

Journal of Alloys and Compounds 349 (2003) 114-120

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Microwave-assisted synthesis, crystal structures and thermal behaviour of $Na_5Y(CO_3)_4$ and $Na_5Yb(CO_3)_4 \cdot 2H_2O$

M.O. Awaleh^a, A. Ben Ali^{a,b}, V. Maisonneuve^a, M. Leblanc^{a,*}

^aLaboratoire des Fluorures, UMR 6010 CNRS, Faculté des Sciences, Université du Maine, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France ^bLaboratoire de Chimie Inorganique et Structurale, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisie

Received 15 April 2002; received in revised form 27 June 2002; accepted 27 June 2002

Abstract

Two new carbonates, $Na_5Y(CO_3)_4$ and $Na_5Yb(CO_3)_4\cdot 2H_2O$, are synthesized by microwave-assisted hydrothermal method and their crystal structures are established by single crystal X-ray diffraction. $Na_5Y(CO_3)_4$ is monoclinic: $P2_1/c$; a=12.209(3) Å, b=10.085(4) Å, c=8.783(4) Å and $\beta=90.39(3)^\circ$; V=1081.4(5) Å³; Z=4. $Na_5Yb(CO_3)_4\cdot 2H_2O$, isostructural with $Na_5Sc(CO_3)_4\cdot 2H_2O$, is tetragonal: $P-42_1c$; a=7.593(2) Å, c=11.528(8) Å; V=664.6(3) Å³; Z=2. Dehydration of $Na_5Yb(CO_3)_4\cdot 2H_2O$ under argon leads to $Na_5Yb(CO_3)_4$, which is isostructural with $Na_5Y(CO_3)_4$. In the structure of $Na_5Y(CO_3)_4$, YO_9 and $Na(1)O_8$ polyhedra share vertices and form, with carbonate $C(2)O_3^{2-}$ and $C(3)O_3^{2-}$ groups, infinite (100) layers $[NaY(CO_3)_2O_6]_{\infty}$ at $x \approx \frac{1}{4}$; and $x \approx \frac{3}{4}$. In $Na_5Yb(CO_3)_4\cdot 2H_2O$, YbO₈ and $Na(1)O_4$ polyhedra share carbonate groups and build $[NaYb(CO_3)_4]_{\infty}$ layers.

Keywords: Ceramics; Chemical synthesis; Crystal structure; X-ray diffraction

1. Introduction

Microwave-assisted hydrothermal (MH) synthesis of inorganic compounds is mainly used for the elaboration of ceramic oxides, hydroxides or porous materials. Recent examples are found with the well-known stabilized zirconia [1], akaganeite [2] or SBA-15 molecular sieve [3]. This (MH) method can be chosen when fast supersaturation, homogeneous nucleation and rapid kinetics of crystallization are required. In 1999, a literature review had shown that most of (MH) materials were previously prepared by conventional methods [4]. At variance from this trend, it was demonstrated recently that (MH) synthesis can be efficient to explore unknown rare earth (Ln) fluoride carbonate systems in large concentration domains. In the YF₃-Na₂CO₃-H₂O [5] and YbF₃-Na₂CO₃-H₂O [6] systems, four new fluoride carbonate families were evidenced: $Na_2Ln(CO_3)_2F$ (Ln=Y, Yb), $Na_3Y(CO_3)_2F_2$, $Na_3Yb(CO_3)_2F_2$ and $Na_4Y(CO_3)_2F_3$ ·H₂O together with two carbonates $Na_5Yb(CO_3)_4 \cdot 2H_2O$ and $Na_5Y(CO_3)_4$. No

sodium ytterbium carbonate was known before and only five sodium yttrium carbonates were reported: three minerals, NaY(CO₃)F₂ horvathite [7], Na₃(Y,Ln)(CO₃)₃·3H₂O shomiokite [8], Na(Y,Ln)(HCO₃)(OH)₃·4H₂O thomasclarkite [9] and two synthetic phases, NaY(CO₃)₂ [10] and NaY(CO₃)₂·6H₂O [11].

In this paper, the synthesis, the crystal structures and the thermal behaviour of $Na_5Y(CO_3)_4$ and $Na_5Yb(CO_3)_4$. 2H₂O are reported.

2. Experimental

Both compounds, $Na_5Y(CO_3)_4$ and $Na_5Yb(CO_3)_4$. $2H_2O$, were obtained by hydrothermal synthesis in a microwave heater. Crystals of $Na_5Yb(CO_3)_4 \cdot 2H_2O$ grow at T=190 °C, $P=11\times10^5$ Pa, t=1 h for $[Yb^{3+}]>0.3$ M and $[Na^+]/[Yb^{3+}]>12$ while $Na_5Y(CO_3)_4$, contaminated with horvathite, is polycrystalline for T=200 °C, $P=13\times$ 10^5 Pa, t=2 h, $[Y^{3+}]=1.5$ M and $[Na^+]/[Y^{3+}]=12$. A pure powder of $Na_5Y(CO_3)_4$ was obtained at higher Na_2CO_3 concentration in a Teflon lined Parr autoclave (T=220 °C, t=48 h, $[Y^{3+}]=0.5$ M, $[Na^+]/[Y^{3+}]=20$). The crystallization was further improved in a platinum

^{*}Corresponding author. Tel.: +33-243-833-560; fax: +33-243-833-506.

E-mail address: marc.leblanc@univ-lemans.fr (M. Leblanc).

tube at T=350 °C, t=36 h, $[Y^{3+}]=1$ M and $[Na^+]/[Y^{3+}]=25$.

Thermal analyses were performed with a DTA-TGA TA instrument 2960 (heating rate $10 \,^{\circ}C/min$, argon atmosphere) in the temperature range $25-1000 \,^{\circ}C$. The volume weights were measured with a pycnometer AccuPyc 1330 V3.03.

Single crystal diffraction data were obtained on a Siemens AED2 four-circle diffractometer. The scattering factors and anomalous dispersion corrections for all atoms were taken from *International Tables for X-ray Crystallography*. The X-ray powder pattern of Na₅Y(CO₃)₄ was collected on a D8 Bruker diffractometer (2θ step, 0.02°; time/step, 14 s; 2θ range, 8–70°).

3. Structure determination

Conditions of intensity measurement are reported in Table 1. The final atomic coordinates with isotropic displacement parameters and bond valence analysis and selected bond distances and angles are given in Tables 2

Table 1 Crystallographic data of $Na_5Y(CO_3)_4$ and $Na_5Yb(CO_3)_4 \cdot 2H_2O$

and 3 for $Na_5Y(CO_3)_4$ and Tables 4 and 5 for $Na_5Yb(CO_3)_4 \cdot 2H_2O$.

3.1. $Na_5Y(CO_3)_4$

Most often, the crystals of Na₅Y(CO₃)₄ are twinned by merohedry, as a reason of pseudo orthorhombic symmetry of the unit cell; the twin planes are (100) or (001). However, one single crystal was selected. The starting set of atomic coordinates was obtained in $P2_1/c$ from the analysis of the Patterson map (option PATT of SHELXS-86 [12]). Yttrium atoms were located in 4e general positions. Analysis of successive Fourier difference maps allowed to locate the remaining atoms. Na, C, and O were distinguished from distance criteria and from valence bond analysis. The refinement (SHELXL-97 [13]) of the atomic coordinates and anisotropic (Y, Na, O) or isotropic (C) displacement parameters, after absorption correction (Gauss method in SHELX-76 [14]), led to the reliability factors R = 0.065 and $R_w = 0.118$. Valence bond calculations (Table 2) [15] confirm the advanced formula. Moreover, the Rietveld analysis of the X-ray powder pattern, using the preceding unit cell parameters and atomic

 $Na_5Y(CO_3)_4$ Na₅Yb(CO₃)₄·2H₂O Formula weight (g mol^{-1}) 443.89 564.06 Monoclinic Crystal system Tetragonal Space group $P2_i/c$ P-42,c 7.593(2) a (Å) 12.209(3) b (Å) 10.085(4)11.528(8) c (Å) 8.783(4) β (°) 90.39(3) $V(\text{\AA}^3), Z$ 1081.4(5), 4 664.6(3), 2 μ (Mo K α) (mm⁻¹) 5.67 5.42 $\rho_{\rm calc.}~({\rm g~cm^{-3}})$ 2.73 2.82 $\rho_{\rm exp.}$ (g cm⁻³) 2.74(2)2.83(2)298 Temperature (K) Four-circle diffractometer Siemens AED2 graphite Monochromator 2 - 70 2θ range (°) 2 - 60 $|h| \le 17; \ 0 \le k \le 14;$ $|h| \le 8; |k| \le 12; |l| \le 18$ (hkl) limits $0 \le l \le 12$ (two independent sets) $\omega - 2\theta$ Scan mode Absorption correction Gaussian T_{\min}, T_{\max} 0.71, 0.79 0.271, 0.550 Reflections measured/unique/used ($I > 2\sigma(I)$) 2645/2532/1678 2923/1464/1352 Parameters refined (on F^2) 180 60 R(int)/R(sigma)0/0.11 0.05/0.04 R^{a}/R_{u}^{b} 0.023/0.075 0.065/0.118 Goodness of fit 1.13 1.22 Weighting scheme $(P = [F_0^2 + 2F_c^2]/3)$ $1/[\sigma^2(F_0^2) + (0.0191P)^2]$ $1/[\sigma^2(F_0^2) + (0.037P)^2]$ Difference Fourier residues (e Å 1.1, -0.81.2, -1.3 $0.24(2) \times 10^{-5}$ Secondary extinction coefficient $0.28(4) \times 10^{-6}$

^a $R = \Sigma ||F_{o.}| - |F_{c.}|| / \Sigma |F_{o.}|.$

^b $R_w = \Sigma [w(|F_o|^2 - |F_c|^2)^2 / \Sigma w(F_o^2)^2]^{1/2}.$

Table 2												
Atomic coordinates, e	equivalent is	otropic dis	placement	parameters	and	valence	bond	sums	in	Na	Y(CO	3)4

Atom	x	у	Z	$B(\text{\AA}^2)$	Σs^{b}	$\Sigma s_{\text{expected}}$
Y	0.27554(6)	0.12411(8)	0.21440(8)	0.80(1)	3.03	3
Na(1)	0.2122(2)	0.8742(4)	0.6964(4)	1.66(6)	1.09	1
Na(2)	0.1033(3)	0.3737(4)	0.0847(4)	1.57(5)	1.10	1
Na(3)	0.0745(3)	0.8750(5)	0.0458(3)	1.96(6)	1.02	1
Na(4)	0.4015(3)	0.4203(4)	0.0771(4)	1.58(6)	1.25	1
Na(5)	0.3664(3)	0.8243(4)	0.0141(4)	1.84(6)	1.04	1
C(1)	0.0128(6)	0.1083(8)	0.2552(8)	$0.9(1)^{a}$	3.97	4
C(2)	0.2182(6)	0.881(1)	0.3590(8)	$1.1(1)^{a}$	3.96	4
C(3)	0.2768(6)	0.3663(9)	0.3874(8)	$1.0(1)^{a}$	4.04	4
C(4)	0.5043(6)	0.134(1)	0.2613(9)	$1.2(1)^{a}$	3.98	4
O(1)	0.2684(4)	0.3672(6)	0.2432(5)	1.23(9)	2.22	2
O(2)	0.2297(4)	0.8934(6)	0.2124(6)	1.3(1)	2.07	2
O(3)	0.2713(5)	0.2456(7)	0.9573(7)	1.32(9)	2.04	2
O(4)	0.2228(5)	0.9896(6)	0.4351(6)	1.1(1)	2.03	2
O(5)	0.0952(4)	0.1515(6)	0.1751(6)	1.6(1)	2.06	2
O(6)	0.3998(4)	0.8483(6)	0.6894(7)	2.0(1)	2.08	2
O(7)	0.4401(4)	0.0448(6)	0.3226(7)	1.5(1)	2.14	2
O(8)	0.4618(5)	0.2010(6)	0.1511(7)	1.8(1)	1.85	2
O(9)	0.9573(5)	0.0106(6)	0.2008(7)	1.8(1)	1.98	2
O(10)	0.9875(5)	0.1635(7)	0.3791(7)	2.3(1)	2.01	2
O(11)	0.2054(5)	0.7677(6)	0.4193(7)	1.5(1)	2.08	2
O(12)	0.2920(5)	0.0288(6)	0.9675(7)	1.7(1)	1.93	2

^a Isotropic displacement parameters. ^b The results refer to the equation $s = \exp[(r_0 - r)/0.37]$ with $r_0 = 2.014$, 1.80 and 1.39 for Y–O, Na–O, and C–O, respectively.

Table 3 Selected inter-atomic distances (Å) and angles (°) in Na₅Y(CO₃),

Selected inter als	inte distances (i) and angles () in ray	1(003)4				
Y-O(5)	2.243(5)	Na(1)–O(6)	2.306(6)	Na(2)-O(10)	2.317(7)		
Y-O(7)	2.356(6)	Na(1) - O(11)	2.427(7)	Na(2) - O(5)	2.380(7)		
Y-O(12)	2.382(6)	Na(1)–O(9)	2.545(7)	Na(2) - O(4)	2.404(7)		
Y-O(2)	2.394(6)	Na(1)–O(10)	2.551(7)	Na(2) - O(1)	2.443(6)		
Y-O(4)	2.455(6)	Na(1) - O(4)	2.577(7)	Na(2)–O(9)	2.453(7)		
Y-O(1)	2.466(7)	Na(1)–O(11)	2.662(7)	Na(2) - O(3)	2.676(8)		
Y-O(8)	2.469(6)	Na(1) - O(2)	2.710(8)				
Y-O(3)	2.507(6)	Na(1) - O(1)	2.727(8)				
Y-O(3)	2.569(6)						
$\langle Y-O \rangle$	2.43	$\langle Na-O \rangle$	2.56	$\langle Na-O \rangle$	2.45		
Na(3)–O(10)	2.359(8)	Na(4) - O(1)	2.256(6)	Na(5)-O(12)	2.289(7)		
Na(3)–O(2)	2.393(6)	Na(4)–O(7)	2.314(7)	Na(5)–O(11)	2.323(7)		
Na(3)–O(9)	2.408(7)	Na(4)–O(8)	2.418(7)	Na(5)–O(6)	2.357(7)		
Na(3)–O(11)	2.425(7)	Na(4)–O(7)	2.464(7)	Na(5) - O(2)	2.519(7)		
Na(3)–O(9)	2.482(7)	Na(4)–O(6)	2.534(7)	Na(5)–O(8)	2.572(7)		
Na(3)–O(5)	2.841(6)	Na(4)–O(3)	2.592(7)	Na(5)–O(6)	2.894(7)		
		Na(4) - O(4)	2.666(7)				
$\langle Na-O \rangle$	2.48	$\langle Na-O \rangle$	2.46	$\langle Na-O \rangle$	2.49		
C(1)–O(10)	1.263(9)	O(5)-C-O(9)	117.5(7)	C(2)–O(11)	1.27(1)	O(2) - C - O(4)	115.1(8)
C(1)–O(9)	1.29(1)	O(10)-C-O(5)	120.8(8)	C(2)–O(4)	1.29(1)	O(2)-C-O(11)	121.1(9)
C(1)–O(5)	1.306(9)	O(10)-C-O(9)	121.7(7)	C(2)–O(2)	1.303(8)	O(4)-C-O(11)	123.8(7)
$\langle C-O \rangle$	1.29	$\langle O-C-O \rangle$	120	$\langle C-O \rangle$	1.29	$\langle O-C-O \rangle$	120
C(3)–O(1)	1.270(8)	O(3)-C-O(12)	118.0(6)	C(4)–O(6)	1.259(9)	O(7)-C-O(8)	115.5(7)
C(3)–O(12)	1.28(1)	O(3) - C - O(1)	118.6(8)	C(4)–O(8)	1.29(1)	O(6)-C-O(7)	121.0(8)
C(3)–O(3)	1.29(1)	O(1)-C-O(12)	123.5(8)	C(4)–O(7)	1.31(1)	O(6)-C-O(8)	123.5(9)
$\langle C-O \rangle$	1.28	$\langle O-C-O \rangle$	120	$\langle C-O \rangle$	1.29	$\langle O-C-O \rangle$	120

Table 4									
Atomic coor	dinates, equivaler	nt isotropic c	displacement	parameters	and valence	bond	sums in Na ₅ Yb(CO ₃) ₄	$2H_2O$	
Atom	Site	r		v		7	В	(\AA^2)	

Atom	Site	x	у	Z	$B_{\rm eq.}$ (Å ²)	Σs^{a}	$\Sigma s_{\text{expected}}$
Yb	2a	0	0	0	1.060(7)	3.25	3
Na(1)	2b	1/2	1/2	0	2.18(5)	1.02	1
Na(2)	8 <i>e</i>	0.3230(2)	0.1815(2)	0.2075(1)	1.92(2)	1.07	1
С	8 <i>e</i>	0.1824(4)	0.2861(3)	-0.0795(2)	1.39(3)	3.94	4
O(1)	8 <i>e</i>	0.0954(3)	0.1796(3)	-0.1475(2)	1.46(3)	2.06	2
O(2)	8e	0.1702(3)	0.2527(3)	0.0315(2)	1.61(3)	1.85	2
O(3)	8 <i>e</i>	0.2745(3)	0.4092(3)	-0.1197(2)	2.29(4)	2.09	2
O _w	4d	0	1/2	0.1673(3)	2.03(4)	_	2
Н	8 <i>e</i>	0.056(8)	0.438(8)	0.115(4)	2.03(4)	_	1

^a The results refer to the equation $s = \exp[(r_0 - r)/0.37]$ with $r_0 = 1.985$, 1.80 and 1.39 for Yb–O, Na–O and C–O, respectively.

positions in $P2_1/c$, gives a good agreement between the experimental and theoretical patterns (FULLPROF [16], $R_p = 12.4\%$, $R_{wp} = 17.3\%$, $R_{exp.} = 5.0\%$ and $R_{Bragg} = 7.3\%$).

3.2. $Na_5Yb(CO_3)_4 \cdot 2H_2O$

m 1 1

Crystals of Na₅Yb(CO₃)₄·2H₂O were found to be isostructural with Na₅Sc(CO₃)₄·2H₂O [17]. The refinement of the atomic coordinates and anisotropic displacement parameters, taking the atomic coordinates of Na₅Sc(CO₃)₄·2H₂O as a starting model, led to the reliability factors R = 0.023 and $R_w = 0.075$.

4. Structure description

4.1. $Na_5Y(CO_3)_4$

Projections of the structure of Na₅Y(CO₃)₄ along the *a*and *c*-axes appear in Figs. 1–3. Yttrium cations are 9-fold coordinated; the Y–O distances range from 2.243 to 2.569 Å with an average distance of 2.43 Å. The YO₆₊₂₊₁ polyhedra are similar to the LnO₆F₂₊₁ polyhedra found in K₄Ln₂(CO₃)₃F₄ [18] (Fig. 4, left and right). In shomiokite, yttrium cations present the same coordination number; however, the YO₃₊₃₊₃ polyhedron is a tricapped trigonal

prism (Fig. 4, center). In $Na_5Y(CO_3)_4$, YO₉ polyhedra share two vertices and form infinite [001] chains $[YO_8]_{\infty}$ (Fig. 1). $Na(1)^+$ cations are surrounded by eight oxygen atoms with a mean Na(1)-O distance of 2.56 Å and form also infinite [001] chains (Fig. 2). Both Y^{3+} and Na(1)⁺ cations are coordinated by three carbonate groups, $C(2)O_3^{2-}$ and $C(3)O_3^{2-}$, in a mean plane. The YO_{6+2+1} and $Na(1)O_{5+2+1}$ polyhedra share vertices and form, with $C(2)O_3^{2-}$ and $C(3)O_3^{2-}$ carbonate groups, infinite $[NaY(CO_3)_2O_6]_{\infty}$ layers parallel to the (bc) plane and located at $x \approx \frac{1}{4}$ and $x \approx \frac{3}{4}$. Analogous layers are observed in the structure of Na₃La₂(CO₃)₄F [19] (Fig. 2, right). $Na(2)^+$, $Na(3)^+$, and $Na(5)^+$ cations adopt a distorted octahedral coordination while $Na(4)^+$ cations are 7-fold coordinated; the average Na-O distances are 2.45, 2.48, 2.49, and 2.46 Å, respectively.

In Na₅Y(CO₃)₄, the carbonate groups form, according to the notation of Grice et al. [20], two family types. The C(2)O₃²⁻ and C(3)O₃²⁻ carbonate groups form infinite 'flat-lying' layers parallel to the (*bc*) plane (Fig. 5 right). These dense layers can be described with a pseudo-hexagonal cell ($a_{\rm H} \approx b_{\rm H} \approx 5.0$ Å). This arrangement is characterized by the carbonate equivalent area S = 22.14 Å². A similar area is found in Na₃La₂(CO₃)₄F and CaCO₃ calcite with S = 21.65 Å² and S = 21.30 Å², respectively (Fig. 5 left and center). C(1)O₃²⁻ and C(4)O₃²⁻ carbonate

Table 5						
Selected inter-atomic	distances (Å	Å) and	angles (°)	in Na ₅ Y	$b(CO_3)_4 \cdot 2H$	$_{2}O$

$4 \times Yb - O(1)$	2.296(2)		$4 \times Na(1) - O(3)$	2.304(3)	Na(2)–O(3)	2.379(3)
$4 \times Yb - O(2)$	2.342(2)				Na(2) - O(1)	2.381(3)
					Na(2)–O(2)	2.398(3)
					$Na(2)-O_w$	2.406(2)
					Na(2) - O(1)	2.466(3)
					Na(2)–O(3)	2.682(3)
$\langle Yb-O \rangle$	2.319		$\langle Na-O \rangle$	2.304	$\langle Na-O \rangle$	2.452
C-O(3)	1.256(3)	O(1)-C-O(2)	115.5(2)	O _w -H	0.87(5)	
C-O(1)	1.306(3)	O(1)-C-O(3)	121.5(3)			
C-O(2)	1.308(3)	O(2) - C - O(3)	123.0(3)			
$\langle C-O \rangle$	1.290	$\langle O-C-O \rangle$	120.0			

Fig. 1. [001] chains $[YO_8]_{\infty}$ at $x \approx \frac{1}{4}$ in Na₅Y(CO₃)₄ (sodium atoms are represented by grey spheres; their heights are given in hundreds).

Fig. 2. $[NaY(CO_3)_2O_6]_{\infty}$ layers in $Na_5Y(CO_3)_4$ ($x \approx \frac{1}{4}$) (left) and $[La(CO_3)O_3F]_{\infty}$ layers in $Na_3La_2(CO_3)_4F$ (right). Yttrium polyhedra are light shaded, sodium polyhedra are darker.

Fig. 3. Connection of the (100) layers $[NaY(CO_3)_2O_6]_{\infty}$ in $Na_5Y(CO_3)_4$.

groups form infinite [010] rows of 'standing on base' and 'standing on top' triangles.

Fig. 6. Projection of the structure of $Na_5Yb(CO_3)_4 \cdot 2H_2O$ along [010].

and $z = \frac{1}{2}$. The Na(2)⁺ cations and water molecules are inserted between the [NaYb(CO₃)₄]_∞ layers.

4.2. $Na_5Yb(CO_3)_4 \cdot 2H_2O$

YbO₈, Na(1)O₄ and Na(2)O₆ polyhedra (Fig. 6) build the structure of Na₅Yb(CO₃)₄·2H₂O. The distorted YbO₈ square antiprisms and Na(1)O₄ tetrahedra share carbonate groups and form [NaYb(CO₃)₄]_{∞} layers located at z = 0

5. Characterization

The TGA analysis of $Na_5Y(CO_3)_4$ exhibits a weight loss in two steps. The first step, which occurs in the interval

Fig. 4. YO_{6+2+1} , $(Y, Ln)O_{3+3+3}$ and LnO_6F_{2+1} polyhedra in $Na_5Y(CO_3)_4$ (left), shomiokite $Na_3(Y,Ln)(CO_3)_3 \cdot 3H_2O$ (center) and $K_4Ln_2(CO_3)_3F_4$ (right), respectively.

Fig. 5. 'Flat-lying' arrangement of carbonate groups in Na₃La₂(CO₃)₄F (left), CaCO₃ calcite (center) and Na₅Y(CO₃)₄ (right).

300-650 °C, is attributed to the departure of three moles of CO₂ gas per two moles of Na₅Y(CO₃)₄ (exp./th.=14.9/14.6%); the decomposition reaction can be written:

 $2Na_5Y(CO_3)_4 \rightarrow Y_2O_3 + 5Na_2CO_3 + 3CO_2$

The second step corresponds to the decomposition of Na_2CO_3 and occurs above 850 °C.

The thermal decomposition of Na₅Yb(CO₃)₄·2H₂O occurs in the intervals 190–250 °C, 280–650 °C, and above 850 °C. The first weight loss is attributed to the departure of two moles of water per one mole of Na₅Yb(CO₃)₄·2H₂O (exp./th.=6.3/6.4%); X-ray diffraction analysis of the residual shows that the intermediate phase is Na₅Yb(CO₃)₄, isostructural with Na₅Y(CO₃)₄. However, the crystallinity of this intermediate phase is poor and the diffraction line width is large. Consequently, accurate cell parameters of Na₅Yb(CO₃)₄ cannot be given here. The second and third weight loss steps are similar to that of Na₅Y(CO₃)₄. The experimental and theoretical second weight loss steps are 11.3 and 11.2%, respectively.

6. Conclusion

The crystal structures of two carbonates, $Na_5Y(CO_3)_4$ and $Na_5Yb(CO_3)_4 \cdot 2H_2O$, are determined. Both compounds are obtained by microwave-assisted hydrothermal method in sub-critical conditions. Na₅Yb(CO₃)₄·2H₂O, isostructural with $Na_5Sc(CO_3)_4 \cdot 2H_2O$, undergoes dehydration at 190 < T < 250 °C and leads to Na₅Yb(CO₃)₄ which is isostructural with $Na_5Y(CO_3)_4$. In the structure of $Na_5Y(CO_3)_4$, $C(2)O_3^{2-}$ and $C(3)O_3^{2-}$ carbonate groups are stacked in dense 'flat lying' layers between which 'standing on base' and 'standing on top' $C(1)O_3^{2-}$ and $C(4)O_3^{2-}$ carbonate groups are inserted. Dehydration of $Na_5Yb(CO_3)_4 \cdot 2H_2O$ to give $Na_5Yb(CO_3)_4$ implies that ytterbium coordination increases, from 8 to 9, simultaneously with $Na(1)^+$ coordination. In both structures, it is remarkable that $Na(1)^+$ and Yb^{3+} form infinite layers of

polyhedra, separated by four remaining Na⁺ cations. The $[NaYb(CO_3)_4]_{\infty}$ layers in Na₅Yb(CO₃)₄·2H₂O transform to $[NaYb(CO_3)_2O_6]_{\infty}$ layers, connected by the remaining carbonate groups in Na₅Yb(CO₃)₄.

References

- Y.B. Khollam, A.S. Deshpande, A.J. Patil, H.S. Potdar, S.B. Deshpande, S.K. Date, Mater. Chem. Phys. 71 (2001) 235.
- [2] J. Cai, J. Liu, Z. Gao, A. Navrotsky, S.L. Suib, Chem. Mater. 13 (2001) 4595.
- [3] B.L. Newalkar, J. Olanrewaju, S. Komarneni, Chem. Mater. 13 (2001) 552.
- [4] K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, Chem. Mater. 11 (1999) 882.
- [5] A. Ben Ali, M.O. Awaleh, V. Maisonneuve, M. Leblanc, J. Solid State Chem. (submitted).
- [6] A. Ben Ali, V. Maisonneuve, M. Leblanc, Solid State Sciences (submitted).
- [7] J.D. Grice, G.Y. Chao, Can. Miner. 35 (1997) 743.
- [8] J.D. Grice, Can. Miner. 34 (1996) 649.
- [9] J.D. Grice, R.A. Gault, Can. Miner. 36 (1998) 1293.
- [10] H. Schweer, Z. Seidel, Z. Anorg. Allg. Chem. 477 (1981) 196.
- [11] A. Mochizuki, K. Nagashima, H. Wakita, Bull. Chem. Soc. Jpn. 47 (1974) 755.
- [12] G.M. Sheldrick, in: G.M. Sheldrick, C. Krüger, R. Goddard (Eds.), SHELXS-86 in Crystallographic computing 3, Oxford University Press, London, 1985, pp. 175–189.
- [13] G.M. Sheldrick, SHELXL-97, a Program for Crystal Structure Determination, 1997, Göttingen University, Germany.
- [14] G.M. Sheldrick, in: SHELX-76: A Program for Crystal Structure Determination, Cambridge University Press, Cambridge, 1976.
- [15] N.E. Brese, M. O'Keeffe, Acta Crystallogr. B47 (1991) 192.
- [16] J. Rodriguez-Carvajal, FULLPROF, in: Abstracts of the Satellite Meeting on Powder Diffraction of the XVth Congress of the IUCr, Toulouse, France, 1990, p. 127.
- [17] T.A. Zhdanova, A.A. Vorancov, L.N. Komissarova, J.A. Pajatenko, Dockl. Akad. Nauk 196 (1971) 1071.
- [18] N. Mercier, M. Leblanc, J. Durand, Eur. J. Solid State Inorg. Chem. 34 (1997) 241.
- [19] N. Mercier, F. Taulelle, M. Leblanc, Eur. J. Solid State Inorg. Chem. 30 (1993) 609.
- [20] J.D. Grice, J.V. Velthuizen, R.A. Gault, Can. Miner. 32 (1994) 405.