HIGHLY STEREOCONTROLLED SYNTHESIS OF THE 1β METHY LCARBAPENEM KEY INTERMEDIATE BY THE REFORMATSKY REACTION OF 3-(2-BROMOPROPIONYL)-2-OXAZOLIDONE DERIVATIVES WITH A 4-ACETOXY-2-AZETIDINONE ${ }^{1)}$

Yoshio Ito,a)2) Akira Sasaki, ${ }^{\text {b) }}$ Kastumi Tamoto, ${ }^{\text {b }}$) Makoto Sunagawa, ${ }^{\text {b) }}$ and Shiro Terashima ${ }^{\text {a }}{ }^{*}$
Sagami Chemical Research Center, Nishi-Ohnuma, Sagamihara, Kanagawa 229, Japana) Research Laboratories, Research and Development Division, Sumitomo Pharmaceuticals Co. Ltd., Kasugade, Naka, Konohana-ku, Osaka 554, Japanb)

(Received in Japan 16 November 1990)

Abstract

The key synthetic intermediate (4) of 18-methylcarbapenems (1~3) was efficiently synthesized by employing highly stereocontrolled Reformatsky reaction (C4-alkylation) of 3-(2-bromopropionyl)-2-oxazolidone derivatives (6) with (3R,4R)-4-acetoxy-3-[(R)-1-(t-butyldimethylsilyloxy)ethyll-2-azetidinone (5) in the presence of zinc dust followed by removal of 2 -oxazolidone moieties. The best diastereoselectivity ($\beta: \alpha=95: 5$) could be realized by uses of sterically crowded achiral 2-oxazolidone derivatives such as 4,4-dimethyl-, 4,4,5,5-tetramethyl, and 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone and higher reaction temperatures (refluxing tetrahydrofran). The remarkable diastereoselectivities observed for the Reformatsky reactions could be explained by means of the weakly chelating transition state models.

The 1β-methylcarbapenems represented by L-646591 (1), ${ }^{3)} 1 \beta$-methyl-RS-533 (2),4) and SM$\left.7338(3)^{5}\right)$ were found as synthetic carbapenem antibiotics showing enhanced chemical and metabolic stabilities in addition to excellent antibacterial activity and broad spectra. ${ }^{3 \sim 5}$) Since these novel antibiotics which have intriguing structures involving four contiguous asymmetric centers are obtainable only by chemical synthesis, numerous synthetic endeavors have so far been devoted to them. ${ }^{6}$)

4

5

In the original synthesis of 1 reported by a research group at Merck, ${ }^{3)}$ ($\left.3 S, 4 S\right)-3-[(R)-1-(t-$ butyldimethylsilyloxy)ethyl]-4-[(R)-1-carboxyethyl]-2-azetidinone (4) was employed as a key synthetic intermediate. After that, synthetic studies have been focused exclusively on 4 since it has been disclosed that 4 can be also converted effectively to other 1β-methylcarbapenems
such as 2 and 3 which have the same frameworks as 1 and different C 2 -side chains. Introduction of the $\mathbf{C} 2$-side chain can be easily achieved after construction of the bicyclic carbapenem framework is completed. ${ }^{6}$)

Among a number of the synthetic methods of 4 so far reported, ${ }^{6)}$ stereoselective substitution at the C4-position of ($3 R, 4 R$)-4-acetoxy-3-[(R)-1-($($-butyldimethylsilyloxy)ethyl]-2-azetidinone (5) with various types of enolates obtainable from propionic acid derivatives is currently recognized as one of the most promising synthetic methods ${ }^{6)}$ since several highly efficient synthetic routes to 5 or its equivalents have been recently explored. 7,8)

Stereoselective introduction of the 1β-methyl substituent into 5 has hitherto been accomplished using tin enolate of 3-propionyl-2-thiazolidinethione, ${ }^{9}$) or 3-propionyl-2-oxazolidinethione derivative, 9 bb) boron enolate of 3 -propionyl-2-oxazolidone ${ }^{10}$) or 3-propionyl-2-benzoxazolidone derivative, ${ }^{4 b}$) zirconium enolate of the thiol ester of propionic acid, ${ }^{11)}$ and so on. ${ }^{6)}$ However, these methods seem to accompany much difficulties in a large-scale preparation of 4 because precious chiral sources and/or expensive or toxic reagents such as tin trifluoromethanesulfonate, diethylboron trifluoromethanesulfonate, and bis(cyclopentadienyl)zirconium dichloride are required. With an aim to overcome these problems, we paid attention to the Reformatsky reaction of achiral 2-bromopropionic acid derivatives with 5 in the presence of cheap and less toxic zinc dust. ${ }^{1)}$

This report details the highly stereocontrolled synthesis of 4 accomplished by the Reformatsky reation of 3-(2-bromopropionyl)-2-oxazolidone derivatives (6) with 5.

The Reformatsky reaction of various 3-(2-bromopropionyl)-2-ozazolidone derivatives (6) with (3R,4R)-4-acetoxy-3-[(R)-1-t-butyldimethylsilyloxy)ethyl]-2-azetidinone (5).

After accumulating numerous unsuccessful results on the reactions of various 2 -bromopropionic acid esters with 5 in the presence of zinc dust, ${ }^{12)}$ we envisioned that stereochemical outcome of the C4-alkylation may depend largely upon the geometry of the zinc enolate produced from 2-bromopropionic acid derivatives and zinc dust. It was also expected that the enolate geometry can be effectively controlled as (Z)-configuration by changing ester group to imide group as reported for deprotonation of a 3 -propionyl-2-oxazolidone derivative with lithium diisopropylamide. ${ }^{13)}$ Based on these considerations, the Reformatsky reactions of several kinds of 3 -(2-bromopropionyl)-2-oxazolidone derivatives ($\mathbf{6 a \sim g}$) with 5 were attempted.

Table 1. Reformatsky reaction of various 3-(2-bromopropionyl)-2-oxazolidones (6) with ($3 R, 4 R$)-4-acetoxy-3-[(R)-1-($($-butyldimethylsilyloxy)ethyl]-2-azetidinone (5).

Run	6	\mathbf{R}^{1}	\mathbf{R}^{2}	R^{3}	R ${ }^{4}$	Solvent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Time } \\ & (\min) \end{aligned} \frac{\mathrm{P}}{\mathrm{Y}}$	Product (7) ${ }^{\text {a }}$	
									Yieldb) (\%)	Ratioc) 7阝:7 α
1	a	H	H	H	H	THF	0	60	75	45:55
2	a	H	H	H	H	THF	25	10	97	45:55
3	a	H	H	H	H	THF	67 ${ }^{\text {d }}$	1	82	48:52
4	b	Me	Me	H	H	THF	0	30	90	63:37
5	b	Me	Me	H	H	THF	$0 \sim 67{ }^{\text {e }}$	$30(3)^{\text {e) }}$	e) 97	64:36
6	b	Me	Me	H	H	THF	25	5	95	73:27
7	b	Me	Me	H	H	THF	67 ${ }^{\text {d }}$	1	94	79:21
8	b	Me	Me	H	H	DMF	25	10	81	69:31
9	b	Me	Me	H	H	DME	25	10	88	62:38
10	b	Me	Me	H	H	DME	70	1	96	81:19
11	b	Me	Me	H	H	Dioxane	25	10	99	62:38
12	b	Me	Me	H	H	Dioxane	70	1	99	78:22
13	c (LM) ${ }^{\text {f }}$	Me 2 CH	H	H	H	THF	0	30	99	91: 9
14	c (M) ${ }^{\text {f }}$	$\mathrm{Me}_{2} \mathrm{CH}$	H	H	H	THF	25	10	99	87:13
15	c (L) ${ }^{\text {f }}$	$\mathrm{Me}_{2} \mathrm{CH}$	H	H	H	THF	25	10	100	88:12
16	c (LM) ${ }^{\text {f }}$	$\mathrm{Me}_{2} \mathrm{CH}$	H	H	H	THF	67d)	1	99	81:19
17	d (LM)f	PhCH_{2}	H	H	H	THF	0	30	91	90:10
18	e(LM) ${ }^{\text {f }}$	H	Ph	H	H	THF	0	30	99	35:65
19	$e(L M) f$	H	Ph	H	H	THF	67 d)	1	90	56:44
20	f	Me	Me	Me	Me	THF	67d)	5	92	87:13
21	g	${ }^{n} \mathrm{Bu}$	${ }^{n} \mathrm{Bu}$	-(C)	$\left.\mathrm{H}_{2}\right)_{5}{ }^{-}$	THF	25	10	99	90:10
22	g	${ }^{n} \mathrm{Bu}$	$n \mathrm{Bu}$	-(C)	$\left.\mathrm{H}_{2}\right)_{5}$ -	THF	67 d)	2	99	95: 5

a) The two diastereomers (7β and 7α) were separated by column chromatography (see the experimental part).
b) Combined yields of 7β and 7α.
c) Determined by measuring the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the mixture of 7β and 7α or by the weights of 7β and 7α separated by column chromatography (see the experimental part).
d) The reaction was performed in refluxing THF.
e) The mixture obtained by the reaction performed at $0^{\circ} \mathrm{C}$ for 30 min was heated at reflux for 3 min before work-up.
f) L, M, and LM mean a less polar isomer, a more polar isomer, and a mixture of less and more polar isomers of $6 \mathrm{c} \sim \mathrm{e}$, respectively. See the text and experimental part.

Preparations of 6a~g were achieved by treating 2-bromopropionyl bromide with the 2-oxazolidone derivatives in the presence of bases such as sodium hydride and butyllithium. Among the 2-oxazolidone derivatives, 4,4-dimethyl-, (R)-4-phenyl-, 4,4,5,5-tetramethyl-, and 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone, all of which were commercially not available, were prepared from the corresponding amino alcohols (see the experimental part). Synthesis of 2-amino-1,2,2-trimethylpropanol and 2-amino-2-butyl-1,1-pentamethylene-1hexanol which afford 4,4,5,5-tetramethyl- and 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone, respectively, could be achieved starting from acetone and cyclohexanone according to the reported procedure (see the experimental part). ${ }^{14)}$

As shown in Table 1, run 1, the zinc enolate produced in situ from 3-(2-bromopropionyl)-2oxazolidone (6a) and zinc dust could effectively react with 5 at $25^{\circ} \mathrm{C}$ in tetrahydrofuran (THF) to give the alkylation product ($7 a$) in 97% yield. However, $7 a$ was found to be a mixture of two diastereomers ($7 \mathrm{a} \beta$ and $7 \mathrm{a} \alpha$) in a ratio of 45:55. This disappointingly low diastereoselectivity could not be improved by changing reaction conditions such as solvents and temperatures (runs 1~3) and by employing various Lewis acids. ${ }^{15 \text {) With an aim to further improve the }}$ desired β-methyl diastereoselectivity (β-diastereoselectivity), the effect of substituents involved in the 2 -oxazolidone moiety on the diastereoselectivity was next studied.

While the use of 3-(2-bromopropionyl)-2-benzoxazolidone gave no improvement with regard to yield and diastereoselectivity, ${ }^{16)}$ it was finally found that the reaction performed with 3-(2-bromopropionyl)-4,4-dimethyl-2-oxazolidone (6 b) at $0^{\circ} \mathrm{C}$ could produce the desired 1β-methyl β-lactam ($7 \mathrm{~b} \beta$) as a major product (run 4). Interestingly, the diastereoselectivity was found to highly depend upon the reaction temperature. Thus, contrary to our expectation, the increased β-diastereoselectivity was obtained at higher reaction temperatures (runs $4 \sim 7$) and the formation ratio of $7 \mathbf{b} \beta$ to $7 \mathbf{b} \alpha$ reached to $79: 21$ in refluxing THF (run 7). Although the reaction of $6 b$ with 5 was further examined in various solvents, no further improvement of the β-diastereoselectivity could be realized (runs 8~12).

Since it had been uncovered that tin enolate of chiral 3-propionyl-2-thiazolidinethione derivative ${ }^{9 a}$) and boron enolate of chiral 3-(propionyl)-2-oxazolidone derivative ${ }^{10}$ could effect highly stereoselective construction of the 1β-methyl substituent, the Reformatsky reaction of chiral 3-(2-bromopropionyl)-2-oxazolidone derivatives (6c~e) with 5 was similarly examined (runs 13~19). Since 2 -bromopropionic acid moiety was used as a racemic form, 6c-e were obtained as mixtures of two diastereomers due to the asymmetric carbons involved in the 2 bromopropionic acid and 2 -oxazolidone moieties. These diastereomers could be readily separated by column chromatography to give a more polar isomer (M) and a less polar isomer (L). Although the relative configurations of these diastereomers could not be assigned, the reactivity, chemical yield, and diastereoselectivity of the next Reformatsky reaction were not affected substantially by the configurational difference (runs 14 and 15). The reaction of $6 \mathbf{c}, \mathrm{~d}$ having (S)-4-isopropyl or (S)-4-benzyl group with 5 improved the diastereomeric ratios up to ca. $9: 1$ at $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ (runs $13 \sim 15$ and 17), but almost the same diastereomeric ratio as observed for 6 b was obtained for $\mathbf{6 c}$ in refluxing THF (run 16). Being different from 6c,d, 6e carrying (R)-4-phenyl group gave low α-diastereoselectivity in the
reaction at $0^{\circ} \mathrm{C}$. Similarly, to the results obtained for 6 b , the proportion of $7 \mathrm{e} \beta$ increased up to 56% in refluxing THF (runs 18 and 19).

The results accumulated using 6are obviously suggest that increase of the steric bulkiness at the C_{4}-position of 6 may improve the β-diastereoselectivity of the Reformatsky reaction in refluxing THF. Based on this assumption, the sterically more crowded 2-oxazolidone derivatives ($6 \mathrm{f}, \mathrm{g}$) were designed to enhance the β-diastereoselectivity. As expected, the Reformatsky reaction of 3 -(2-bromopropionyl)-4,4,5,5-tetramethyloxazolidone (6 f) with 5 gave higher β-diastereoselectivity in refluxing THF (7f $\beta: 7 \mathrm{f} \alpha=87: 13$) (run 20). Ultimately, the highest β-diastereoselectivity ($7 \mathrm{~g} \beta: 7 \mathrm{~g} \alpha=95: 5$) could be realized by the reaction of the most sterically crowded 3-(2-bromopropionyl)-4,4-dibutyl-5,5-pentamethylene-2-oxazolidone (6 g) with 5 in refluxing THF (run 22). Similarly to the cases for $\mathbf{6 b}$, the β-diastereoselectivity with $\mathbf{6 g}$ lowered at $\mathbf{2 5}^{\circ} \mathrm{C}$ (run 21). A single recrystallization of the mixture of $\mathbf{7 g} \beta$ and $\mathbf{7 g} \alpha$ (95:5) from methanol afforded an 85% yield of pure $\mathbf{7 g}$.

Mechanistic consideration of the Reformatsky reaction.

Firstly, the zinc enolate was assumed to have (Z)-configuration based on the results previously reported ${ }^{13)}$ and detailed in the accompanying paper. ${ }^{17)}$ That the Reformatsky reaction is kinetically controlled was also ascertained by the fact that the β-diastereoselectivity observed for the reaction at $0^{\circ} \mathrm{C}$ did not change after heating the reaction mixture at $67^{\circ} \mathrm{C}$ (Table 1, run 5). Taking into account these features, the six-membered chelating transition states (A and B) which correspond to a chair and a boat form, respectively, may be proposed to explain the unique diastereoselectivity of the Reformatsky reaction. In \mathbf{A} and \mathbf{B}, the (Z)zinc enolate approaches the CN-double bond of the 1,4 -dehydro- 2 -azetidinone derivative from the direction opposite to the bulky (R)-1-(t-butyldimethylsilyloxy)ethyl group, giving rise to 7β and 7α, respectively. The 1,4 -dehydro-2-azetidinone derivative might be produced by removal of an acetic acid from 5 with the (Z)-zinc enolate and/or zinc bromide present in the reaction medium. Steric interaction between the R^{2} group and the $\mathrm{C} 4-\mathrm{H}$ of 1,4 -dehydro-2-azetidinone and that between the R^{1} group and the $\mathrm{Cs}-\mathrm{H}$ of 1,4 -dehydro-2-azetidinone should play key roles in determining the thermodynamic stability of \mathbf{A} and B, respectively. Similar

A

7β

B
7α
transition states have been proposed for the reactions with tin enolate of 3 -propionyl-2thiazolidinethione ${ }^{9 \mathrm{a})}$ and boron enolate of 3 -propionyl-2-oxazolidone ${ }^{10)}$ with 5.

At lower reaction temperatures such as $0^{\circ} \mathrm{C}$, the Reformatsky reactions with $6 \mathrm{c}, \mathrm{d}$ having (S)-configurations ($\mathrm{R}^{1}=i \operatorname{Pr}$ or ${ }^{n} \mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}$) proceeded more preferentially through A, producing $7 \mathrm{c}, \mathrm{d} \beta$ as the major products (Table 1, runs 13 and 17). Selective formation of $7 \mathrm{e} \alpha$ from the reaction with $6 e$ bearing (R)-configuration ($\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$) can be similarly explained by B (Table 1, run 18). Low β-diastereosesectivities observed for the reaction with $\mathbf{6 a}, \mathrm{b}\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\right.$ or Me) may reflect small thermodynamic differences between \mathbf{A} and \mathbf{B} (Table 1, runs 1 and 4).

On the other hand, the higher reaction temperatures such as $67^{\circ} \mathrm{C}$ may result in loosening of the intermolecular chelation between the zinc (II) cation and the nitrogen atom of CN double bond in A and B (arrow a and b). Steric interaction should be released more effectively in \mathbf{A} than in \mathbf{B} by the weakening of intermolecular chelation. Thus, the increases of β diastereoselectivities observed for the reactions with sterically crowded 2 -oxazolidone derivatives ($6 \mathrm{~b}, \mathrm{f}, \mathrm{g}$) $\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right.$ or $\left.{ }^{n} \mathrm{Bu}\right)$ by raising the reaction temperature (Table 1, runs 7, 20, and 25) may be explained by A in which the intermolecular chelation is weakened. Results obtained with 6 e having (R)-configuration ($\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$) by changing the reaction temperature (Table 1, runs 18 and 19) strongly suggest that pronounced release of the steric interaction occurs in \mathbf{A} at higher reaction temperatures. The diastereoselectivities in the reactions with $\mathbf{6 a , c}\left(R^{1}={ }^{i} \mathrm{Pr}\right.$ or $H, R^{2}=H$) at higher temperatures (Table 1, runs 3 and 16) disclose that the release of steric interaction in A by loosing the intermolecular chelation is not so much for the 2 -oxazolidone derivative in which the R^{2} group is hydrogen.

Results obtained at ambient temperatures such as $25^{\circ} \mathrm{C}$ (Table 1, runs $2,6,8,9,11,14,15$, 21) may reflect the delicate balances between the chelating transition states (\mathbf{A} and \mathbf{B}) and those in which the intermolecular chelations (arrows a and b) become very weak.

Convertion of the Reformatsky products to the 1β-methylcarbapenem key intermediate (4) and determination of their stereochemistries.

At the last stage of our synthetic studies, the preparation of 4 from 7β was attempted. While treatment of $\mathbf{7 b} \beta$ with sodium hydroxide in aqueous methanol accompanied hydrolysis of the 2 -oxazolidone moiety to yield an amide derivative in addition to $\mathbf{4 , 1 8)} \mathbf{7 b} \beta$ could be readily converted to the benzyl ester (8β) in 98% yield by treating with lithium benzylate. As shown in Scheme 1, 8β was similarly prepared in excellent yields from 7b,f,g β. However, fairly low yields were only obtained for $7 a, c, d, e \beta$. In the latter cases, the nucleophilic openings of 2 oxazolidone moieties with lithium benzylate were always observed as side reactions. ${ }^{18)}$ These results obviously suggest that the C2-carbonyl groups of sterically crowded $\mathbf{7 b}, \mathbf{f}, \mathbf{g} \beta$ were protected from the nucleophilic attack by lithium benzylate more effectively than those of 7 a,c,d,e β. Hydrogenolysis of 8β on palladium catalyst produced 4 in 98% yield. From the most sterically crowded $7 \mathrm{~g} \beta$, it was also possible to obtain 4 directly in 91% yield by treating

a) BnOLi in THF, $\mathbf{5 4 \%}$ (from 7aß), $\mathbf{9 8 \%}$ (from $\mathbf{7 b} \beta$), $\mathbf{6 7 \%}$ (from $\mathbf{7 c \beta}$), $\mathbf{3 8 \%}$ (from $\mathbf{7 d} \beta$), $\mathbf{2 7 \%}$ (from $\mathbf{7 e} \beta$), $\mathbf{9 0 \%}$ (from $\mathbf{7 f \beta}$), $\mathbf{9 7 \%}$ (from $\mathbf{7 g} \beta$) b) $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$ in $\mathrm{AcOEt}, \mathbf{9 8 \%}$ c) $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathbf{9 7 \%}$ d) NaOH in $\mathrm{THF}-\mathbf{~} \mathrm{BuOH}, \mathbf{9 1 \%}$ (from 7gß)

Scheme 1

$7 \mathrm{~g} \beta$ with sodium hydroxide in aqueous t-butanol. Esterification of 4 with diazomethane produced the methyl ester (9β) in 97% yield. Physical and/or spectral data of 4 and 9β were identical with those reported. $3,19,20$)

Although the convergent syntheses of 4 and 9β from 7a~g β obviously established the stereochemistries of 7α and 7β, convertions of 7α to the methyl ester (9α) were also attempted by way of the benzyl ester (8α) and the carboxylic acid (10).21) Similarly to the previous results, the yields of the benzyl ester formation from 7a~e α were found to highly depend upon the structures of 2 -oxazolidone moieties. Thus, as shown in Scheme 2, while 8α could be produced from $\mathbf{7 b}, \mathrm{e} \alpha$ in $\mathbf{9 5 \%}$ and $\mathbf{5 1 \%}$ yields, respectively, the benzyl ester formation did not take place for 7a α or gave very low yields of 8α from $7 \mathrm{c}, \mathrm{d} \alpha$. For $7 \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e} \alpha$, the ring openings of 2-oxazolidone moieties seemed to occur along with or in place of the desired alcoholyses. ${ }^{18)}$ Hydrogenolysis of 8α over palladium catalyst afforded 10 in 98% yield. The methyl ester (9α) could be produced from 10 by treating with diazomethane. Comparisons of the physical and/or spectral data of 10 and 9α with those reported, ${ }^{3,22)}$ definitely established their structures.

a) BnOLi in THF, 0% (from 7a α), $\mathbf{9 5 \%}$ (from 7b α), 13% (from $7 \mathrm{c} \alpha$), 8% (from $7 \mathrm{~d} \alpha$), $\mathbf{5 1 \%}$ (from 7e α). b) $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$ in $\mathrm{AcOEt}, 98 \%$ c) $\mathrm{CH}_{2} \mathrm{~N}_{2}, 98 \%$

Scheme 2

Conclusion

As mentioned above, we have succeeded in exploring a highly stereoselective synthetic route to 4 by featuring the Reformatsky reaction with sterically crowded achiral $6 \mathrm{~b}, \mathrm{f}, \mathrm{g}$ with 5 in the presence of zinc dust. Remarkable increases of the β-diastereoselectivities at higher reaction temperatures could be explained by chelating transition state models. High β diastereoselectivity of the key step, high overall yield, mild reaction conditions, and uses of inexpensive and less toxic reagents makes this process highly promising as one of the most practical synthetic methods of 4.

Experimental

General. All melting points were measured by a Yamato MP-21 melting point apparatus or a Thomas Hoover capillary melting point apparatus and were uncorrected. Measurements of optical rotations were performed with a Horiba SEPA-200 automatic digital polarimeter or a JASCO DIP-370 digital polarimeter. IR spectral measurements were carried out with a JASCO A-202 diffraction grating infrared spectrometer, a JASCO A-102 IR spectrometer or a Hitachi 260-10 IR spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were measured with a Hitachi R-90H (90 MHz), a JEOL JNM-GX270 FT-NMR spectrometer (270 MHz), or a Bruker AM-400 spectrometer (400 MHz). All signals were expressed as ppm down field from tetramethylsilane used as an internal standard (δ-value). Mass spectra were taken with a Hitachi RMU-6MG mass spectrometer. Wakogel C-200 and C-300 were used as an adsorbent for column chromatography. Kieselgel 60F254 (Merck) was used for preparative TLC.

3-(2-Bromopropionyl)-2-oxazolidone (6a) A solution of n-butyllithium in hexane (1.60M solution, $30.0 \mathrm{ml}, 48 \mathrm{mmol}$) and 2-bromopropionyl bromide ($5.83 \mathrm{ml}, 46 \mathrm{mmol}$) were added successively to a solution of commercially available 2 -oxazolidone ($4.00 \mathrm{~g}, 46 \mathrm{mmol}$) in THF (70 ml) at $0^{\circ} \mathrm{C}$. After stirring for 1 h , the mixture was diluted with saturated aqueous potassium dihydrogen phosphate solution and extracted with AcOEt. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (SiO 2 , hexane $-\mathrm{CH}_{2} \mathrm{Cll}_{2} 1: 1 \sim 0: 1$) to give 6 a as colorless crystals (8.68 g , 84%). An analytical sample obtained by recrystallization from ether showed $\mathrm{mp} 41^{\circ} \mathrm{C}$. IR (KBr): 1779, 1707, 1400, 1372, 1269, 1240, 1230, 1070, $758 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): 1.83 (3H, d, $\mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me}), 4.08(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{O}), 4.48(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{~N}), 5.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}) . \mathrm{MS} \mathrm{m} / \mathrm{z}$: 223, 221 (M) ${ }^{+}, 142$ (M-80) ${ }^{+}$. Found: C, $32.50 ; \mathrm{H}, 3.59 ; \mathrm{N}, 6.29 \%$. Calcd for $\mathrm{C}_{6} \mathrm{H8NO} 3 \mathrm{Br}: \mathrm{C}$, 32.46; H, 3.63; N, 6.31\%.

3-(2-Bromopropionyl)-4,4-dimethyl-2-oxazolidone (6b). a) Preparation of 4,4-dimethyl-2oxazolidone. A mixture of commercially available 2 -amino-2-methyl-1-propanol ($4.00 \mathrm{~g}, 45$ mmol), diethyl carbonate ($10.9 \mathrm{ml}, 90 \mathrm{mmol}$), and anhydrous potassium carbonate (0.100 g , 0.72 mmol) was heated at $120^{\circ} \mathrm{C}$ for 2 h with stirring. After removal of resulting ethanol and excess of diethyl carbonate in vacuo, the residue was diluted with $1 \mathrm{M} \mathrm{HCl}(8.0 \mathrm{ml})$ and ex-
tracted with AcOEt. The combined organic extracts were washed with saturated aqueous NaCl and dried over anhydrous MgSO_{4}. Filtration and concentration in vacuo gave 4,4-dimethyl-2-oxazolidone as colorless crystals ($5.07 \mathrm{~g}, 98 \%$). An analytical sample obtained by recrystallization from AcOEt showed mp $56 \sim 58^{\circ} \mathrm{C}$ (lit., ${ }^{23}$) $56.5 \sim 58^{\circ} \mathrm{C}$). IR (KBr): 3250, 1760, 1414, 1220, 1040, 941, 777, $560 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): 1.36 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Mex} 2$), 4.08 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}$), 5.91 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$). MS m/z: $115(\mathrm{M})^{+}, 100(\mathrm{M}-\mathrm{Me})^{+}$. Found: C, 52.38; H, 7.85; N,12.13\%. Calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO} 2$: C, $52.16 ; \mathrm{H}, 7.88 ; \mathrm{N}, 12.17 \%$.
b) Preparation of 6b by using sodium hydride. 4,4-Dimethyl-2-oxazolidone ($1.15 \mathrm{~g}, 10 \mathrm{mmol}$) was added to a suspension of sodium hydride $(0.24 \mathrm{~g}, 10 \mathrm{mmol})$ in THF (100 ml) and the mixture was stirred at rt for 5 h . After cooling to $0^{\circ} \mathrm{C}, 2$-bromopropionyl bromide ($1.05 \mathrm{ml}, 10$ mmol) was added to the mixture and the stirring was continued for 1 h at the same temperature. The mixture was worked-up in the same manner as described in c), affording $\mathbf{6 b}$ as colorless crystals ($2.35 \mathrm{~g}, 90 \%$) after purification by column chromatography. The spectral data [$\mathbb{R}(\mathrm{KBr}),{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3), and MS] of this sample were identical with those described in c).
c) Preparation of $\mathbf{6 b}$ by using n-butyllithium. Treatments of 4,4-dimethyl-2-oxazolidone (0.384 $\mathrm{g}, 3.3 \mathrm{mmol}$) in a similar manner to that described for the preparation of $\mathbf{6 a}$ gave $\mathbf{6 b}$ as colorless crystals ($0.701 \mathrm{~g}, 84 \%$) after purification by column chromatography (SiO_{2}, hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1~0:1). An analytical sample obtained by recrystallization from hexane showed mp $73 \sim 74^{\circ} \mathrm{C}$. IR (KBr): 3030, 1775, 1709, 1370, 1310, 1183, 1105, 1069, 760, $702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): $1.58,1.60(6 \mathrm{H}$, two s, Me2C), $1.81(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{MeCH}), 4.06(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2), 5.74(1 \mathrm{H}$, q, J=6.8 Hz, CH). MS m/z: 251, $249(\mathrm{M})^{+}, 170(\mathrm{M}-80)^{+}$. Found: C, 38.39; H, 4.72; N,5.53\%. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO} 3 \mathrm{Br}: \mathrm{C}, \mathbf{3 8 . 4 2 ;} \mathrm{H}, 4.84 ; \mathrm{N}, \mathbf{5 . 6 0 \%}$.
(4S)-3-(2-Bromopropionyl)-4-isopropyl-2-oxazolidone (6c). Treatments of commercially available (S)-4-isopropyl-2-oxazolidone ($0.156 \mathrm{~g}, 1.2 \mathrm{mmol}$) in a similar manner to that described for the preparation of $6 a$ gave $6 c$ as a mixture of two diastereomers after concentration of the AcOEt extracts in vacuo. The mixture (6c) could be separated into a less polar fraction (L) and a more polar faction (M) by column chromatography (SiO_{2}, hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 3 \sim 0: 1$). The less polar isomer [$6 \mathrm{c}(\mathrm{L})$] was obtained as colorless crystals ($0.177 \mathrm{~g}, 55 \%$). Recrystallization from hexane-ether gave an analytical sample of $6 \mathrm{c}(\mathrm{L}), \operatorname{mp} 41 \sim 43^{\circ} \mathrm{C}$ and $[\alpha] D^{26}+68.8^{\circ}$ (c 1.48, AcOEt). IR (KBr): 2980, 1781, 1709, 1390, 1373, 1300, 1252, 1200, 1060, 775, $757,698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 0.89,0.94(6 \mathrm{H}$, each $\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Me2CH}), 1.85(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8$ $\mathrm{Hz}, \mathrm{MeCHBr}), 2.38(1 \mathrm{H}, \mathrm{m}, \mathrm{Me} 2 \mathrm{CH}), 4.33(3 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2, \mathrm{CHN}), 5.75(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CHBr})$. MS m/z: 263, $265(\mathrm{M})^{+}$. Found: C, 40.80; H, $5.34 ; \mathrm{N}, 5.22 \%$. Calcd for $\mathrm{C} 9 \mathrm{H} 14 \mathrm{NO} 3 \mathrm{Br}: \mathrm{C}, 40.93$; $\mathrm{H}, 5.34 ; \mathrm{N}, 5.30 \%$. The more polar isomer [$\mathbf{6 c}(\mathrm{M})$] was obtained as colorless crystals (0.134 g , 42\%). An analytical sample of $\mathbf{6 c}(\mathrm{M})$ obtained by recrystallization from hexane-AcOEt showed $\mathrm{mp} 56^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{26}+92.0^{\circ}$ (c 1.04, AcOEt). IR (KBr): 2970, 1784, 1768, 1710, 1400, 1370, $1250,1210,1120,1062 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): $0.94(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me2CH}), 1.82(3 \mathrm{H}$, $\mathrm{MeCHBr}), 2.40(1 \mathrm{H}, \mathrm{m}, \mathrm{Me} 2 \mathrm{CH}), 4.2 \sim 4.7(3 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2, \mathrm{CHN}), 5.76(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CHBr})$.

MS m/z: 263, 265 (M) ${ }^{+}$. Found: C, 40.75; H, 5.48; N, 5.26\%. Calcd for C9H14NO3Br: C, 40.93; $\mathrm{H}, 5.34 ; \mathrm{N}, 5.30 \%$. The combined yield of $6 \mathrm{c}(\mathrm{L})$ and $\mathbf{6 c}(\mathrm{M})$ could be calculated as 97%.
(4S)-3-(2-Bromopropionyl)-4-benzyl-2-oxazolidone (6d). Treatments of commercially available (S)-4-benzyl-2-oxazolidone ($0.164 \mathrm{~g}, 0.93 \mathrm{mmol}$) in a similar manner to that described for the preparation of 6 a gave 6 d as a mixture of two diastereomers after concentration of the AcOEt extracts in vacuo. The mixture (6d) could be separated into a less polar fraction (L) and a more polar fraction (M) by column chromatography (SiO_{2}, hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 3 \sim 0: 1$). The less polar isomer [6d(L)] was obtained as colorless crystals ($0.137 \mathrm{~g}, 47 \%$). Recrystallization from hexane-ether gave an analytical sample of $6 \mathrm{~d}(\mathrm{~L}), \mathrm{mp} 26 \sim 28^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{22}+68.4^{\circ}$ (c 1.33 , AcOEt). IR (KBr): 1786, 1709, 1394, 1373, 1251, 1200, 740, $700 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): 1.88 $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{Me}), 2.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.7,13.4 \mathrm{~Hz}$, one of CH 2 Ph$), 3.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.3,13.4 \mathrm{~Hz}$, one of CH 2 Ph), $4.25(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{O}), 4.66(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 5.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHBr}), 7.29(5 \mathrm{H}$, m, Ph). MS m/z: 311, 313 (M) ${ }^{+}$. Found: C, $49.97 ; \mathrm{H}, 4.67 ; \mathrm{N}, 4.47 \%$. Calcd for $\mathrm{C}_{13 \mathrm{H}} 14 \mathrm{NO} 3 \mathrm{Br}$: $\mathrm{C}, 50.02 ; \mathrm{H}, 4.52 ; \mathrm{N}, 4.49 \%$. The more polar isomer [$6 \mathrm{~d}(\mathrm{M})]$ was obtained as colorless crystals $(0.145 \mathrm{~g}, 50 \%)$. An analytical sample of $\mathbf{6 d}(\mathrm{M})$ obtained by recrystallization from hexaneAcOEt showed mp $142 \sim 144^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{22}+92.5^{\circ}$ (c 1.25, AcOEt). IR (KBr): 1781, 1706, 1380, $1300,1248,1210,1201,1180,1120,1101,1016,991,952,760,740,701 \mathrm{~cm}^{-1} .^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): 1.87 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me}$), 2.79 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.4,13.4 \mathrm{~Hz}$, one of CH 2 Ph), 3.33 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.3,13.4$ Hz , one of CH 2 Ph$), 4.22(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.3 \mathrm{~Hz}, \mathrm{CH} 2 \mathrm{O}), 4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 5.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}$, CHMe), $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. MS m/z: 311, 313 (M) ${ }^{+}$. Found: C, $50.03 ; \mathrm{H}, 4.49 ; \mathrm{N}, 4.41 \%$. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{Br}$: C, $50.02 ; \mathrm{H}, 4.52 ; \mathrm{N}, 4.49 \%$. The combined yield of $\mathbf{6 d}(\mathrm{L})$ and $\mathbf{6 d}(\mathrm{M})$ could be calculated as 97%.
(4R)-3-(2-Bromopropionyl)-4-phenyl-2-oxazolidone (6e). a) Preparation of (R)-4-phenyl-2oxazolidone. The same treatments of commercially available (R)-2-amino-2-phenylethanol ($0.56 \mathrm{~g}, 4.1 \mathrm{mmol}$) as described for the preparation of 4,4-dimethyl-2-oxazolidone gave (R)-4-phenyl-2-oxazolidone ($0.604 \mathrm{~g}, 91 \%$) after concentration of the AcOEt extracts in vacuo. Recrystallization from toluene gave an analytical sample of (R)-4-phenyl-2-oxazolidone, mp $131 \sim 132^{\circ} \mathrm{C}\left(\right.$ lit., ${ }^{24 \mathrm{a})} 135 \sim 136^{\circ} \mathrm{C}$) and $[\alpha]_{\mathrm{D}}{ }^{23}-54.9^{\circ}$ (c $1.40, \mathrm{CHCl}_{3}$) $\left[\right.$ lit.,$^{24 \mathrm{a})}[\alpha]_{\mathrm{D}}{ }^{24}-69.7^{\circ}$ (c 0.86 , AcOEt)]. IR (KBr): 1740,1710,1490, 1402, 1236, 1099, 1037, 1024, 970, $921 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): $4.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.4,7.9 \mathrm{~Hz}, \mathrm{CHN}), 4.73(1 \mathrm{H}, \mathrm{m}$, one of CH 2 O$), 4.99(1 \mathrm{H}, \mathrm{m}$, one of CH 2 O), $5.40(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 7.37(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$. MS m/z: $163(\mathrm{M})+$. Found: C, 66.25; H, 5.56; N, 8.58%. Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO} 2$: $\mathrm{C}, 66.08 ; \mathrm{H}, 5.57 ; \mathrm{N}, 8.52 \%$.
b) Preparation of 6 e . Treatments of (R)-4-phenyl-2-oxazolidone ($0.277 \mathrm{~g}, 1.7 \mathrm{mmol}$) in a similar manner to that described for the preparation of $6 a$ gave $6 e$ as a mixture of two diastereomers after concentration of the AcOEt extracts in vacuo. The mixture (6e) could be separated into a less polar fraction (L) and a more polar faction (M) by column chromatography (SiO_{2}, hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 3 \sim 0: 1$). The less polar isomer [$6 \mathrm{e}(\mathrm{L})$] was obtained as colorless crystals ($0.295 \mathrm{~g}, 59 \%$). Recrystallization from hexane-AcOEt gave an analytical sample of $\mathbf{6 e}(\mathrm{L})$, $\mathrm{mp} 136 \sim 137^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{23}-123^{\circ}$ (c 1.31, AcOEt). IR (KBr): 1782, 1700, 1380, 1302, 1198, 1180,
$1121,1039,701 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCls): $1.76(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me}), 4.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,8.8 \mathrm{~Hz}$, one of CH 2$), 4.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,8.8 \mathrm{~Hz}$, one of CH 2$), 5.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,8.4 \mathrm{~Hz}, \mathrm{CHPh}), 5.72$ ($1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CHBr}$), 7.35 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$). MS m/z: 297, 299 (M) ${ }^{+}$. Found: C, 48.31; H, 3.96; $\mathrm{N}, 4.61 \%$. Calcd for $\mathrm{C}_{12 \mathrm{H}}^{2} \mathrm{NO} \mathrm{NBr}: \mathrm{C}, 48.34 ; \mathrm{H}, 4.06 ; \mathrm{N}, 4.70 \%$. The more polar isomer [$6 e(\mathrm{M})$] was obtained as colorless crystals ($0.196 \mathrm{~g}, 39 \%$). An analytical sample of $6 \mathrm{e}(\mathrm{M})$ obtained by recrystallization from hexane-AcOEt showed mp $151 \sim 154^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{22}-81.4^{\circ}$ (c 1.06, AcOEt). IR (KBr): 1784, 1709, 1364, 1330, 1256, 1203, 1060, 757, $696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): 1.77 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me}$), $4.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.1,8.8 \mathrm{~Hz}$, one of CH 2), $4.72(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.8$ Hz , one of CH_{2}), $5.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.1,8.8, \mathrm{CHN}), 5.75(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CHBr}), 7.37(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$. MS m/z: 297, 299 (M)+. Found: C, 48.27; H, 3.97; N, 4.61\%. Calcd for C12H12NO3Br: C, 48.34; $\mathrm{H}, 4.06 ; \mathrm{N}, 4.70 \%$. The combined yield of $\mathbf{6 e}(\mathrm{L})$ and $\mathbf{6 e}(\mathrm{M})$ could be calculated as 98%.

3-(2-Bromopropionyl)-4,4,5,5-tetramethyl-2-oxazolidone (6f). a) Preparation of 4,4,5,5-tetra-methyl-2-oxazolidone. ${ }^{14)}$ Acetone ($1.82 \mathrm{~g}, 31 \mathrm{mmol}$) was added to a mixture of trimethylsilyl cyanide ($3.05 \mathrm{~g}, 31 \mathrm{mmol}$) and a catalytic amount of zinc iodide (ca. 1 mg) at $0^{\circ} \mathrm{C}$. After stirring at rt for lh , the mixture was diluted with ether (10 ml). An ethereal solution of methyllithium (1.07 M solution, $64.0 \mathrm{ml}, 68 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred overnight at rt. The mixture was cooled to $0^{\circ} \mathrm{C}$ and diluted with $10 \mathrm{M} \mathrm{NaOH}(50 \mathrm{ml})$. The aqueous layer was separated and extracted with ether. The ethereal extracts were combined, dried over anhydrous MgSO_{4}, then concentrated in vacuo. A part of the concentration residue (20%) containing 2 -amino- $1,2,2$-trimethyl-1-propanol was diluted with THF (10 ml) without purification. N, N^{\prime}-Carbonyldiimidazole ($3.24 \mathrm{~g}, 20 \mathrm{mmol}$) was added to the THF solution and the stirring was continued at $65^{\circ} \mathrm{C}$ for 4 h . After cooling to rt , the mixture was diluted with $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{ml})$ and methanol (7.5 ml). After stirring for 4 h at the same temperature, the mixture was acidified with concentrated $\mathrm{HCl}(5 \mathrm{ml})$ and extracted with AcOEt. The combined extracts were washed with saturated aqueous NaCl , dried over anhydrous MgSO 4 , then concentrated in vacuo. The residue was purified by column chromatography (SiO_{2}, $\mathrm{CHCl} 3-\mathrm{AcOEt}$ 1:0-9:1) to give 4,4,5,5-tetramethyl-2-oxazolidone as colorless crystals $(0.360 \mathrm{~g}, 41 \%$ from acetone after corrected for the amount of 2 -amino-1,2,2-trimethyl-1propanol used), mp $109-110^{\circ} \mathrm{C}$. IR (Nujol): 3370, 3250, 1755, 1720, 1178, $1022 \mathrm{~cm}^{-1} .^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl_{3}): 1.25 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{CO}$), 1.37 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{CN}$), 5.77 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$). Found: C, $58.89 ; \mathrm{H}$, $8.96 ; \mathrm{N}, 9.81 \%$. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, $58.72 ; \mathrm{H}, 9.15 ; \mathrm{N}, 9.78 \%$.
b) Preparation of $\mathbf{6 f}$. Treatments of $4,4,5,5$-tetramethyl-2-oxazolidone ($0.600 \mathrm{~g}, 4.2 \mathrm{mmol}$) in a similar manner to that described for the preparation of 6 a gave $6 f$ as colorless crystals (1.05 g , 90%), mp $59.0 \sim 60.5^{\circ} \mathrm{C}$, after purification by column chromatography (SiO_{2}, $\mathrm{PhMe}-\mathrm{AcOEt}$ 1:0~19:1). IR (nujol): 1760, 1693, 1300, 1275, 1142, 1083, $1055 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDClis): 1.38 , $1.41,1.44,1.45$ (12 H , each s, Me2Cx2), 1.81 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{MeCH}$), 5.81 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}$, CH). Found: C, 42.96; H, 5.66; N, 4.95\%. Calcd for $\mathrm{Cl}_{10 \mathrm{H} 16 \mathrm{NO}}$ Br: C, 43.18; H, 5.80; N, 5.04\%.

3-(2-Bromopropionyl)-4,4-dibutyl-5,5-pentamethylene-2-oxazolidone (6g). a) Preparation of

was added to a mixture of cyclohexanone ($6.10 \mathrm{~g}, 62 \mathrm{mmol}$) and a catalytic amount of zinc iodide (ca. 1 mg) at $0^{\circ} \mathrm{C}$. After stirring at rt for 1 h , an excess amount of trimethylsilyl cyanide was removed in vacuo and the residue was dissolved in ether (60 ml). A solution of n-butyllithium in hexane (1.71 M solution, $82.0 \mathrm{ml}, 0.14 \mathrm{~mol}$) was added to the ethereal solution at $0^{\circ} \mathrm{C}$. After stirring overnight at $\mathbf{r t}$, the mixture was diluted with $\mathbf{4 M} \mathrm{HCl}(100 \mathrm{ml})$. After being stirred for 1 h , the mixture was further diluted with $\mathbf{8 M} \mathrm{NaOH}(100 \mathrm{ml})$ and extracted with ether. The combined extracts were washed with saturated aqueous NaCl , dried over anhydrous MgSO4, then concentrated in vacuo. The concentration residue was purified by distillation ($113 \sim 125^{\circ} \mathrm{C}, 1 \mathrm{mmHg}$), giving 2-amino-2-butyl-1,1-pentamethylene-1-hexanol as a colorless oil ($13.2 \mathrm{~g}, 82 \%$). Further purification by column chromatography ($\mathrm{Al}_{2} \mathrm{OO}_{3}$, hexane-ether 9:1) gave an analytical sample of 2 -amino-2-butyl-1,1-pentamethylene-1hexanol. IR (neat): 3420, 2950, 2880, 1588, 1470, 1460, 1447, 1400, 1380, 1261, 1140, 1042, 970 , $850 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): 0.92 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Mex} 2$), $1.0 \sim 2.0$ ($25 \mathrm{H}, \mathrm{m}$, other protons). $\mathrm{MS} \mathrm{m} / \mathrm{z}$: $241(\mathrm{M})^{+}, 224$ (M-Me) ${ }^{+}$. Found: C, 74.78; H, 12.68; N,5.67\%. Calcd for C15H31NO: C, 74.63; H, $12.94 ; \mathrm{N}, 5.80 \%$. $\quad N, N^{\prime}$-Carbonyldiimidazole ($13.5 \mathrm{~g}, 83 \mathrm{mmol}$) was added to a solution of $2-$ amino-2-butyl-1,1-pentamethylene-1-hexanol ($10.0 \mathrm{~g}, 42 \mathrm{mmol}$) in THF (40 ml) at rt. After stirring at $65^{\circ} \mathrm{C}$ for 4 h , the mixture was cooled to rt , then diluted successively with 1 M NaOH $(40 \mathrm{ml})$ and methanol (30 ml). The mixture was stirred at rt for 4 h , acidified with concentrated HCl , then extracted with AcOEt. The combined extracts were washed with saturated aqueous NaCl and dried over anhydrous MgSO_{4}. Filtration and concentration in vacuo gave 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone as colorless crystals ($11.0 \mathrm{~g}, 99 \%$). An analytical sample was obtained as colorless crystals by recrystallization from $\mathrm{MeOH}-\mathrm{H} 2 \mathrm{O}$, mp $96 \sim 97^{\circ} \mathrm{C}$. IR (KBr): 3240, 3150, 2950, 2880, 1750, 1473, 1378, 1360, 1322, 1280, 987, 950, 880, 735 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): 0.91 ($6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{Mex} 2$), $1.0 \sim 2.3$ ($23 \mathrm{H}, \mathrm{m}$, other protons), 5.89 (1H, bs, NH). MS m/z: $268(\mathrm{M}+1)^{+}, 210(\mathrm{M}-\mathrm{Bu})^{+}$. Found: C, 71.95; H, 10.95; N, 5.20\%. Calcd for $\mathrm{C} 16 \mathrm{H} 29 \mathrm{NO} 2: \mathrm{C}, 71.87 ; \mathrm{H}, 10.93 ; \mathrm{N}, 5.24 \%$.
b) Preparation of 6 g . A solution of n-butyllithium in hexane (1.65 M solution, $6.59 \mathrm{ml}, 11$ mmol) was added to a solution of 4,4-dibutyl-5,5-pentamethylene-2-oxazolidone ($2.64 \mathrm{~g}, 9.9$ mmol) in ether (12 ml) at $0^{\circ} \mathrm{C}$. After stirring for $5 \mathrm{~min}, 2$-bromopropionyl bromide (1.24 ml , 12 mmol) was added to the mixture. The stirring was continued for additional 10 min , then the mixture was diluted with aqueous phosphate buffer ($\mathrm{pH} 7,5.0 \mathrm{ml}$). The organic layer was separated, washed successively with saturated aqueous NaHCO_{3} and saturated aqueous NaCl , dried over anhydrous MgSO_{4}, then concentrated in vacuo. The concentration residue was dissolved in ethanol (4.5 ml) by heating. On cooling, the ethanolic solution precipitated pure $\mathbf{6 g}$ as colorless crystals ($2.49 \mathrm{~g}, 63 \%$), mp 113 $114^{\circ} \mathrm{C}$. IR (KBr): 2960, 2880, 1761, 1710, $1450,1375,1360,1290,1275,1255,1240,1180,1113,1060,990,960,881,770,720,643,540 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): $0.75 \sim 1.10(6 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} 2 \times 2$), 1.1~2.5 (22 H , m, other protons), 1.81 ($3 \mathrm{H}, \mathrm{d}$, $J=6.8 \mathrm{~Hz}, \mathrm{MeCH}), 5.87(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CHBr}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 346,344(\mathrm{M}-\mathrm{Bu})^{+}, 210$. Found: C, 56.66 ; H, 8.09; N, 3.43; Br, 19.57\%. Caled for C6H8NO3Br: C, 56.72 ; H, 8.02; N, 3.48; Br, 19.86\%.
（3S，4R）－3－［（R）－1－（t－Butyldimethylsilyloxy）ethyl］－4－［（R）－1－（2－oxazolidone－3－carbonyl）ethyl］－2－aze－ tidinone（7aß）and its 4－［（S）－1－（2－oxazolidone－3－carbonyl）ethyl］－isomer（7ad）（Table 1，run 2）． Zinc dust（ $0.140 \mathrm{~g}, 2.1 \mathrm{mmol}$ ）was added to a solution of $6 \mathrm{a}(0.318 \mathrm{~g}, 1.4 \mathrm{mmol})$ and $5(0.205 \mathrm{~g}$ ，
 mixture was diluted with aqueous phosphate buffer（ $\mathrm{pH} 7,4.0 \mathrm{ml}$ ）and CH 2 Cl 2 ．The organic layer was separated，washed with saturated aqueous NaCl ，dried over anhydrous MgSO 4 ， then concentrated in vacuo．The concentration residue was purified by column chromato－ graphy（ SiO_{2} ，hezane－ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ ，then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$－acetone $9: 1$ ），affording $7 \mathrm{a} \beta$ as colorless crys－ tals $(0.116 \mathrm{~g}, 44 \%)$ from the less polar fraction and $7 \mathrm{a} \alpha$ as colorless crystals（ $0.142 \mathrm{~g}, 53 \%$ ） from the more polar fraction．The combined yield of $7 \mathrm{a} \beta$ and $7 \mathrm{a} \alpha$ was 97% ．The ratio of $7 \mathrm{a} \beta$ to 7a α estimated by the weights of the separated samples was 45：55．The minor product（7aß） recrystallized from hexane－AcOEt showed $\mathrm{mp} 66 \sim 67^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{27}-6.7^{\circ}(\mathrm{c} 0.63, \mathrm{CHCl} 3$ ）．IR （KBr）：2950，1760，1700，1390，1250，1100，833， $780 \mathrm{~cm}^{-1} .^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{CDCl} 3): 0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{Me2Si})$ ， 0.87 （ $9 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{C}$ ）， $1.211 .23(6 \mathrm{H}$ ，each d，J＝each $6.4 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHOCN}), 3.02(1 \mathrm{H}, \mathrm{m}$ ， $\mathrm{C} 3-\mathrm{H}), 3.8 \sim 4.6\left(7 \mathrm{H}, \mathrm{m}\right.$ ，other protons）， $5.95(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}) . \quad \mathrm{MS} \mathrm{m} / \mathrm{z}: 355(\mathrm{M}-\mathrm{Me})^{+}, 327,313$. Found：C，55．06；H，8．25；N，7．20\％．Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5 \mathrm{Si}} \mathrm{C}, 55.11 ; \mathrm{H}, 8.16 ; \mathrm{N}, 7.56 \%$ ．The major product（7a⿱⿰㇒一乂）recrystallized from cyclohexane－AcOEt showed $\mathrm{mp} 177 \sim 180^{\circ} \mathrm{C}$ and［ α ］D ${ }^{28}$ $+31.4^{\circ}$（c 0．94， CHCl^{2} ）．IR（KBr）：2950，1780，1762，1694，1390，1107，1047， $830 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ （ CDCls ）： 0.08 （ $6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}$ ）， 0.89 （ $9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}$ ）， $1.25,1.28$（ 6 H ，each d，J＝6．2 and 6.6 Hz ， $\mathrm{MeCHOSi}, \mathrm{MeCHOCN}), 2.83(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 3.5 \sim 4.6(7 \mathrm{H}, \mathrm{m}$ ，other protons）， $5.98(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH})$. MS m／z： 355 （M－Me）${ }^{+}$，327，313．Found：C， $54.84 ; \mathrm{H}, 8.24 ; \mathrm{N}, 7.40 \%$ ．Calcd for $\mathrm{C}_{17 \mathrm{H} 30 \mathrm{~N} 2 \mathrm{O} 5 \mathrm{Si} \text { ：}}$ C，55．11；H，8．16；N，7．56\％．
（3S，4R）－3－［（R）－1－（t－Butyldimethylsilyloxy）ethyl］－4－［（R）－1－（4，4－dimethyl－2－oxazolidone－3－car－ bonyl）ethyl］－2－azetidinone（ $7 \mathrm{~b} \beta$ ）and its 4－［（S）－1－（4，4－dimethyl－2－oxazolidone－3－carbonyl）ethyl］－ isomer（ $7 \mathrm{~b} \alpha$ ）（Table 1，run 7）．Zinc dust（ $10.0 \mathrm{mg}, 0.15 \mathrm{mmol}$ ）was added at once to a reflux－ ing solution of 6 b （ $24.4 \mathrm{mg}, 0.098 \mathrm{mmol}$ ）and $5(14.0 \mathrm{mg}, 0.049 \mathrm{mmol}$ ）in THF（ 0.5 ml ）．After stirring for 1 min ，the mixture was cooled to rt and diluted with aqueous phosphate buffer （ $\mathrm{pH} 7,0.3 \mathrm{ml}$ ）and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ．The organic layer was separated，washed with saturated aque－ ous NaCl ，dried over anhydrous MgSO_{4} ，then concentrated in vacuo．The residue was puri－ fied by column chromatography（ $\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOEt} 4: 1$ ），affording a mixture of $\mathbf{7 b} \beta$ and $7 \mathrm{~b} \alpha$ as a colorless solid（ $18.4 \mathrm{mg}, 94 \%$ ）．The ratio of $\mathbf{7 b} \beta$ to $7 \mathrm{~b} \alpha$ could be calculated as $79: 21$ by the ${ }^{1} \mathrm{H}$－NMR spectrum．Thus，the protons at the C 3 positions appeared as two multiplets at 2.81 and 3.01 ppm with an integration ratio of $21: 79$ ．The pure samples of $\mathbf{7 b} \beta$ and $7 \mathrm{~b} \alpha$ were obtained by separation of the mixture with medium pressure column chromatography （MPLC）（ SiO_{2} ，lobar column，Merck art．10401，hexane－ $\mathrm{CH}_{2} \mathrm{Cl2}-\mathrm{Et2O}^{2}$ 10：3：7～1：1：1）． Recrystallization of less polar $7 \mathrm{~b} \beta$ from hexane－AcOEt gave an analytical sample as colorless crystals，mp 189～190 ${ }^{\circ} \mathrm{C}$ and［ α ］D ${ }^{20}-19.2^{\circ}$（c 2．02， CHCl 3 ）．IR（KBr）：2950，1760，1717，1460， $1400,1386,1342,1312,1312,1228,1186,1087,1054,960,840,781,770 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$（CDCl3）： 0.07 （ $6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}$ ）， 0.87 （ $9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}$ ）， $1.19,1.21$（ 6 H ，each d，J＝6．8 and $6.2 \mathrm{~Hz}, \mathrm{MeCHOSi}$ ， MeCHCON $), 1.54(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{C}), 3.01(1 \mathrm{H}, \mathrm{m}, \mathrm{Cs}-\mathrm{H}), 3.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 4.01(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2 \mathrm{O})$ ，
4.0~4.4 ($2 \mathrm{H}, \mathrm{m}, \mathrm{MeCHOSi}, \mathrm{MeCHCON}$), 5.87 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$). MS m/z: 341 (M-Bu)+, 327, 313. Found: C, 57.31; H, 8.50; N, 6.99\%. Calcd for C19H34N2O5Si: C, 57.26; H, 8.60; N, 7.03\%. Recrystallization of more polar $7 \mathrm{~b} \alpha$ from hexane-AcOEt gave an analytical sample as colorless crystals, mp $176 \sim 177^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{20}+31.4^{\circ}$ (c 1.09, CHCl 3). IR (KBr): 2980, 1780, 1767, 1702, $1380,1305,1223,1178,1100,1045,962,839,778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): 0.08 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}$), 0.89 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}$), 1.25 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}$, MeCHx2), 1.56 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{C}$), 2.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 3.72 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}$), 4.03 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2 \mathrm{O}$), $4.1 \sim 4.4$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{MeCHOSi}, \mathrm{MeCHCON}$), 5.81 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$). MS m/z: $341(\mathrm{M}-\mathrm{Bu})^{+}, 327,313$. Found: C, $57.29 ; \mathrm{H}, 8.51 ; \mathrm{N}, 6.96 \%$. Calcd for $\mathrm{C}_{19} \mathrm{H} 34 \mathrm{~N} 2 \mathrm{O} 5 \mathrm{Si}$: C, 57.26; H, 8.60; N, 7.03\%.
(3S,4R)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-[(S)-4-isopropyl-2-oxazolidone-3-car-bonyl]ethyl]-2-azetidinone ($7 \mathrm{c} \beta$) and its 4-[(S)-1-[(S)-4-isopropyl-2-oxazolidone-3-car-bonyllethylJ-isomer ($\mathbf{7 c \alpha}$) (Table 1, run 15). Zinc dust ($13.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added to a solution of $6 \mathrm{c}(\mathrm{L})(26.2 \mathrm{mg}, 0.099 \mathrm{mmol})$ and $5(14.0 \mathrm{mg}, 0.049 \mathrm{mmol})$ in THF $(0.5 \mathrm{ml})$ at rt . After stirring for 10 min at the same temperature, the mixture was diluted with aqueous phosphate buffer ($\mathrm{pH} 7,0.3 \mathrm{ml}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, then concentrated in vacuo. The concentration residue was purified by column chromatography ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - AcOEt 4:1), affording $7 c \beta$ as colorless crystals ($17.4 \mathrm{mg}, 88 \%$) from the less polar fraction and $7 \mathrm{c} \alpha$ as colorless crystals ($2.4 \mathrm{mg}, 12 \%$) from the more polar fraction. The combined yield of $\mathbf{7 c} \beta$ and $7 \mathrm{c} \alpha$ was 100%. The ratio of $7 \mathrm{c} \beta$ to $7 \mathrm{c} \alpha$ estimated by the weights of the separated samples was $88: 12$. The major product ($7 \mathrm{c} \beta$) recrystallized from hexane-AcOEt showed $\mathrm{mp} 123 \sim 124^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{23}+27.1^{\circ}$ (c $1.15, \mathrm{CHCl} 3$). IR (KBr): 1780, 1699, 1390, 1206, 834, $777 \mathrm{~cm}^{-1} .^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): $0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}), 0.87(9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}), 0.88,0.93(6 \mathrm{H}$, each d, J=6.8 and 6.0 Hz , Me2CH), $1.19,1.23$ (6 H , each $\mathrm{d}, \mathrm{J}=6.8$ and $6.2 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCON}$), 2.34 ($1 \mathrm{H}, \mathrm{m}$, Me 2 CH), $3.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,2.9 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}), 3.93(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 4.1 \sim 4.6(5 \mathrm{H}, \mathrm{m}$, other protons), 5.99 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$). MS m/z: 355 (M-Bu)+. Found: C, 58.07; H, 9.07; N, 7.68\%. Calcd for $\mathrm{C} 20 \mathrm{H} 36 \mathrm{~N} 2 \mathrm{O} 5 \mathrm{Si}: \mathrm{C}, 58.22 ; \mathrm{H}, 8.79 ; \mathrm{N}, 6.79 \%$. The minor product ($7 \mathrm{c} \alpha$) recrystallized from cy-clohexane-AcOEt showed mp $176 \sim 177^{\circ} \mathrm{C}$ and [α]d ${ }^{22}+80.8^{\circ}$ (c $0.30, \mathrm{CHCl} 3$). IR (KBr): 1781, $1765,1700,1390,1261,1103,803 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl_{3}): 0.08 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me2Si}$), $0.88(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Me3C}$), $0.88,0.92$ (6 H , each d, J=each 6.6 Hz , Me2CH), $1.25,1.32$ (6 H , each d, J=6.2 and 5.9 Hz , MeCHOSi, MeCHON), 2.32 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Me} 2 \mathrm{CH}$), $2.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.3,5.3 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}$), $3.8 \sim 4.6$ ($5 \mathrm{H}, \mathrm{m}$, other protons), 5.80 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$). MS m/z: 355 ($\mathrm{M}-\mathrm{Bu})^{+}$. Found: C, 58.17; H, 8.97; N, 6.64\%. Calcd for $\mathrm{C}_{20 \mathrm{H} 36} \mathrm{~N}_{2} \mathrm{O} 5 \mathrm{Si}$: C, $58.22 ; \mathrm{H}, 8.79 ; \mathrm{N}, 6.79 \%$.
(3S,4R)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-[(S)-4-benzyl-2-oxazolidone-3-car-bonylJethyl]-2-azetidinone ($7 \mathrm{~d} \beta$) and its 4-[(S)-1-[(S)-4-benzyl-2-oxazolidone-3-carbonyl]ethyl]isomer ($7 \mathrm{~d} \alpha$). (Table 1, run 17): Zinc dust ($25 \mathrm{mg}, 0.38 \mathrm{mmol}$) was added to a solution of $\mathbf{6 d}$ (LM) ($68.3 \mathrm{mg}, 0.22 \mathrm{mmol}$) and 5 ($31.4 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF (1.1 ml) at $0^{\circ} \mathrm{C}$. After stirring for 0.5 h at the same temperature, the mixture was diluted with aqueous phosphate buffer ($\mathrm{pH} 7,2.4 \mathrm{ml}$) and AcOEt. The organic layer was separated, washed with saturated aqueous

NaCl , dried over anhydrous MgSO_{4}, then concentrated in vacuo. The concentration residue
 82%) from the less polar fraction and $7 \mathrm{~d} \alpha$ as colorless crystals ($4.6 \mathrm{mg}, 9 \%$) from the more polar fraction. The combined yield of $\mathbf{7} \mathbf{d} \beta$ and $7 \mathrm{~d} \alpha$ was 91%. The ratio of $7 \mathbf{d} \beta$ to $7 \mathrm{~d} \alpha$ estimated by the weights of the separated samples was $90: 10$. The major product ($7 \mathrm{~d} \beta$) recrystallized from hexane-AcOEt showed mp 115~116 ${ }^{\circ} \mathrm{C}$ and [α] $\mathrm{D}^{20}+24.6^{\circ}$ (c 0.74, CHCl$)$). IR (KBr): 2949, $1781,1700,1390,1253,1215,1105,837,780,703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): 0.09 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}$), 0.90 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}$), 1.23, 1.25 (6 H , each d, J=6.8 and $6.2 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCON}$), 2.69 (1 H , dd, J=10.1, 13.4 Hz , one of CH 2 Ph$), 3.08(1 \mathrm{H}, \mathrm{m}, \mathrm{Cz}-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.4,13.4 \mathrm{~Hz}$, one of CH 2 Ph), $3.96(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 4.1 \sim 4.8(5 \mathrm{H}, \mathrm{m}$, other protons), $5.94(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 7.29(5 \mathrm{H}, \mathrm{m}$, Ph). MS m/z: $403(\mathrm{M}-\mathrm{Bu})^{+}$. Found: C, 62.53; H, 8.05; N, 6.01\%. Calcd for C 24 H 36 N 2 OsSi : C, $62.58 ; \mathrm{H}, 7.88 ; \mathrm{N}, 6.08 \%$. The minor product ($7 \mathrm{~d} \alpha$) recrystallized from hexane-AcOEt showed $\mathrm{mp} 143 \sim 144^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{20}+78.5^{\circ}$ (c 0.18, CHCl3). IR (KBr): 2950, 1780, 1763, 1700, 1390, 1254, $1236,1190,1106,838,778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{CDCl} 3): 0.10(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}), 0.90(9 \mathrm{H}, \mathrm{s}, \mathrm{Me3C}), 1.27$, $1.32(6 \mathrm{H}$, each d, J=6.3 and $6.6 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCON}), 2.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.4,13.4 \mathrm{~Hz}$, one of $\mathrm{CH} 2 \mathrm{Ph}), 2.81(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 3.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.5,13.4 \mathrm{~Hz}$, one of CH 2 Ph$), 3.6 \sim 4.8(6 \mathrm{H}, \mathrm{m}$, other protons), 5.84 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$), 7.28 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$). MS m/z: $403(\mathrm{M}-\mathrm{Bu})^{+}$. Found: C, 62.60; H, 7.78; $\mathrm{N}, 6.03 \%$. Caled for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 62.58 ; \mathrm{H}, 7.88 ; \mathrm{N}, 6.08 \%$.
(3S,4R)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-[(R)-4-phenyl-2-oxazolidone-3-car-bonyllethyl]-2-azetidinone (7eß) and its 4-[(S)-1-[(R)-4-phenyl-2-oxazolidone-3-carbonyl]ethyl]isomer ($7 \mathrm{e} \alpha$) (Table 1, run 18). Zinc dust ($77 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added to a solution of $6 e(\mathrm{LM}$) $(0.236 \mathrm{~g}, 0.79 \mathrm{mmol})$ and $5(0.114 \mathrm{~g}, 0.40 \mathrm{mmol})$ in THF at $0^{\circ} \mathrm{C}$. After stirring for 0.5 h at the same temperature, the mixture was diluted with aqueous phosphate buffer ($\mathrm{pH} 7,2.4 \mathrm{ml}$) and AcOEt. The organic layer was separated, washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, then concentrated in vacuo. The concentration residue was purified by column chromatography, affording a mixture of $7 \mathrm{e} \beta$ and $7 \mathrm{e} \alpha$ as a caramel ($0.176 \mathrm{~g}, 99 \%$). The ratio of $7 \mathrm{e} \beta$ to $7 \mathrm{e} \alpha$ could be calculated as $35: 65$ by the ${ }^{1} \mathrm{H}$-NMR spectrum in a similar manner to that described for the mixture of $7 \mathrm{~b} \beta$ and $7 \mathrm{~b} \alpha$. The mixture was separated by MPLC ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl} 2$-acetone 97:3). The major product (7e α) obtained as a colorless caramel from the less polar fraction showed [$\alpha]^{20}-5.3^{\circ}$ (c 1.37, CHCl 3). IR (KBr): 2950, 1781, 1703, $1460,1388,1255,1235,1200,1108,1045,990,839,780,707 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): 0.11 (6H, s, Me2Si), 0.93 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}$), $1.23,1.35$ (6 H , each d, $\mathrm{J}=6.4$ and $6.5 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCON}$), $2.87(1 \mathrm{H}, \mathrm{m}, \mathrm{Cz}-\mathrm{H}), 3.8 \sim 4.4(4 \mathrm{H}, \mathrm{m}$, other protons), $4.78(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}$, one of CH 2$), 5.48(1 \mathrm{H}$, dd, $\mathrm{J}=3.8,8.8 \mathrm{~Hz}, \mathrm{CHPh}), 5.50(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 389(\mathrm{M}-\mathrm{Bu})^{+}$. Found: $\mathrm{C}, 61.64 ; \mathrm{H}, 7.95 ; \mathrm{N}, 6.30 \%$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N} 2 \mathrm{O} 5 \mathrm{Si}: \mathrm{C}, 61.85 ; \mathrm{H}, 7.67 ; \mathrm{N}, 6.27 \%$. The minor product ($7 \mathrm{e} \beta$) obtained as a colorless caramel from the more polar fraction showed [α] ${ }^{20}$ -70.4° (c $0.66, \mathrm{CHCl} 3$). IR (KBr): 2950, 1783, 1709, 1460, 1388, 1330, 1255, 1201, 1110, 1047, 962 , $840,781,703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): 0.11 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}$), 0.91 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Me3C}$), 1.20, $1.24(6 \mathrm{H}$, two d, J=7.0 and 6.2 Hz , MeCHOSi and MeCHCON), $3.04(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 3.98$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}$), $3.8 \sim 4.4(3 \mathrm{H}, \mathrm{m}$, other protons), $4.76(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}$, one of CH 2$), 5.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.2$ and
$8.8 \mathrm{~Hz}, \mathrm{CHPh}$), 5.90 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$), 7.42 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$). MS m/z: 389 (M-Bu)+. Found: C, 61.82; H, $7.91 ; \mathrm{N}, 6.24 \%$. Calcd for $\mathrm{C}_{23} \mathrm{H} 34 \mathrm{~N} 2 \mathrm{O} 5 \mathrm{Si}: \mathrm{C}, 61.85 ; \mathrm{H}, 7.67 ; \mathrm{N}, 6.27 \%$.
(3S,4R)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-(4,4,5,5-tetramethyl-2-axazolidone-3-carbonyl)ethyl]-2-azetidinone (7fß) and its 4-[(S)-1-(4,4,5,5-tetramethyl-2-oxazolidone-3-car-bonyl)ethyll-isomer ($7 \mathrm{f} \alpha$) (Table 1, run 20) A solution of 6 f ($1.15 \mathrm{~g}, 4.1 \mathrm{mmol}$) in THF (6 ml) was added to a refluxing suspension of zinc dust ($0.440 \mathrm{~g}, 6.8 \mathrm{mmol}$) and 5 ($0.540 \mathrm{~g}, 1.9 \mathrm{mmol}$) in THF (16 ml) within 15 min . After stirring for 5 min at the same temperature, the mixture was cooled to rt and diluted with aqueous phosphate buffer ($\mathrm{pH} 6,11 \mathrm{ml}$) and AcOEt. The organic layer was separated, washed successively with 1 M HCl , water, 5% aqueous NaHCOs , and water, dried over anhydrous MgSO_{4}, then concentrated in vacuo. The concentration residue was purified by column chromatography (SiO_{2}, $\mathrm{CHCl} 3-\mathrm{AcOEt}$ 1:0~5:1), giving a mixture of $\mathbf{7 f} \beta$ and $\mathbf{7 f} \alpha$ as a colorless solid ($0.738 \mathrm{~g}, 92 \%$). The ratio of $7 \mathrm{f} \beta$ to $7 \mathrm{ff} \alpha$ could be calculated as $87: 13$ by the ${ }^{1} \mathrm{H}$-NMR spectrum in a similar manner to that described for the mixture of $\mathbf{7 b} \beta$ and $7 \mathrm{~b} \alpha$. The mixture was separated by preparative TLC (CHCl3-AcOEt 5:1, two developments). The major product (7fß) obtained as colorless crystals from the less polar fraction showed mp $148 \sim 149^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{28}-15.4^{\circ}$ (c $0.26, \mathrm{CHCl} 3$). IR (KBr): $3150,1756,1695$, 1378, 1365, 1330, 1298, 1268, 1145, 1128, 1070, 1055, 954, 830, $768 \mathrm{~cm}^{-1} .^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): 0.06, $0.07(6 \mathrm{H}$, each $\mathrm{s}, \mathrm{Me} 2 \mathrm{Si}), 0.87(9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}), 1.19,1.21(6 \mathrm{H}$, each d, $\mathrm{J}=6.9$ and 6.3 Hz , MeCHOSi, MeCHCON), 1.36 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{CO}$), 1.43 (6 H , s, Me2CN), 3.01 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.3,4.3 \mathrm{~Hz}$, $\left.\mathrm{C}_{3}-\mathrm{H}\right), 3.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.3,4.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 4.19(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCHCOSi}, \mathrm{MeCHCON}), 5.95(1 \mathrm{H}, \mathrm{bs}$, NH). Found: C, 58.87; H, 9.03; N, 6.46\%. Calcd for C21H38N2O5Si: C, 59.14; H, 8.82; N, 6.53%. The minor product ($7 \mathrm{f} \alpha$) obtained as colorless crystals from the more polar fraction showed mp $164 \sim 165^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{28}+27.0^{\circ}$ (c $0.18, \mathrm{CHCl}_{3}$). IR (KBr): 3170, 3100, 1782, 1760, 1720, $1694,1460,1375,1302,1276,1254,1222,1154,1102,1084,1062,1042,958,836,776,730 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (CDCl 3): $0.08,0.09(6 \mathrm{H}$, each $\mathrm{s}, \mathrm{Me} 2 \mathrm{Si}), 0.88(9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}), 1.25,1.25(6 \mathrm{H}$, each $\mathrm{d}, \mathrm{J}=6.6$ and $5.9 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCON}$), 1.36, 1.37 (6 H , each $\mathrm{s}, \mathrm{Me2CO}$), 1.43 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me2CN}$), 2.81 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,5.3 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}$), 3.83 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,9.2 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}$), 4.19 ($2 \mathrm{H}, \mathrm{m}, \mathrm{MeCHCOSi}$, MeCHCON), 5.95 (1 H , bs, NH). Found: C, 58.87 ; H, 9.03 ; N, 6.46%. Caled for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N} 2 \mathrm{O} 5 \mathrm{Si}$: C, 59.12; H, 8.98; N, 6.57\%.
(3S,4R)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-(4,4-dibutyl-5,5-pentamethylene-2-oxa-zolidone-3-carbonyl)ethyl]-2-azetidinone ($7 \mathrm{~g} \beta$) and its 4-[(S)-1-(4,4-dibutyl-5,5-pentamethylene-2-oxazolidone-3-carbonyl)ethyl]-isomer ($7 \mathrm{~g} \alpha$) (Table 1, run 22). A solution of $\mathbf{6 g}(0.417 \mathrm{~g}, 1.0$ mmol) in THF (1.9 ml) was added at once to a refluxing suspension of $5(0.135 \mathrm{~g}, 0.47 \mathrm{mmol})$ and zinc dust ($0.113 \mathrm{~g}, 1.7 \mathrm{mmol}$) in THF (1.9 ml) with stirring. After the stirring under reflux was continued for 2 min , the mixture was cooled to rt and diluted with aqueous phosphate buffer ($\mathrm{pH} 7,2.0 \mathrm{ml}$) and AcOEt. The organic layer was separated, washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, then concentrated in vacuo. The concentration residue was purified by column chromatography (SiO_{2}, hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathbf{1}: 1$, then hexane- $\mathrm{CH}_{2} \mathrm{Cl} 2-\mathrm{AcOEt} 7: 1: 3$), affording a mixture of $7 \mathrm{~g} \beta$ and $7 \mathrm{~g} \alpha$ as a colorless solid $(0.257 \mathrm{~g}$,

99\%). The ratio of $7 \mathrm{~g} \beta$ to $7 \mathrm{~g} \alpha$ could be calculated as $95: 5$ by the ${ }^{1} \mathrm{H}$-NMR spectrum in a similar manner to that described for the mixture of $7 \mathbf{b} \beta$ and $7 \mathbf{b} \alpha$. Recrystallization from methanol (1.5 ml) gave a pure sample of $7 \mathrm{~g} \beta(0.221 \mathrm{~g}, 85 \%$) as colorless crystals, mp $158 \sim 159^{\circ} \mathrm{C}$ and [α] $\mathrm{D}^{20}-5.0^{\circ}$ (c $1.29, \mathrm{CHCl} 3$). IR (KBr): 3450, 2960, 2900, 1780, 1768, 1714, 1380, $1280,1240,1108,1053,970,840 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): 0.07 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}$), 0.87 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Me3C}$), 0.90 ($6 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} 2 \times 2$), $1.20,1.22$ (6 H , each d, J=6.9 and $6.3 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCO}$), $1.0 \sim 2.2$ ($22 \mathrm{H}, \mathrm{m}$, other protons), $3.05(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 4.1 \sim 4.3(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCHOSi}$, MeCHCON), 5.91 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$). MS m/z: 493 (M-Bu) ${ }^{+}$. Found: C, 65.34; H, 10.06; N, 5.03\%. Calcd for $\mathrm{C}_{3} \mathrm{HH}_{54} \mathrm{~N} 2 \mathrm{O} 5 \mathrm{Si}$: $\mathrm{C}, 65.41 ; \mathrm{H}, 9.88 ; \mathrm{N}, 5.09 \%$. The minor isomer (7 ga) isolated from the filtrate of recrystallization by preparative $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, several developments) showed the following spectral data. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): $0.08(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}), 0.88(9 \mathrm{H}, \mathrm{s}, \mathrm{Me3C}), 0.90(6 \mathrm{H}$, $\mathrm{m}, \mathrm{MeCH} 2 \times 2$), $1.25(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCON}$), $1.0 \sim 2.3$ ($22 \mathrm{H}, \mathrm{m}$, other protons), $2.84(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 3.7(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCHCON}, \mathrm{C} 4-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHOSi}), 5.79(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH})$. MS m/z: 493 (M-Bu)+.
(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-(benzyloxycarbonyl)ethyl]-2-azetidinone (8β). A solution of lithium benzylate in THF (0.50 M solution, $0.77 \mathrm{ml}, 0.39 \mathrm{mmol}$) was added to a solution of $7 \mathrm{~b} \beta(76.6 \mathrm{mg}, 0.19 \mathrm{mmol})$ in THF (0.96 ml) at $0^{\circ} \mathrm{C}$. After stirring for 1 h at the same temperature, the mixture was diluted with saturated aqueous potassium dihydrogen phosphate (0.8 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl} 2$. The combined extracts were dried over anhydrous MgSO_{4} and concentrated in vacuo. The concentration residue was purified by column chromatography ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOEt} 1: 0 \sim 4: 1$) to give 8β as colorless crystals ($74.1 \mathrm{mg}, 98 \%$). Recrystallization from hexane afforded an analytical sample of 8β, $\mathrm{mp} 69 \sim 70^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{20}-13.8^{\circ}$ (c 0.98, CHCl3). IR (KBr): 2950, 1765, 1738, 1720, 1258, 1175, $1138,1047,962,840,782,735,697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl_{3}): 0.11 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}$), 0.91 ($9 \mathrm{H}, \mathrm{s}$, $\mathrm{Me} 3 \mathrm{C}), 1.18,1.29(6 \mathrm{H}$, each d, J=6.4 and $7.0 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCO}$), $2.79(1 \mathrm{H}, \mathrm{m}$, MeCHCO), $3.01(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 3.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4}-\mathrm{H}\right), 4.22(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHOSi}), 5.17(2 \mathrm{H}, \mathrm{s}$, CH 2 Ph), 5.91 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$), 7.39 ($5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$). $\mathrm{MS} \mathrm{m} / \mathrm{z}: 334$ (M-Bu) ${ }^{+}$. Found: C, 64.42; H, 8.33; $\mathrm{N}, 3.61 \%$. Calcd for $\mathrm{C}_{21} \mathrm{H} 33 \mathrm{NO} 4 \mathrm{Si}: \mathrm{C}, 64.41 ; \mathrm{H}, 8.49 ; \mathrm{N}, 3.58 \%$. 4,4-Dimethyl-2-oxazolidone ($21.7 \mathrm{mg}, 98 \%$) was recovered from the more polar fraction by the column chromatography.

Similar treatments of $7 \mathrm{a}, \mathrm{c} \sim \mathrm{g} \beta$ gave 8β in the yields shown in Scheme 1.
(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(S)-1-(benzyloxycarbonyl)ethyl]-2-azetidinone (8α). The same treatments of $7 \mathrm{~b} \alpha(23.1 \mathrm{mg}, 0.058 \mathrm{mmol}$) as described for the preparation of 8β from $7 \mathrm{~b} \beta$, gave 8α as a colorless oil ($21.5 \mathrm{mg}, 95 \%$), $[\alpha] \mathrm{D}^{25}+3.0^{\circ}$ (c $1.59, \mathrm{CHCl} 3$). IR (KBr): 2950, 1763, 1739, 1460, 1256, 1183, 1143, 1100, 1043, 960, 833, 778, $698 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): $0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}), 0.88(9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}), 1.23,1.25(6 \mathrm{H}$, each d, J=6.0 and $7.3 \mathrm{~Hz}, \mathrm{MeCHOSi}$, MeCHCO), 2.58 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.3,9.5 \mathrm{~Hz}, \mathrm{MeCHCO}$), $2.76(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 3.71 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,9.5$ $\mathrm{Hz}, \mathrm{C} 4-\mathrm{H}$), 4.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHOSi}$), 5.15 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2 \mathrm{Ph}$), 5.96 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$), 7.35 ($5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$). MS m/z: 376 (M-Me) ${ }^{+} 334$ (M-Bu) ${ }^{+}$.

Treatments of 7c,d, α in a similar manner to that described above gave 8α in the yields shown in Scheme 2.
(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-carboxyethyl]-2-azetidinone (4). a) Preparation of 4 by hydrogenolysis of 8β. Palladium on carbon ($10 \%, 5 \mathrm{mg}$) was added to a solution of 8β ($53.5 \mathrm{mg}, 0.14 \mathrm{mmol}$) in AcOEt (1 ml) and the mixture was stirred vigorously for 4 hr under a hydrogen atmosphere. Removal of the catalyst by filtration followed by concentration in vacuo gave 4 as colorless crystals ($40.3 \mathrm{mg}, 98 \%$). An analytical sample obtained as colorless crystals by recrystallization from hexane-AcOEt showed mp $148 \sim 149^{\circ} \mathrm{C}$ (decomp.) (lit. ${ }^{3)} 140 \sim 143^{\circ} \mathrm{C}$, lit..4) $138 \sim 141^{\circ} \mathrm{C}$, lit. ${ }^{19)} 143.5 \sim 144^{\circ} \mathrm{C}$, lit. ${ }^{20}$) $146 \sim 147^{\circ} \mathrm{C}$) and [$\left.\alpha\right] \mathrm{D}^{20}$ -32.4° (c 1.07, MeOH) [lit. ${ }^{19)}$ [$\left.\alpha\right] \mathrm{D}^{25}-36.9^{\circ}$ (c $0.469, \mathrm{MeOH}$), lit. ${ }^{20}$) $[\alpha] \mathrm{D}^{20}-34.6^{\circ}$ (c $\left.\left.0.26, \mathrm{MeOH}\right)\right]$. IR (KBr): 3280, 2950, 1720, 1462, 1281, 1259, 1142, 1040, 839, $780 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl3): 0.08 $(6 \mathrm{H}, \mathrm{s}, \mathrm{Me2Si}), 0.88(9 \mathrm{H}, \mathrm{s}, \mathrm{Me3C}), 1.20,1.28$ (6 H , each d, J=6.1 and $6.6 \mathrm{~Hz}, \mathrm{MeCHOSi}$, MeCHCO), 2.82 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}$), $3.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,4.4 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}$), 4.00 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,5.4 \mathrm{~Hz}$, C4-H), 4.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}$), 6.01 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$). MS m/z: $286(\mathrm{M}-\mathrm{Me})^{+}, 244(\mathrm{M}-\mathrm{Bu})^{+}$. Found: C, 55.63; H, 9.19; N, 4.49\%. Calcd for C14H27NO4Si: C, 55.66; H, 9.03; N, 4.57\%.
b) Preparation of 4 by hydrolysis of $\mathbf{7 g} \beta$. A mixture of $7 \mathrm{~g} \beta$ ($54.3 \mathrm{mg}, 0.099 \mathrm{mmol}$), t-butanol $(0.37 \mathrm{ml}), \mathrm{H} 2 \mathrm{O}(0.10 \mathrm{ml})$, and $2 \mathrm{M} \mathrm{NaOH}(0.104 \mathrm{ml}, 0.21 \mathrm{mmol})$ was stirred at rt for 3 days, then diluted with $\mathrm{H}_{2} \mathrm{O}(0.80 \mathrm{ml})$ and hexane (4.0 ml). The organic layer was separated and the aqueous layer was washed with hexane. The aqueous layer was acidified with 1 M HCl and extracted with AcOEt. The AcOEt extracts were combined, dried over anhydrous MgSO_{4}, then concentrated in vacuo. The concentration residue was purified by column chromatography ($\mathrm{SiO} 2, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOEt}-\mathrm{AcOH} 150: 50: 1$) to give 4 as colorless crystals ($27.0 \mathrm{mg}, \mathbf{9 1 \%}$). This sample showed the same physical and spectral data as those described in a).
(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(S)-1-carboxyethyl]-2-azetidinone (10). The same treatments of $8 \alpha(14.7 \mathrm{mg}, 0.038 \mathrm{mmol})$ as described for the preparation of 4 by hydrogenolysis of 8β, gave 10 as colorless crystals ($11.1 \mathrm{mg}, 98 \%$). An analytical sample obtained as colorless crystals by recrystallization from hexane-AcOEt showed mp 177~183 ${ }^{\circ} \mathrm{C}$ (decomp.) and [α]D ${ }^{25}-5.0^{\circ}$ (c $0.44, \mathrm{MeOH}$). IR (KBr): 2950, 1720, 1463, 1380, 1258, 1103, 1043, $839,778 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl 3): $0.08(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}), 0.88(9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}), 1.25,1.28$ (6 H , each d, $\mathrm{J}=6.2$ and $7.2 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCON}$), $2.61(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHCO}), 2.77(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 3.72$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,9.6 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}$), $4.19(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{MeCHOSi}), 6.10(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH})$. The ${ }^{1} \mathrm{H}-$ NMR spectrum was identical with that reported. ${ }^{22}$) $\mathrm{MS} \mathrm{m} / \mathrm{z}: 286(\mathrm{M}-\mathrm{Me})^{+}, 244(\mathrm{M}-\mathrm{Bu})^{+}$. Found: C, 55.87; H, 9.16; N, 4.56\%. Calcd for $\mathrm{C}_{14 \mathrm{H} 27 \mathrm{NO}}^{4} \mathrm{Si}$: C, $55.66 ; \mathrm{H}, 9.03 ; \mathrm{N}, 4.57 \%$.
(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(R)-1-(methoxycarbonyl)ethyl]-2-azetidinone (9ß). A solution of diazomethane in ether was added to $4(15.8 \mathrm{mg}, 0.052 \mathrm{mmol})$ at rt . The resulting slightly yellowish ethereal solution was concentrated in vacuo, affording 9β as colorless crystals ($16.0 \mathrm{mg}, 97 \%$). An analytical sample obtained by recrystallization from cyclohexane showed mp $121 \sim 122^{\circ} \mathrm{C}$ (lit. ${ }^{3}$) $120 \sim 121^{\circ} \mathrm{C}$) and [α] ${ }^{20}-27.8^{\circ}\left(\mathrm{c} 0.39, \mathrm{CH}_{2} \mathrm{Cl} 2\right.$) [lit. ${ }^{3}$)
$[\alpha] \mathrm{D}^{22}-21.0^{\circ}$ (c 2.09, CH 2 Cl 2$\left.)\right]$. IR (KBr): 2950, 1765, 1738, 1720, 1258, 1175, 1138, 1047, 962, 840, $782,735,697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCls): $0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}), 0.87(9 \mathrm{H}, \mathrm{s}, \mathrm{Me} 3 \mathrm{C}), 1.17,1.23$ (6 H , each d, J=6.4 and $7.0 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCON}$), 2.71 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}$), 2.99 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Cs}-\mathrm{H}$), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}$), 3.87 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5,5.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}$), 4.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}$), 5.82 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$). MS m/z: 300 (M-Me) ${ }^{+}$, 258 (M-Bu)+. Found: C, 57.14; H, 9.45; N, 4.35\%. Calcd for C15H29NO4Si: C, 57.11; H, 9.26; N, 4.44\%.
(3S,4S)-3-[(R)-1-(t-Butyldimethylsilyloxy)ethyl]-4-[(S)-1-(methoxycarbonyl)ethyl]-2-azetidinone (9α). The same treatments of $10(4.0 \mathrm{mg}, 0.013 \mathrm{mmol})$ as described for the preparation of 9β from 4, gave 9α as colorless crystals ($4.1 \mathrm{mg}, 98 \%$). An analytical sample obtained by recrystallization from cyclohexane showed mp $132 \sim 133^{\circ} \mathrm{C}\left(\right.$ lit..$\left.^{3}\right) 133-134^{\circ} \mathrm{C}$) and $[\alpha] \mathrm{D}^{25}+9.0^{\circ}$ (c 0.15 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $\left[\right.$ lit. ${ }^{3}$) $[\alpha] \mathrm{D}^{22}+6.0^{\circ}$ (c $\left.\left.2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$. IR (KBr): 2950, 1762, 1469, 1253, 1198, 1180, 1149, $1042,964,830,778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl_{3}): 0.08 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me} 2 \mathrm{Si}$), 0.88 ($9 \mathrm{H}, \mathrm{s}, \mathrm{MesC}$), 1.24 ($6 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{MeCHOSi}, \mathrm{MeCHCO}$), $2.55(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}), 2.78(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO})$, 3.87 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5,5.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}$), 4.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}$), 5.98 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}$). MS m/z: 300 (M$\mathrm{Me})^{+}, 258(\mathrm{M}-\mathrm{Bu})^{+}$. Found: C, 57.21; H, 9.33 ; N, 4.36\%. Calcd for C15H29NO4Si: C, 57.11; H, 9.26; N, 4.44\%.

References and Notes

1. Part of this work has been the subject of a preliminary communication. Ito, Y.; Terashima, S. Tetrahedron Lett., 1987, 28, 6625 (1987).
2. Present address: Department of Chemistry, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka, 812, Japan.
3. Shih, D. H.; Baker, F.; Cama, L.; Christensen, B. G. Heterocycles, 1984, 21, 29.
4. a) Shibata, T.; Iino, K.; Tanaka, T.; Hashimoto, T.; Kameyama, Y.; Sugimura, Y. Tetrahedron Lett., 1985, 26, 4739. b) Shibata. T.; Sugimura, Y. J. Antibiot., 1985, 42, 374.
5. a) Sunagawa, M.; Matsumura, H.; Inoue, T.; Fukasawa, M.; Kato, M. Program and Abstracts of the 27th Interscience Conf. on Antimicrob. Agents and Chemother. New York, 1987, p. 228, No. 752. b) Idem, J. Antibiot., 1990, 43, 519.
6. Ito, Y.; Terashima, S. Yuki Gosei Kagaku Kyokai Shi, 1989, 47, 606.
7. Nagahara, T.; Kametani, T. Heterocycles, 1987, 25, 729.
8. a) Hanessian, S.; Bedeschi, A.; Battistini, C.; Monglli, N. J. Am. Chem. Soc., 1985, 107, 1438. b) Ohashi, T.; Suga, K.; Sada, I.;Miyama, T.; Watanabe, K. Japan Kokai Tokkyo Koho JP 61-18791 (1986). c) Ito, Y.; Kawabata, T.; Terashima, S. Tetrahedron Lett., 1986, 27, 5751. Ito, Y.; Kobayashi, Y.; Kawabata, T.; Takase, M.; Terashima, S. Tetrahedron, 1988, 45, 5767. d) Ishiguro, M.; Iwata, H.; Nakatsuka, T.; Tanaka, R.; Maeda, Y.; Nishihara, T.; Noguchi, T. J. Antibiot., 1988, 41, 1685.
9. a) Nagao, Y.; Kumagai, T.; Tamai, S.; Abe, T.; Kuramoto, Y.; Taga, T.; Aoyagi, S.; Nagase, Y.; Ochiai, M.; Inoue, Y.; Fujita, E. J. Am. Chem. Soc., 1986, 108, 4673. b) Déziel, R.; Favreau, D. Tetrahedron Lett., 1986, 27, 5687.
10. Fuentes, L. M.; Shinkai, I.; Salzmann, T. N. J. Am. Chem. Soc., 1986, 108, 4675.
11. Kim, C. U.; Luh, B.; Partyka, R. A. Tetrahedron Lett., 1987, 28, 507.
12. Almost the same unsuccessful results were reported by Endo. Endo, M. Can. J. Chem., 1987, 65, 2140.
13. Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. Pure \& Appl. Chem., 1981, 53, 1109.
14. Amouroux, R.; Axiotis, G. P. Synthesis, 1981, 270.
15. Diethylaluminium chloride, tributylborane, tin(II) chloride, titanium(IV) tetraisopropoxide and so on were employed as an additive. However, these lewis acids seemed to enhance the undesired α-diastereoselectivity. Ito, Y.; Terashima, S. unpublished results.
16. The ratio of the desired 1β-isomer to the undesired 1α-isomer was found to be almost 1:1. Ito, Y.; Terashima, S. unpublished results.
17. Ito, Y.; Terashima, S. Tetrahedron, the accompanying paper.
18. Ito, Y.; Terashima, S. unpublished results.
19. Fuentes, L. M.; Shinkai, I.; King, A.; Purick, R.; Reamer, R. A.; Schmitt, S. M.; Cama, L.; Christensen, B. G. J. Org. Chem., 1987, 52, 2563.
20. Kawabata, T.; Kimura, Y.; Ito, Y.; Tereahima, S.; Sasaki, A.; Sunagawa, M.; Tetrahedron Lett., 1986, 27, 6241. Idem, Tetrahedron, 1988, 44, 2149.
21. It has been reported that the carboxylic acid (10) can be convert to 4 via a partial epimerization of 9α derived from 4 (ref. 3). However, though such transformation obviously lacks practicality.
22. Fliri, H.; Mak, C.-P. J. Org. Chem., 1985, 50, 3438.
23. Close, W. J. J. Am. Chem. Soc., 1951, 73, 95.
24. a) Plattner, J. J.; Fung, A. K. L.; Parks, J. A.; Pariza, R. J.; Crowley, S. R.; Pernet, A. G.; Bunnell, P. R.; Dodge, P. W. J. Med. Chem., 1984, 27, 1016. b) (S)-4-Phenyl-2-oxazolidone was reported to exhibit mp $132 \sim 133^{\circ} \mathrm{C}$ and $[\alpha] \mathrm{D}^{22}+49.5^{\circ}$ (c 2.1, CHCl3). Evans, D. A.; Sjogren, E. B. Tetrahedron Lett., 1985, 26, 3783.
