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Abstract: 1-Phenyl-2-aza-3-trimethylsilyloxy-1,3-butadiene reacts
with aliphatic, aromatic and cyclic ketones to give in good to excel-
lent yields 6,6-disubstituted-1,3-perhydro-oxazin-4-ones which, in
turn, have been readily converted into b-hydroxy carboxylic acids.
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The hetero Diels-Alder reaction using carbonyl com-
pounds as dienophiles is a very useful method to construct
heterocyclic rings and is widely used as a key step in the
synthesis of natural products.1

In conjunction with our current efforts on the use of 2-aza-
3-silyloxy-1,3-dienes,2 derived from N-trialkyl-
silylimines3 and acyl chloride (Scheme 1), as useful tools
in organic synthesis for the preparation of nitrogen con-
taining heterocycles, we have demonstrated the utility of
a stable 2-aza-3-trialkylsilyloxy-1,3-butadiene in selec-
tively generating cis-,4 trans-b-lactams,5 5-amido-perhy-
dro-oxazinones, precursors of a-amino-b-hydroxy acids6

and tetramic acids analogues.7

In this paper we report our preliminary results on the syn-
thesis of 6,6-disubstituted perhydro-oxazinones using the
same approach.

Reagents and Conditions: i: NEt3, heptane: ii: BF3, Et2O, -78ºC,
CH2Cl2.

Scheme 1

Treatment of the intermediate 3 (Scheme 1), obtained
from N-trimethylsilylbenzaldimine 1 and acetyl chloride
2, with ketones 4a-i in the presence of BF3 etherate in
dichloromethane at -78°C for 3 h, followed by stirring
overnight at r.t., afforded the corresponding 6,6-disubsti-
tuted-tetrahydro-1,3-oxazin-4-ones 5a-i and 6b-f in yields
ranging from 45 to 90% (Table 1).8,9 No reaction occurred

on mixing the azadiene 3 with ketone 4a in dichlo-
romethane at room temperature. This new strategy allows
the preparation of perhydro-oxazinones and their transfor-
mation into an important class of biologically interesting
compounds: the 3,3-disubstituted-b-hydroxy acids.10 As a
matter of fact, elaboration of the diastereomeric mixture
of the perhydro-oxazinones 5a-i and 6b-f into Boc deriv-
atives 7a-i and 8b-f (di-t-butylpyrocarbonate, TEA,
DMAPcat) and treatment of such compounds with LiOH in
EtOH/H2O solution, afforded the b-hydroxy-acids 9a-i in
almost quantitative yields as a racemic mixture (Scheme
2).11,9

Reagents and Conditions. i: O[CO2C(CH3)3]2, NEt3,
DMAPcat, CH2Cl2; ii : LiOH, EtOH/H2O.

Scheme 2

Reagents and Conditions: i: NEt3, heptane: ii: BF3, Et2O, -78ºC,
CH2Cl2.
11a/12a: R=R1=CH3: Diastereomeric ratio 48/52; 53% yield
11b/12b: R-R1=Cyclohexyl: Diastereomeric ratio 50/50; 63% yield
11c: R=Me; R1=Ph: Inseparable mixture of stereoisomers; 40% yield

Scheme 3
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The possibility of preparing, by this route, optically pure
b-hydroxy perhydro-oxazinones and, therefore, b-hy-
droxy acids has been tested using optically pure starting
material as diene or dienophile. Preliminary results ob-
tained   using  the   homochiral   azadiene  10,  derived
from (S)-triisopropylsilyloxy-N-trimethylsilylimine 1a
and acetyl chloride, have not shown any appreciable dia-
stereoselectivity (Scheme 3 ) since the corresponding 1/1
diastereomeric mixtures of 1,3-oxazine-4-ones 11a-b and
12a-b have been obtained.

In contrast the use of the optically pure (-)-menthone 13
as dienophile achieved a very high diastereoselectivity
(Scheme 4).12 The perhydro-oxazinones 14a and 14b thus
obtained have been converted into optically pure b-hy-
droxy-acids 16a and 16b (Scheme 4). 

Work is in progress in this vein as well as on the use of
chiral catalysts, targeting the synthesis of optically pure
3,3-disubstituted-3-hydroxy acids.
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Reagents and Conditions: i: BF3·Et2O, -78ºC, CH2Cl2 (Overall yield
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138.43, 129.55, 128.80, 126.74, 79.88, 78.36, 43.25, 42.33, 
36.02, 29.45, 29.33, 21.77, 21.61; 11a: 1H NMR 6.35 (s, 1H), 
4.47 (d, 1H, J= 6.84), 3.78 (quintet, 1H, J= 6.16), 2.30 (m, 
2H), 1.30 (s, 6H), 1.25 (d, 3H, J=6.06), 1.08 (s, 21H); 13C 
NMR 168.56, 82.04, 72.33, 71.09, 43.32, 29.41, 23.77, 19.15, 
17.82, 12.33. 12a: 1H NMR 6.15 (s, 1H), 4.90 (d, 1H, J= 3.40), 
4.00 (dq, 1H, J= 3.40, 6.12), 2.30 (m, 2H), 1.32 (s, 3H), 1.30 
(s, 3H), 1.12 (d, 3H, J= 6.12), 1.04 (s, 21H); 13C NMR 168.76, 
79.98, 72.33, 69.10, 43.24, 29.41, 23.20, 17.72, 15.45, 11.93. 
11b: 1H NMR 6.32 (s, 1H), 4.36 (d, 1H, J= 6.82), 3.75 
(quintet, 1H, J= 6.16), 2.22 (s, 2H), 1.90- 1.30 (m, 10H), 1.23 
(d, 3H, J= 6.16), 1.00 (s, 21H); 13C NMR 169.06, 81.47, 73.60, 
71.69, 43.02, 38.39, 31.91, 21.64, 21.56, 21.53, 19.68, 18.10, 
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(dq, 1H, J=3.20 6.16), 2.28 (s, 2H), 1.90 (m, 1H), 1.70- 1.20 
(m, 9H), 1.13 (d, 3H, J= 6.16), 1.04 (s, 21H); 13C NMR 
169.06, 79.33, 73.60, 69.35, 42.73, 38.31, 31.75, 25.39, 21.51, 
17.97, 15.68, 12.19. 14a: m.p.=160-2°C; [a]20

D  =+38.75 
(c=0.96 CHCl3); 

1H NMR 7.40 (m, 5H), 6.40 (s, 1H), 5.83 (d, 
1H, J= 3.66), 3.25 (d, 1H, J= 14.94), 2.15 (m, 2H), 1.80 (m, 
3H), 1.50 (m, 2H), 1.10-0.75 (m, 12H); 13C NMR 172.14, 
137.90, 129.41, 128.83, 126.41, 81.33, 78.17, 49.74, 49.68, 
41.08, 34.90, 27.75, 26.24, 23.74, 22.18, 21.27, 17.66; 14b: 
m.p.= 174-6°C; [a]20

D  =-64.37 (c= 0.32 CHCl3); 
1H NMR 7.40 

(m, 5H), 6.10 (s, 1H), 5.71 (d, 1H, J=1.96), 2.79 (d, 1H, 
J=16.78), 2.12 (m, 3H), 1.70 (m, 2H), 1.55 (m, 3H), 1.20-0.80 
(m, 11H); 13C NMR 171.07, 138.15, 129.46, 128.86, 126.50, 
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(11) Synthesis of N-Boc-Perhydro-oxazin-4-ones. General 
procedure: Perhydro-oxazinone (1 mmol) was dissolved in 
anhydrous CH2Cl2 (10 ml), NEt3 (1 mmol), DMAP (cat) and 
di-tert-butyldicarbonate were added. The mixture was stirred 
at r.t. (3h), the solvent was removed in vacuo and the residue 
filtered on a short silica gel column.
Synthesis of 3,3-dialkyl-b-hydroxy acids. General 
Procedure: N-Boc derivative of perhydro-oxazinone (1 

mmol) was dissolved in a 1/1 solution of EtOH/H2O. LiOH (5 
mmol) was added and the mixture stirred at r.t. until t.l.c. spot 
test showed the disappearance of the starting material (3 hrs) 
The solution was concentrated at half the starting volume, the 
crude mixture was extracted with ethyl acetate and the 
aqueous layers made acidic by HCl 1N. Work-up by ethyl 
acetate and removal of the solvent yielded the b-hydroxy acid 
in almost quantitative yields. Any attempt to hydrolyze the 
unprotected perydro-oxazinone, so far, failed.

(12) The reported structures have been determined by NOE 
experiments irradiating the methyl group.
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