s, Me2Si), 0.91 (9H, s, Me3C), 1.20, 1.24 (6H, two d, J=7.0 and 6.2 Hz, MeCHOSi and MeCHCON), 3.04 (1H, m, C3-H), 3.98 (1H, m, C4-H), 3.8~4.4 (3H, m, other protons), 4.76 (1H, t, J=8.8 Hz, one of CH2), 5.49 (1H, dd, J=4.2 and

8.8Hz, <u>CH</u>Ph), 5.90 (1H, bs, NH), 7.42 (5H, m, Ph). MS m/z: 389 (M-Bu)⁺. Found: C, 61.82; H, 7.91; N, 6.24%. Calcd for C23H34N2O5Si: C, 61.85; H, 7.67; N, 6.27%.

(3S,4R)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-(4,4,5,5-tetramethyl-2-oxazolidone-3carbonyl)ethyl]-2-azetidinone (7fb) and its 4-[(S)-1-(4,4,5,5-tetramethyl-2-oxazolidone-3-carbonyl)ethyl]-isomer (7fa) (Table 1, run 20) A solution of 6f (1.15 g, 4.1 mmol) in THF (6 ml) was added to a refluxing suspension of zinc dust (0.440 g, 6.8 mmol) and 5 (0.540 g, 1.9 mmol) in THF (16 ml) within 15 min. After stirring for 5 min at the same temperature, the mixture was cooled to rt and diluted with aqueous phosphate buffer (pH 6, 11 ml) and AcOEt. The organic layer was separated, washed successively with 1M HCl, water, 5% aqueous NaHCO3, and water, dried over anhydrous MgSO4, then concentrated in vacuo. The concentration residue was purified by column chromatography (SiO2, CHCl3-AcOEt 1:0~5:1), giving a mixture of $7f\beta$ and $7f\alpha$ as a colorless solid (0.738 g, 92%). The ratio of $7f\beta$ to $7f\alpha$ could be calculated as 87:13 by the ¹H-NMR spectrum in a similar manner to that described for the mixture of $7b\beta$ and $7b\alpha$. The mixture was separated by preparative TLC (CHCl3-AcOEt 5:1, two developments). The major product $(\mathbf{7f}\beta)$ obtained as colorless crystals from the less polar fraction showed mp 148~149°C and [a]D²⁸ -15.4° (c 0.26, CHCl3). IR (KBr): 3150, 1756, 1695, 1378, 1365, 1330, 1298, 1268, 1145, 1128, 1070, 1055, 954, 830, 768 cm⁻¹. ¹H-NMR (CDCl₃): 0.06, 0.07 (6H, each s, Me2Si), 0.87 (9H, s, Me3C), 1.19, 1.21 (6H, each d, J=6.9 and 6.3 Hz, MeCHOSi, MeCHCON),1.36 (6H, s, Me2CO), 1.43 (6H, s, Me2CN), 3.01 (1H, dd, J=2.3, 4.3 Hz, C3-H), 3.91 (1H, dd, J=2.3, 4.0 Hz, C4-H), 4.19 (2H, m, MeCHCOSi, MeCHCON), 5.95 (1H, bs, NH). Found: C, 58.87; H, 9.03; N, 6.46%. Calcd for C21H38N2O5Si: C, 59.14; H, 8.82; N, 6.53%. The minor product (7f α) obtained as colorless crystals from the more polar fraction showed mp 164~165°C and [a]p²⁸ +27.0° (c 0.18, CHCl3). IR (KBr): 3170, 3100, 1782, 1760, 1720, 1694, 1460, 1375, 1302, 1276, 1254, 1222, 1154, 1102, 1084, 1062, 1042, 958, 836, 776, 730 cm $^{-1}$. $^{1}\mathrm{H}\text{-}$ NMR (CDCl3): 0.08, 0.09 (6H, each s, Me2Si), 0.88 (9H, s, Me3C), 1.25, 1.25 (6H, each d, J=6.6 and 5.9 Hz, <u>Me</u>CHOSi, <u>Me</u>CHCON),1.36, 1.37 (6H, each s, Me2CO), 1.43 (6H, s, Me2CN), 2.81 (1H, dd, J=2.0, 5.3 Hz, C3-H), 3.83 (1H, dd, J=2.0, 9.2 Hz, C4-H), 4.19 (2H, m, MeCHCOSi, MeCHCON), 5.95 (1H, bs, NH). Found: C, 58.87; H, 9.03; N, 6.46%. Calcd for C21H38N2O5Si: C, 59.12; H, 8.98; N, 6.57%.

(3S,4R)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-(4,4-dibutyl-5,5-pentamethylene-2-oxazolidone-3-carbonyl)ethyl]-2-azetidinone (7g β) and its 4-[(S)-1-(4,4-dibutyl-5,5-pentamethylene-2-oxazolidone-3-carbonyl)ethyl]-isomer (7g α) (Table 1, run 22). A solution of 6g (0.417 g, 1.0 mmol) in THF (1.9 ml) was added at once to a refluxing suspension of 5 (0.135 g, 0.47 mmol) and zinc dust (0.113 g, 1.7 mmol) in THF (1.9 ml) with stirring. After the stirring under reflux was continued for 2 min, the mixture was cooled to rt and diluted with aqueous phosphate buffer (pH 7, 2.0 ml) and AcOEt. The organic layer was separated, washed with saturated aqueous NaCl, dried over anhydrous MgSO4, then concentrated *in vacuo*. The concentration residue was purified by column chromatography (SiO2, hexane-CH2Cl2 1:1, then hexane-CH2Cl2-AcOEt 7:1:3), affording a mixture of 7g β and 7g α as a colorless solid (0.257 g, 99%). The ratio of $7g\beta$ to $7g\alpha$ could be calculated as 95:5 by the ¹H-NMR spectrum in a similar manner to that described for the mixture of $7b\beta$ and $7b\alpha$. Recrystallization from methanol (1.5 ml) gave a pure sample of $7g\beta$ (0.221 g, 85%) as colorless crystals, mp 158~159°C and [α]D²⁰ -5.0° (c 1.29, CHCl3). IR (KBr): 3450, 2960, 2900, 1780, 1768, 1714, 1380, 1280, 1240, 1108, 1053, 970, 840 cm⁻¹. ¹H-NMR (CDCl3): 0.07 (6H, s, Me2Si), 0.87 (9H, s, Me3C), 0.90 (6H, m, MeCH2x2), 1.20, 1.22 (6H, each d, J=6.9 and 6.3 Hz, MeCHOSi, MeCHCO), 1.0~2.2 (22H, m, other protons), 3.05 (1H, m, C3-H), 3.92 (1H, m, C4-H), 4.1~4.3 (2H, m, MeCHOSi, MeCHCON), 5.91 (1H, bs, NH). MS m/z: 493 (M-Bu)⁺. Found: C, 65.34; H, 10.06; N, 5.03%. Calcd for C30H54N2O5Si: C, 65.41; H, 9.88; N, 5.09%. The minor isomer (7g α) isolated from the filtrate of recrystallization by preparative TLC (CH₂Cl₂, several developments) showed the following spectral data. ¹H-NMR (CDCl3): 0.08 (6H, s, Me2Si), 0.88 (9H, s, Me3C), 0.90 (6H, m, MeCH2x2), 1.25 (6H, d, J=6.4 Hz, MeCHOSi, MeCHCON), 1.0~2.3 (22H, m, other protons), 2.84 (1H, m, C3-H), 3.7 (2H, m, MeCHCON, C4-H), 4.19 (1H, m, MeCHOSi), 5.79 (1H, bs, NH). MS m/z: 493 (M-Bu)⁺.

(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-(benzyloxycarbonyl)ethyl]-2-azetidinone (83). A solution of lithium benzylate in THF (0.50M solution, 0.77 ml, 0.39 mmol) was added to a solution of 7bß (76.6 mg, 0.19 mmol) in THF (0.96 ml) at 0°C. After stirring for 1 h at the same temperature, the mixture was diluted with saturated aqueous potassium dihydrogen phosphate (0.8 ml) and extracted with CH2Cl2. The combined extracts were dried over anhydrous MgSO4 and concentrated in vacuo. The concentration residue was purified by column chromatography (SiO₂, CH₂Cl₂-AcOEt 1:0~4:1) to give 8β as colorless crystals (74.1 mg, 98%). Recrystallization from hexane afforded an analytical sample of 8β , mp 69~70°C and [α]p²⁰ -13.8° (c 0.98, CHCl₃). IR (KBr): 2950, 1765, 1738, 1720, 1258, 1175, 1138, 1047, 962, 840, 782, 735, 697 cm⁻¹. ¹H-NMR (CDCl₃): 0.11 (6H, s, Me₂Si), 0.91 (9H, s, Me3C), 1.18, 1.29 (6H, each d, J=6.4 and 7.0 Hz, MeCHOSi, MeCHCO), 2.79 (1H, m, MeCHCO), 3.01 (1H, m, C3-H), 3.96 (1H, m, C4-H), 4.22 (1H, m, MeCHOSi), 5.17 (2H, s, CH2Ph), 5.91 (1H, bs, NH), 7.39 (5H, s, Ph). MS m/z: 334 (M-Bu)+. Found: C, 64.42; H, 8.33; N, 3.61%. Calcd for C21H33NO4Si: C, 64.41; H, 8.49; N, 3.58%. 4,4-Dimethyl-2-oxazolidone (21.7 mg, 98%) was recovered from the more polar fraction by the column chromatography. Similar treatments of **7a**, $\mathbf{c} - \mathbf{g}\beta$ gave **8** β in the yields shown in **Scheme 1**.

(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(S)-1-(benzyloxycarbonyl)ethyl]-2-azetidinone (8α). The same treatments of **7b**α (23.1 mg, 0.058 mmol) as described for the preparation of 8β from **7b**β, gave 8α as a colorless oil (21.5 mg, 95%), $[α]D^{25}$ +3.0° (c 1.59, CHCl3). IR (KBr): 2950, 1763, 1739, 1460, 1256, 1183, 1143, 1100, 1043, 960, 833, 778, 698 cm⁻¹. ¹H-NMR (CDCl3): 0.07 (6H, s, Me2Si), 0.88 (9H, s, Me3C), 1.23, 1.25 (6H, each d, J=6.0 and 7.3 Hz, <u>Me</u>CHOSi, <u>Me</u>CHCO), 2.58 (1H, dq, J=7.3, 9.5 Hz, Me<u>CH</u>CO), 2.76 (1H, m, C3-H), 3.71 (1H, dd, J=2.0, 9.5 Hz, C4-H), 4.17 (1H, m, Me<u>CH</u>OSi), 5.15 (2H, s, CH2Ph), 5.96 (1H, bs, NH), 7.35 (5H, s, Ph). MS m/z: 376 (M-Me)⁺, 334 (M-Bu)⁺. Treatments of $7c,d,e\alpha$ in a similar manner to that described above gave 8α in the yields shown in Scheme 2.

(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-carboxyethyl]-2-azetidinone (4). a) Preparation of 4 by hydrogenolysis of 8 β . Palladium on carbon (10%, 5 mg) was added to a solution of 8 β (53.5 mg, 0.14 mmol) in AcOEt (1 ml) and the mixture was stirred vigorously for 4 hr under a hydrogen atmosphere. Removal of the catalyst by filtration followed by concentration *in vacuo* gave 4 as colorless crystals (40.3 mg, 98%). An analytical sample obtained as colorless crystals by recrystallization from hexane-AcOEt showed mp 148~149°C (decomp.) (lit.³) 140~143°C, lit.⁴) 138~141°C, lit.¹⁹) 143.5~144°C, lit.²⁰) 146~147°C) and [α]D²⁰ -32.4° (c 1.07, MeOH) [lit.¹⁹) [α]D²⁵ -36.9° (c 0.469, MeOH), lit.²⁰) [α]D²⁰ -34.6° (c 0.26, MeOH)]. IR (KBr): 3280, 2950, 1720, 1462, 1281, 1259, 1142, 1040, 839, 780 cm⁻¹. ¹H-NMR (CDCls): 0.08 (6H, s, Me2Si), 0.88 (9H, s, Me3C), 1.20, 1.28 (6H, each d, J=6.1 and 6.6 Hz, <u>Me</u>CHOSi, <u>Me</u>CHCO), 2.82 (1H, m, CHCO), 3.10 (1H, dd, J=2.0, 4.4 Hz, C3-H), 4.00 (1H, dd, J=2.0, 5.4 Hz, C4-H), 4.27 (1H, m, CHOSi), 6.01 (1H, bs, NH). MS m/z: 286 (M-Me)⁺, 244 (M-Bu)⁺. Found: C, 55.63; H, 9.19; N, 4.49%. Calcd for C14H27NO4Si: C, 55.66; H, 9.03; N, 4.57%. b) Prenaration of 4 by hydrolysis of 7g6. A mixture of 7g6 (54.3 mg, 0.099 mmol), thutapal

b) Preparation of 4 by hydrolysis of $7g\beta$. A mixture of $7g\beta$ (54.3 mg, 0.099 mmol), t-butanol (0.37 ml), H2O (0.10 ml), and 2M NaOH (0.104 ml, 0.21 mmol) was stirred at rt for 3 days, then diluted with H2O (0.80 ml) and hexane (4.0 ml). The organic layer was separated and the aqueous layer was washed with hexane. The aqueous layer was acidified with 1M HCl and extracted with AcOEt. The AcOEt extracts were combined, dried over anhydrous MgSO4, then concentrated *in vacuo*. The concentration residue was purified by column chromatography (SiO2, CH₂Cl₂-AcOEt-AcOH 150:50:1) to give 4 as colorless crystals (27.0 mg, 91%). This sample showed the same physical and spectral data as those described in a).

(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(S)-1-carboxyethyl]-2-azetidinone (10). The same treatments of 8 α (14.7 mg, 0.038 mmol) as described for the preparation of 4 by hydrogenolysis of 8 β , gave 10 as colorless crystals (11.1 mg, 98%). An analytical sample obtained as colorless crystals by recrystallization from hexane-AcOEt showed mp 177~183°C (decomp.) and [α]D²⁵-5.0° (c 0.44, MeOH). IR (KBr): 2950, 1720, 1463, 1380, 1258, 1103, 1043, 839, 778 cm⁻¹. ¹H-NMR (CDCl₃): 0.08 (6H, s, Me2Si), 0.88 (9H, s, Me3C), 1.25, 1.28 (6H, each d, J=6.2 and 7.2 Hz, <u>Me</u>CHOSi, <u>Me</u>CHCON), 2.61 (1H, m, Me<u>CH</u>CO), 2.77 (1H, m, C3-H), 3.72 (1H, dd, J=1.8, 9.6 Hz, C4-H), 4.19 (1H, t, J=5.8 Hz, Me<u>CH</u>OSi), 6.10 (1H, bs, NH). The ¹H-NMR spectrum was identical with that reported.²²) MS m/z: 286 (M-Me)+, 244 (M-Bu)+. Found: C, 55.87; H, 9.16; N, 4.56%. Calcd for C14H27NO4Si: C, 55.66; H, 9.03; N, 4.57%.

(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-(methoxycarbonyl)ethyl]-2-azetidinone (9 β). A solution of diazomethane in ether was added to 4 (15.8 mg, 0.052 mmol) at rt. The resulting slightly yellowish ethereal solution was concentrated *in vacuo*, affording 9 β as colorless crystals (16.0 mg, 97%). An analytical sample obtained by recrystallization from cyclohexane showed mp 121~122°C (lit.³) 120~121°C) and [α]D²⁰ -27.8° (c 0.39, CH2Cl2) [lit.³) $[\alpha]p^{22}$ -21.0° (c 2.09, CH2Cl2)]. IR (KBr): 2950, 1765, 1738, 1720, 1258, 1175, 1138, 1047, 962, 840, 782, 735, 697 cm⁻¹. ¹H-NMR (CDCl3): 0.07 (6H, s, Me2Si), 0.87 (9H, s, Me3C), 1.17, 1.23 (6H, each d, J=6.4 and 7.0 Hz, <u>Me</u>CHOSi, <u>Me</u>CHCON), 2.71 (1H, m, CHCO), 2.99 (1H, m, C3-H), 3.70 (3H, s, MeO), 3.87 (1H, dd, J=2.5, 5.0 Hz, C4-H), 4.21 (1H, m, CHOSi), 5.82 (1H, bs, NH). MS m/z: 300 (M-Me)⁺, 258 (M-Bu)⁺. Found: C, 57.14; H, 9.45; N, 4.35%. Calcd for C15H29NO4Si: C, 57.11; H, 9.26; N, 4.44%.

(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(S)-1-(methoxycarbonyl)ethyl]-2-azetidinone (9α). The same treatments of 10 (4.0 mg, 0.013 mmol) as described for the preparation of 9β from 4, gave 9α as colorless crystals (4.1 mg, 98%). An analytical sample obtained by recrystallization from cyclohexane showed mp 132-133°C (*lit.*³) 133-134°C) and [α]D²⁵ +9.0° (c 0.15, CH₂Cl₂) [*lit.*³) [α]D²² +6.0° (c 2.0, CH₂Cl₂)]. IR (KBr): 2950, 1762, 1469, 1253, 1198, 1180, 1149, 1042, 964, 830, 778 cm⁻¹. ¹H-NMR (CDCl₃): 0.08 (6H, s, Me₂Si), 0.88 (9H, s, Me₃C), 1.24 (6H, d, J=6.6 Hz, <u>Me</u>CHOSi, <u>Me</u>CHCO), 2.55 (1H, m, CHCO), 2.78 (1H, m, C₃-H), 3.72 (3H, s, MeO), 3.87 (1H, dd, J=2.5, 5.0 Hz, C4-H), 4.18 (1H, m, CHOSi), 5.98 (1H, bs, NH). MS m/z: 300 (M-Me)⁺, 258 (M-Bu)⁺. Found: C, 57.21; H, 9.33; N, 4.36%. Calcd for C15H₂9NO₄Si: C, 57.11; H, 9.26; N, 4.44%.

References and Notes

- 1. Part of this work has been the subject of a preliminary communication. Ito, Y.; Terashima, S. Tetrahedron Lett., 1987, 28, 6625 (1987).
- 2. Present address: Department of Chemistry, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka, 812, Japan.
- 3. Shih, D. H.; Baker, F.; Cama, L.; Christensen, B. G. Heterocycles, 1984, 21, 29.
- a) Shibata, T.; Iino, K.; Tanaka, T.; Hashimoto, T.; Kameyama, Y.; Sugimura, Y. Tetrahedron Lett., 1985, 26, 4739. b) Shibata. T.; Sugimura, Y. J. Antibiot., 1985, 42, 374.
- a) Sunagawa, M.; Matsumura, H.; Inoue, T.; Fukasawa, M.; Kato, M. Program and Abstracts of the 27th Interscience Conf. on Antimicrob. Agents and Chemother. New York, 1987, p. 228, No. 752. b) Idem, J. Antibiot., 1990, 43, 519.
- 6. Ito, Y.; Terashima, S. Yuki Gosei Kagaku Kyokai Shi, 1989, 47, 606.
- 7. Nagahara, T.; Kametani, T. Heterocycles, 1987, 25, 729.
- a) Hanessian, S.; Bedeschi, A.; Battistini, C.; Monglli, N. J. Am. Chem. Soc., 1985, 107, 1438. b) Ohashi, T.; Suga, K.; Sada, I.;Miyama, T.; Watanabe, K. Japan Kokai Tokkyo Koho JP 61-18791 (1986). c) Ito, Y.; Kawabata, T.; Terashima, S. Tetrahedron Lett., 1986, 27, 5751. Ito, Y.; Kobayashi, Y.; Kawabata, T.; Takase, M.; Terashima, S. Tetrahedron, 1988, 45, 5767. d) Ishiguro, M.; Iwata, H.; Nakatsuka, T.; Tanaka, R.; Maeda, Y.; Nishihara, T.; Noguchi, T. J. Antibiot., 1988, 41, 1685.
- a) Nagao, Y.; Kumagai, T.; Tamai, S.; Abe, T.; Kuramoto, Y.; Taga, T.; Aoyagi, S.; Nagase, Y.; Ochiai, M.; Inoue, Y.; Fujita, E. J. Am. Chem. Soc., 1986, 108, 4673. b) Déziel, R.; Favreau, D. Tetrahedron Lett., 1986, 27, 5687.

- 10. Fuentes, L. M.; Shinkai, I.; Salzmann, T. N. J. Am. Chem. Soc., 1986, 108, 4675.
- 11. Kim, C. U.; Luh, B.; Partyka, R. A. Tetrahedron Lett., 1987, 28, 507.
- 12. Almost the same unsuccessful results were reported by Endo. Endo, M. Can. J. Chem., 1987, 65, 2140.
- 13. Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. Pure & Appl. Chem., 1981, 53, 1109.
- 14. Amouroux, R.; Axiotis, G. P. Synthesis, 1981, 270.
- 15. Diethylaluminium chloride, tributylborane, tin(II) chloride, titanium(IV) tetraisopropoxide and so on were employed as an additive. However, these lewis acids seemed to enhance the undesired α -diastereoselectivity. Ito, Y.; Terashima, S. unpublished results.
- The ratio of the desired 1β-isomer to the undesired 1α-isomer was found to be almost
 1:1. Ito, Y.; Terashima, S. unpublished results.
- 17. Ito, Y.; Terashima, S. Tetrahedron, the accompanying paper.
- 18. Ito, Y.; Terashima, S. unpublished results.
- Fuentes, L. M.; Shinkai, I.; King, A.; Purick, R.; Reamer, R. A.; Schmitt, S. M.; Cama, L.; Christensen, B. G. J. Org. Chem., 1987, 52, 2563.
- Kawabata, T.; Kimura, Y.; Ito, Y.; Tereahima, S.; Sasaki, A.; Sunagawa, M.; Tetrahedron Lett., 1986, 27, 6241. Idem, Tetrahedron, 1988, 44, 2149.
- 21. It has been reported that the carboxylic acid (10) can be convert to 4 via a partial epimerization of 9α derived from 4 (ref. 3). However, though such transformation obviously lacks practicality.
- 22. Fliri, H.; Mak, C.-P. J. Org. Chem., 1985, 50, 3438.
- 23. Close, W. J. J. Am. Chem. Soc., 1951, 73, 95.
- a) Plattner, J. J.; Fung, A. K. L.; Parks, J. A.; Pariza, R. J.; Crowley, S. R.; Pernet, A. G.; Bunnell, P. R.; Dodge, P. W. J. Med. Chem., 1984, 27, 1016. b) (S)-4-Phenyl-2-oxazolidone was reported to exhibit mp 132~133°C and [α]D²² +49.5° (c 2.1, CHCl3). Evans, D. A.; Sjogren, E. B. Tetrahedron Lett., 1985, 26, 3783.