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An easy way for constructing hard-to-make epoxides employing
HOFÆCH3CN
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Abstract—HOFÆCH3CN, a very efficient oxygen transfer agent, was reacted with various types of difficult-to-epoxidize olefins. All
products were obtained in a single-step, fast and high yield reaction.
� 2004 Elsevier Ltd. All rights reserved.
HOFÆCH3CN complex, which appeared recently in the
highlight section of Angew. Chem.,1 is easily obtained by
bubbling dilute fluorine through aqueous acetonitrile.2

Because of its very strong electrophilic oxygen atom it is
one of the best oxygen transfer agents that organic
chemistry has to offer. It has been used for transforming
azides into nitro compounds,3 preparation of N-oxides,4

oxidation of acetylenes,5 epoxidations of various olefins6

including tetrasubstituted ones,7 hydroxylations on ter-
tiary sp3 carbon centers, converting primary amines into
the corresponding nitro derivatives, thiophenes to the res-
pective S,S-dioxides, sulfides to sulfones and much more.8

Epoxides are essential intermediates and building blocks
in organic synthesis. Several orthodox methods exist for
direct epoxidation of double bonds mainly using perac-
ids, hydrogen peroxide and dialkyl dioxiranes. Still, there
is a variety of olefins, which remain difficult or even
impossible to epoxidize by these methods. We report
here of a closing of this gap and describe a general and
efficient method for direct epoxidation of such olefins.

Tropone 1 has never been directly epoxidized. The only
method reported for the preparation of its triepoxide 2
involved five steps, which took at least 4 days, and the
consecutive use of a number of oxidizing agents.9 In con-
trast, treating 1with a twofold excess of theHOFÆCH3CN
complex,10 accomplished the epoxidation of all three
double bonds of this stable aromatic compound in only
15min to give 2 in a high yield.11 Cyclooctatetraene 3 is a
nonaromatic polyene and all its double bonds should be
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amenable to epoxidation. Nevertheless, it was reported
that the complete epoxidation of 3 with excess of di-
methyldioxirane(DMDO)wasachievedonlyafter17 days
producing the twotetraepoxides4and5 inan87:13ratio.12

WithHOFÆCH3CN, however, the 17 dayswere reduced to
less than 30 s and the epoxides 4 and 5 in an 1:1 ratio were
obtained in practically quantitative yield.

The two double bonds of 2,6-dimethylbenzoquinone 6
are very deactivated towards electrophilic attack by the
two electron-withdrawing groups in both a-positions.
Indeed, there is only one method, rather complicated,
known in the literature for the synthesis of 2,6-dimethyl-
2,3-epoxy benzoquinone 7 involving the epoxidation of
the Diels–Alder adduct––cyclopentadienequinone fol-
lowed by a high-temperature cleavage.13 With a twofold
excess of HOFÆCH3CN, 6 was converted into 7 in a
single step within 5min in almost quantitative yield. It
should be noted that attempts to epoxidize the second
double bond were unsuccessful and only the unchanged
7 was recovered.

The two double bonds of pentaphenylcyclopentadiene 8
are much less electron deficient, but suffer from exten-
sive steric hindrance. Only one report describes the
preparation of the corresponding diepoxide 9 by a two
step photochemical reaction of the starting material in
the presence of oxygen.14 Using 1 equiv of the aceto-
nitrile complex of the hypofluorous acid produced 9 in
higher than 70% yield within 15min.

The weakly nucleophilic double bond in the oxygen rich
tetramethyl bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarb-
oxylate 10 had never been epoxidized. HOFÆCH3CN
converted it easily into the corresponding epoxide 11 in
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80% yield,15 but as with other anhydrides, the related 12
could not be epoxidized, a phenomenon, which we still
do not fully understand.7 In any event, when we tried to
epoxidize both 10 and 12 with either MCPBA or
DMDO, only the starting materials were recovered
quantitatively. Itaconic anhydride 13 with its exocyclic
double bond was, on the other hand, successfully
epoxidized with a twofold excess of HOFÆCH3CN to
produce the new epoxide 1416 in a 70% yield.

Flavone 15 is an enol ether with high electron density at
the 3-position and therefore hydroxylation by the elec-
trophilic oxygen of HOFÆCH3CN takes place at this
site17 forming immediately 3-hydroxyflavone 1618 in
90% yield. Working with an enol ether in which the
double bond is less nucleophilic and polarized as in
3-propylidene-3H-isobenzofuran-1-one 17, the corre-
sponding unknown epoxide 1819 was formed in 90%
yield in less than a minute.

In conclusion, there are many olefins, which are difficult
or even impossible to epoxidize directly by orthodox
methods such as H2O2, MCPBA, DMDO or various
metal porphyrin-like complexes. In most cases HOFÆ
CH3CN will accomplish this task under very mild con-
ditions and in very short reaction times. There remains
the prejudice and reluctance of some chemists to use F2

in synthetic organic chemistry. It should not be so, since
the work is easy, no special hardware is needed, and
prediluted fluorine in inert gases is commercially avail-
able.
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