Synthesis of Perhydrooxazinones from 2-Aza-3-Trimethylsilyloxy-1,3Butadiene. A General Route to 3,3-Disubstituted- β-Hydroxy Acids

Elisa Bandini ${ }^{\text {a }}$, Giorgio Martelli ${ }^{\text {a }}$, Giuseppe Spunta, ${ }^{* a}$ Alessandro Bongini ${ }^{\text {b }}$ Mauro Panunzio*b
${ }^{a}$ I.Co.C.E.A.-CNR, Via Gobetti 101, 40129 Bologna, Italy
${ }^{\text {b }}$ CSFM-C.N.R. and University of Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
Fax +39-051-209 9456; Bitnet: panunzio@ciam.unibo.it
Received 14 July 1999

Abstract

Phenyl-2-aza-3-trimethylsilyloxy-1,3-butadiene reacts with aliphatic, aromatic and cyclic ketones to give in good to excellent yields 6,6 -disubstituted-1,3-perhydro-oxazin-4-ones which, in turn, have been readily converted into β-hydroxy carboxylic acids.

Key words: Diels-Alder reactions, carboxylic acids, heterocycles, azo compounds

The hetero Diels-Alder reaction using carbonyl compounds as dienophiles is a very useful method to construct heterocyclic rings and is widely used as a key step in the synthesis of natural products. ${ }^{1}$
In conjunction with our current efforts on the use of 2-aza3 -silyloxy-1,3-dienes, ${ }^{2}$ derived from N-trialkylsilylimines ${ }^{3}$ and acyl chloride (Scheme 1), as useful tools in organic synthesis for the preparation of nitrogen containing heterocycles, we have demonstrated the utility of a stable 2-aza-3-trialkylsilyloxy-1,3-butadiene in selectively generating cis-, ${ }^{4}$ trans- β-lactams, ${ }^{5}$ 5-amido-perhy-dro-oxazinones, precursors of α-amino- β-hydroxy acids ${ }^{6}$ and tetramic acids analogues. ${ }^{7}$
In this paper we report our preliminary results on the synthesis of 6,6 -disubstituted perhydro-oxazinones using the same approach.

Reagents and Conditions: i : NEt_{3}, heptane: ii: $\mathrm{BF}_{3}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Scheme 1

Treatment of the intermediate 3 (Scheme 1), obtained from N -trimethylsilylbenzaldimine $\mathbf{1}$ and acetyl chloride 2, with ketones $4 \mathbf{a}-\mathbf{i}$ in the presence of BF_{3} etherate in dichloromethane at $-78^{\circ} \mathrm{C}$ for 3 h , followed by stirring overnight at r.t., afforded the corresponding 6,6 -disubsti-tuted-tetrahydro-1,3-oxazin-4-ones 5a-i and $\mathbf{6 b}$-f in yields ranging from 45 to 90% (Table 1). ${ }^{8,9}$ No reaction occurred
on mixing the azadiene $\mathbf{3}$ with ketone $\mathbf{4 a}$ in dichloromethane at room temperature. This new strategy allows the preparation of perhydro-oxazinones and their transformation into an important class of biologically interesting compounds: the 3,3-disubstituted- β-hydroxy acids. ${ }^{10}$ As a matter of fact, elaboration of the diastereomeric mixture of the perhydro-oxazinones $\mathbf{5 a}$-i and $\mathbf{6 b}$-f into Boc derivatives $\mathbf{7 a}$-i and 8b-f (di-t-butylpyrocarbonate, TEA, $\mathrm{DMAP}_{\mathrm{cat}}$) and treatment of such compounds with LiOH in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ solution, afforded the β-hydroxy-acids $9 \mathrm{a}-\mathrm{i}$ in almost quantitative yields as a racemic mixture (Scheme 2). ${ }^{11,9}$

Reagents and Conditions. i : $\mathrm{O}\left[\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}, \mathrm{NEt}_{3}$, $\mathrm{DMAP}_{\mathrm{cat}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii : $\mathrm{LiOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$.
Scheme 2

Reagents and Conditions: i : NEt_{3}, heptane: ii: $\mathrm{BF}_{3}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
11a/12a: $\mathrm{R}=\mathrm{R}^{1}=\mathrm{CH}_{3}$: Diastereomeric ratio 48/52; 53% yield
11b/12b: R-R ${ }^{1}=$ Cyclohexyl: Diastereomeric ratio 50/50; 63\% yield 11c: $\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{1}=\mathrm{Ph}$: Inseparable mixture of stereoisomers; 40% yield

Scheme 3

Table 1 3,3-Disubstituted-3-hydroxy-acids from 1-phenyl- 2-aza-3-trimethylsilyloxy-1,3-butadiene

Reagents and Conditions: i : $\mathrm{BF}_{3}\left(\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ (Overall yield 54%; Ratio 14a/14b=91/9); ii: $\mathrm{O}\left[\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}, \mathrm{NEt}_{3}, \mathrm{DMAP}_{\text {cat }}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iiii: $\mathrm{LiOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$.
Scheme 4

The possibility of preparing, by this route, optically pure β-hydroxy perhydro-oxazinones and, therefore, β-hydroxy acids has been tested using optically pure starting material as diene or dienophile. Preliminary results obtained using the homochiral azadiene 10, derived from (S)-triisopropylsilyloxy- N-trimethylsilylimine 1a and acetyl chloride, have not shown any appreciable diastereoselectivity (Scheme 3) since the corresponding 1/1 diastereomeric mixtures of 1,3-oxazine-4-ones 11a-b and 12a-b have been obtained.

In contrast the use of the optically pure (-)-menthone $\mathbf{1 3}$ as dienophile achieved a very high diastereoselectivity (Scheme 4). ${ }^{12}$ The perhydro-oxazinones $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ thus obtained have been converted into optically pure β-hy-droxy-acids 16a and 16b (Scheme 4).
Work is in progress in this vein as well as on the use of chiral catalysts, targeting the synthesis of optically pure 3,3-disubstituted-3-hydroxy acids.

Acknowledgement

Thanks are due to MURST, Cofin 98 (Rome), for financial support.

References and Notes

(1) For leading references on Hetero Diels-Alder reactions see e.g. (a) Weinreb, S. M. In Comprehensive Organic Synthesis; L. A. Paquette, Ed.; Pergamon: Oxford, 1991; Vol. 5; p 401. (b) Ghosez, L.; Serckx-Poncin, B.; Rivera, M.; Bayard, P.; Sainte, F.; Demoulin, A.; Hesbain-Frisque, A. M.; Mockel, A.; Munoz, L.; Bernard-Henriet, C. Lect. Heterocycl. Chem. 1985, 8, 69. (c) Boger, D. L.; Weinreb, S. M. Hetero DielsAlder Methodology in Organic Synthesis; Academic Press: New York, 1987; Vol. 47. (d) Boger, D. L. In Comprehensive Organic Synthesis; L. A. Paquette, Ed.; Pergamon: Oxford, 1991; Vol. 5; p 451. (e) Bailey, P. D.; Millwood, P. A.; Smith, P. D. J. Chem. Soc., Chem. Commun. 1998, 633.
(2) For recent papers on 2-aza-3-trimethylsilyloxy-1,3-dienes see (a) Ghosez, L. Pure App. Chem. 1996, 68, 15. (b) Ghosez, L.; Jnoff, E.; Bayard, P.; Sainte, F.; Beaudegnies, R. Tetrahedron 1999, 55, 3387. (c) Gouverneur, V.; Ghosez, L. Tetrahedron 1996, 52, 7585. (d) Jnoff, E.; Ghosez, L. J. Am. Chem. Soc. 1999, 121, 2617.
(3) For Review see: Panunzio, M.; Zarantonello, P. Org. Process Res. Dev. 1998, 2, 49.
(4) Bacchi, S.; Bongini, A.; Panunzio, M.; Villa, M. Synlett 1998, 843.
(5) (a) Bandini, E.; Martelli, G.; Spunta, G.; Bongini, A.; Panunzio, M. Tetrahedron Lett. 1996, 37, 4409. (b) Bandini, E.; Martelli, G.; Spunta, G.; Panunzio, M. Synlett 1996, 1017.
(6) (a) Bandini, E.; Martelli, G.; Spunta, G.; Bongini, A.; Panunzio, M.; Piersanti, G. Tetrahedron: Asymm. 1997, 8, 3717. (b) Bongini, A.; Panunzio, M.; Bandini, E.; Martelli, G.; Spunta, G. J. Org. Chem. 1997, 62, 8911. (c) Panunzio, M.; Villa, M.; Missio, A.; Rossi, T.; Seneci, P. Tetrahedron Lett. 1998, 39, 6585.
(7) Bandini, E.; Martelli, G.; Spunta, G.; Bongini, A.; Panunzio, M.; Piersanti, G. Tetrahedron:Asymm. 1999, 10, 1445.
(8) Synthesis of Perhydro-oxazin-4-ones: General procedure To a solution of LiHMDSA (1 ml of 1 M solution in THF) at $0^{\circ} \mathrm{C}$ benzaldehyde or (S)-triisopropylsilyloxy lactaldehyde (1 mmol) in heptane (5 ml) was added. The reaction mixture was allowed to reach r.t. spontaneously while the stirring was continued for 1 h . $\mathrm{TMSCl}(1.1 \mathrm{mmol})$ was added in one portion at $0^{\circ} \mathrm{C}$ and the reaction mixture further stirred for 1 h . A white precipitate formed. The solution was cooled at $0^{\circ} \mathrm{C}$ and NEt_{3} (2 mmol) was added in one portion. The acetyl chloride 3 (1 mmol) was added dropwise. Stirring was maintained for $1 / 2 \mathrm{~h}$ at $0^{\circ} \mathrm{C}$ and $1 / 2 \mathrm{~h}$ at r.t. while a new copious precipitate appeared. The precipitate was filtered under argon, the solvent removed in vacuo and to the resulting oily residue $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ ml) was added and the solution cooled at $-78^{\circ} \mathrm{C}$. Ketone 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added followed by $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(1.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. The solution was stirred overnight while the temperature was allowed to reach r.t.. The mixture was poured into $5 \% \mathrm{NaHCO}_{3}$ aqueous solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were dried and the solvent removed in vacuo. Flash chromatography of the residue $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /acetone 9/1) yielded pure isolated perhydro-oxazin-4-ones.
(9) All compounds, identified as pure isolated compound, gave analytical data (I.R., ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, MS and E.A.) consistent with the assigned structures and literature data. The configuration of each isomer has been determined by means of NOE experiments. Selected data as follows: (${ }^{1} \mathrm{H}$ NMR: 200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm $;{ }^{13} \mathrm{C}$ NMR $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm). 3: ${ }^{1} \mathrm{H}$ NMR $8.42(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 3 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H})$, $4.30(\mathrm{~s}, 1 \mathrm{H}), 0.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 156.83, 156.44, 135.93, 131.08, 128.94, 128.57, 91.64, -0.13. 5a: m.p. $=98-100^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $7.36(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=16.8), 2.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.8) 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 169.38, 138.29, 129.40, 128.61, 126.72, 80.26, 73.12, 43.22, 29.28, 24.22; 5b (trans Me-H2): m.p. $=176-8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $7.40(\mathrm{~m}, 10 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=16.85), 2.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.85), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 168.89, 141.71, 137.80, 129.29, 128.57, 128.44, 127.79, $126.54,125.54,80.61,77.04,40.85,31.73$; 6b (cis Me-H2): m.p. $=156-8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $7.40(\mathrm{~m}, 10 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}$, $1 \mathrm{H}), 2.80(\mathrm{~s}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 168.70, 146.00, 138.23, 129.70, 128.86, 128.42, 127.34, 126.87, 124.12, 80.46, 76.46, 43.87, 25.77; 5c (trans Me-H2): m.p. $=103-5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $7.42(\mathrm{~m}, 5 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H})$, 1.88 (sextet, $1 \mathrm{H}, \mathrm{J}=7.38$), 1.65 (sextet, $1 \mathrm{H}, \mathrm{J}=7.38$), 1.30 (s, $3 \mathrm{H}), 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.38 ;{ }^{13} \mathrm{C}\right.$ NMR 169.73, 138.20, 129.73, 128.91, 126.77, 80.33, 75.83, 42.57, 30.18, 26.38, 7.81; 6c (cis Me-H2) m.p. $=82-4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $7.42(\mathrm{~m}, 5 \mathrm{H}), 6.35(\mathrm{~s}$, $1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.75), 2.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.75)$, $1.65(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.45), 1.39(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.45) ;{ }^{13} \mathrm{C}$ NMR 169.59, 138.42, 129.61, 128.81, 126.74, 80.20, 75.50, 41.63, 35.37, 22.38, 7.63; 5d (trans Me-H2): m.p. $=184-6^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $8.34(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.02), 8.20(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~m}, 1 \mathrm{H}), 7.60$
(t, 1H, J=7.95), 7.43 (s, 5H), 6.48 (s, 1H), $5.40(\mathrm{~s}, 1 \mathrm{H}), 3.13$ (d, 1H, J=16.64), $2.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.64), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 168.37, 145.45, 137.25, 131.53, 130.08, 129.01, 126.73, $124.00,120.82,81.31,77.07,41.62,32.14$; 6d (cis Me-H2): m.p. $=145.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $8.34(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.08), 8.15(\mathrm{~m}, 1 \mathrm{H})$, $7.78(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 6 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=16.35), 2.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.35), 1.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 167.96, 148.08, 137.46, 130.36, 129.93, 129.51, 128.96, 126.82, 122.42, 119.64, 80.60, 76.13, 43.61, 26.07; 5e (trans Me-H2): m.p. $=190-2^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $8.27(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.75), 7.63$ (d, 2H, J=8.75), $7.44(\mathrm{~s}, 5 \mathrm{H}), 6,32(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 3.12$ (d, 1H, J=16.68), $2.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.68), 1.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 168.32, 150.30, 147.76, 137.25, 130.11, 129.05, 126.72, 126.68, 124.21, 81.41, 77.25, 41.76, 32.01; 6e (cis Me-H2): m.p. $=204-6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $8.20(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.70), 7.62(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8.70), 7.35(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 2.90(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=16.60), 2.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.60), 1.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 167.79, 152.88, 147.27, 137.54, 130.07, 129.05, 126.85, 125.32, 123.76, 84.64, 77.03, 43.57, 26.06; 5f (trans Me-H2): m.p. $=84-86{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $7.75(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~s}$, $5 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.25$ (d, 1H, J=17.10), $2.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.10), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $168.99,158.33,138.10,136.68,136.64,134.18,129.83$, $129.70,128.80,128.45,127.84,126.85,124.81,124.30$, $119.23,105.69,81.10,77.50,55.34,41.18,31.74$; $\mathbf{6 f}$ (cis Me$\mathrm{H} 2)$: m.p. $=130-2^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR 7.80-7.10 (m, 11H), $6.43(\mathrm{~s}$, $1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 168.67, 157.92, 141.00, 138.25, 133.78, 129.81, 129.75, $128.85,127.15,126.96,123.17,122.62,119.06,105.60$, 80.66, 76.67, 53.31, 43.94, 25.82; 5g: m.p. $=118-20^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $7.40(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 16.90), $2.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.90), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.50(\mathrm{~m}$, $7 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR 169.54, 138.42, 129.46, 128.67, 126.72, 83.91, $80.68,41.25,39.92,34.02,23.83,22.80$; 5h: m.p. $=136-8^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $7.40(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 2 \mathrm{H}), 2.00(\mathrm{~m}$, $2 \mathrm{H}), 1.50(\mathrm{~m}, 8 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR 169.49, 138.44, 128.99, 128.34, $126.45,79.11,73.79,42.17,38.24,32.16,25.12,21.47,21.31$; 5i: m.p. $=124-6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $7.40(\mathrm{~m}, 5 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.74$ (s, 1H), $2.40(\mathrm{~s}, 2 \mathrm{H}), 2.05-1.35(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 169.78, $138.43,129.55,128.80,126.74,79.88,78.36,43.25,42.33$, 36.02, 29.45, 29.33, 21.77, 21.61; 11a: ${ }^{1} \mathrm{H}$ NMR $6.35(\mathrm{~s}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.84), 3.78$ (quintet, $1 \mathrm{H}, \mathrm{J}=6.16), 2.30(\mathrm{~m}$, $2 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.25(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.06), 1.08(\mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 168.56, 82.04, 72.33, 71.09, 43.32, 29.41, 23.77, 19.15, 17.82, 12.33. 12a: ${ }^{1} \mathrm{H}$ NMR $6.15(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.40)$, 4.00 (dq, 1H, J=3.40, 6.12), $2.30(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.30$ $(\mathrm{s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.12), 1.04(\mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 168.76, 79.98, 72.33, 69.10, 43.24, 29.41, 23.20, 17.72, 15.45, 11.93. 11b: ${ }^{1} \mathrm{H}$ NMR $6.32(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.82), 3.75$ (quintet, $1 \mathrm{H}, \mathrm{J}=6.16), 2.22(\mathrm{~s}, 2 \mathrm{H}), 1.90-1.30(\mathrm{~m}, 10 \mathrm{H}), 1.23$ (d, 3H, J=6.16), $1.00(\mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 169.06, 81.47, 73.60, $71.69,43.02,38.39,31.91,21.64,21.56,21.53,19.68,18.10$, 12.62. 12b: ${ }^{1} \mathrm{H}$ NMR $6.12(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.20), 4.02$ (dq, 1H, J=3.20 6.16), $2.28(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.20$ $(\mathrm{m}, 9 \mathrm{H}), 1.13(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.16), 1.04(\mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 169.06, 79.33, 73.60, 69.35, 42.73, 38.31, 31.75, 25.39, 21.51, 17.97, 15.68, 12.19. 14a: m.p. $=160-2^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=+38.75$ $\left(\mathrm{c}=0.96 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $7.40(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=3.66), 3.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.94), 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}$, $3 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.75(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 172.14, 137.90, 129.41, 128.83, 126.41, 81.33, 78.17, 49.74, 49.68, 41.08, 34.90, 27.75, 26.24, 23.74, 22.18, 21.27, 17.66; 14b: m.p. $=174-6^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=-64.37\left(c=0.32 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR 7.40 $(\mathrm{m}, 5 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.96), 2.79(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=16.78), 2.12(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 3 \mathrm{H}), 1.20-0.80$ $(\mathrm{m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 171.07, 138.15, 129.46, 128.86, 126.50,
79.26, 78.07, 51.46, 44.53, 41.97, 35.05, 27.98, 26.49, 23.98, 22.12, 21.01, 18.42.
(10) (a) Devant, R.; Braun, M. Chem. Ber. 1986, 119, 2191.
(b) Braun, M. Angew. Chem. Int. Ed. Engl. 1987, 26, 24.
(c) Seebach, D.; Zimmerman, J.; Gysel, U.; Ziegler, R.; Ha,
T.-K. J. Am. Chem. Soc. 1988, 110, 4763. (d) Aoyagi, Y.;

Asakura, R.; Kondoh, N.; Yamamoto, R.; Kuromatsu, T.;
Shimura, A.; Ohta, A. Synthesis 1996, 970.
(11) Synthesis of N-Boc-Perhydro-oxazin-4-ones. General procedure: Perhydro-oxazinone (1 mmol) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml}), \mathrm{NEt}_{3}(1 \mathrm{mmol})$, DMAP (cat) and di-tert-butyldicarbonate were added. The mixture was stirred at r.t. (3h), the solvent was removed in vacuo and the residue filtered on a short silica gel column.
Synthesis of 3,3-dialkyl- β-hydroxy acids. General
Procedure: N-Boc derivative of perhydro-oxazinone (1
mmol) was dissolved in a $1 / 1$ solution of $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} . \mathrm{LiOH}(5$ mmol) was added and the mixture stirred at r.t. until t.l.c. spot test showed the disappearance of the starting material (3 hrs) The solution was concentrated at half the starting volume, the crude mixture was extracted with ethyl acetate and the aqueous layers made acidic by HCl 1 N . Work-up by ethyl acetate and removal of the solvent yielded the β-hydroxy acid in almost quantitative yields. Any attempt to hydrolyze the unprotected perydro-oxazinone, so far, failed.
(12) The reported structures have been determined by NOE experiments irradiating the methyl group.

Article Identifier:
1437-2096,E;1999,0,11,1735,1738,ftx,en;G18599ST.pdf

