105. Chemie der α-Aminonitrile

1. Mitteilung

Einleitung und Wege zu Uroporphyrinogen-octanitrilen

von Gary Ksander¹), Guido Bold²), René Lattmann²), Christian Lehmann²), Thomas Früh²), Yi-Bin Xiang²), Katsuhiko Inomata³), Hans-Peter Buser, Jakob Schreiber, Engelbert Zass und Albert Eschenmoser^{*}

Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule, Universitätstrasse 16, CH–8092 Zürich

(23.III.87)

Chemistry of *a*-Aminonitriles I: Introduction and Pathways to Uroporphyrinogen-octanitriles

An introduction to experimental studies on the chemistry of α -aminonitriles potentially relevant to the problems of prebiotic chemistry is presented. The framework of conditions wherein the investigation is chosen to be carried out implies both molecular oxygen and – whenever feasible – water to be excluded from reaction conditions. This study focusses on 2-amino-2-propenenitrile (3) (Scheme 6) as central starting material of reaction sequences which aim at the nitrile forms of proteinogenic amino acids as well as at the aza forms of building blocks of biological cofactor molecules as their targets (Scheme 5). Schemes 13, 16, 23 as well as 25, and 26 summarize reaction sequences by which 3 is transformed within the defined framework of conditions into the thermodynamic (statistically controlled) mixture of the four isomeric uroporphyrinogen-octanitriles 57–60. HPLC's of such mixtures document the dominance of the least symmetrical isomer whose constitutional pattern of peripheral substituents happens to be the one present in all biological porphinoids. Preparative procedures for the synthesis of 3 (Scheme 9), the $\beta_i\beta$ -disubstituted pyrrol-nitriles 30, 53, and 54 (Scheme 19) as well as the porphyrinogen-octakis(propionitrile) and -octakis(acetonitrile) 65 and 66, respectively (Scheme 24) are given.

A. Einleitung. – Die Synthesen von Vitamin B_{12} [6] [7] zählen zu jenen chemischen Naturstoff-Synthesen, in welchen der Kontrast zwischen den von der Natur biosynthetisch beschrittenen Synthesewegen und jenen, die dem Chemiker zur Verfügung stehen, ganz besonders deutlich zu Tage tritt. Beispiele dieser Art nähren die gängige Vorstellung von der besonderen Einfachheit und Eleganz der Biosynthesen, von der Überlegenheit und Leichtigkeit, mit der die lebende Natur den Aufbau komplexer Moleküle zustande bringt. Hierin wurzelt der Antrieb zur Suche nach sogenannt biomimetischen Naturstoff-Synthesen, d. h. solchen, wo der nicht-enzymatisch zu beschreitende Syntheseweg möglichst jenen Struktur- und Reaktionskanälen zu folgen versucht, derer sich die Biosynthese bedient.

Weniger zahlreich zwar, doch in der Aussage nicht minder gewichtig, sind die Beispiele biologisch grundlegender Naturstoff-Strukturen, bei welchen ein zum obigen in-

Postdoktorat ETH Zürich, 1978–1981, derzeitige Anschrift: Ciba-Geigy Corp., Pharmaceuticals Division, 556 Morris Avenue, Summit, N.J. 07901, USA.

²) Vgl. die Promotionsarbeiten ETH Zürich [1-5].

³) Akademischer Gast ETH Zürich, 1981–1983, derzeitige Anschrift: Department of Chemistry, Faculty of Science, Kanazawa University, Marunouchi 1-1, Kanazawa, Ishikawa, 920 Japan.

verses Phänomen auftritt: ein umständlich scheinender, komplexer Biosynthese-Weg steht einem strukturell und synthese-technisch einfachen, nicht-enzymatischem Bildungsweg gegenüber. Das wohl eindrücklichste Beispiel dieser Art ist das Adenin. Die chemisch äusserst bemerkenswerte, 1961 von Oro [8] entdeckte Bildung dieses bedeutenden biomolekularen Bausteins durch direkte Pentamerisierung von HCN (Schema 1) kontrastiert aufs eindrücklichste mit dem komplexen Netzwerk enzymatischer Prozesse, welches die Natur zwecks biosynthetischen Aufbaus sowie Wiederverwertung dieses Bausteins zu entwickeln sozusagen als notwendig befunden hat [9]. Adenin besitzt eine aus chemosynthetischer Sicht denkbar einfache, aus biosynthetischer Sicht hingegen recht komplexe Struktur; 'einfach' ist sie bezüglich ihrer Herleitbarkeit aus HCN als Ausgangsstoff, 'komplex' im Hinblick auf ihren Aufbau aus jenen Ausgangsstoffen, auf welche biologische Organismen in ihren Biosynthesen ausgerichtet sind. Diese besonders dem organischen Chemiker ins Auge springende Dichotomie findet ihre Deutung in der Vorstellung, dass die Adenin-Struktur nicht ein Produkt, sondern eines der Edukte der molekular-biologischen Evolution darstellt [8]. Dieses Postulat ist Teil der in Chemie und Biologie heute herrschenden, sowohl experimentell [10] wie auch theoretisch [11] begründeten Auffassung [12], dass die molekularen Bausteine der Proteine und Nukleinsäuren, d.h. die (einfachen) α -Aminosäuren, die Nukleinsäure-Basen sowie Kohlehydrat-phosphate, präbiologischen Ursprungs sind. Die Frage, ob dies auch für die molekularen Strukturtypen biologischer Cofaktoren gelten soll, bildet den Ausgangspunkt und den Hintergrund von Untersuchungen, über die hier sowie in nachfolgenden Arbeiten berichtet wird.

Im vergangenen Jahrzehnt sind in unserem Laboratorium im Anschluss an die Arbeiten zur Synthese des Vitamins B_{12} systematische synthetische Untersuchungen zum Problem der Biosynthese dieses Vitamins durchgeführt worden [13] [14]. Der Ausgangspunkt dieser Arbeiten war die in der ETH-Variante der Cobyrsäure-Synthese entwickelte, photochemische ($A \rightarrow D$)-Ringschlussreaktion [7] [15] (A/D-Secocorrin \rightarrow Corrin-Cycloisomerisierung [16], vgl. Schema 2); es ist dies eine Reaktion, die sich im nachhinein als massgeschneiderte Lösung des zentralen Problems jeglicher Vitamin-B₁₂-Synthese, nämlich der struktur-selektiven, corrin-spezifischen Direktverknüpfung der Ringe A und D, präsentiert. Folgeuntersuchungen waren durch die Frage bestimmt, ob es eine nicht-photochemische Variante dieser Cycloisomerisierung gibt, welcher sich die Natur bei der Biosynthese des Corrin-Kerns von Vitamin B₁₂ bedient. Das Ergebnis dieser Folgeuntersuchungen war schlussendlich nicht eine, sondern eine ganze Familie solcher Varianten [13] [14] [17] sowie vor allem auch die Erkenntnis, dass die corrin-spezifische A/D-Ringverknüpfung, die zu Beginn der Arbeiten über Vitamin B_{12} als die zentrale Hürde jeglicher chemischer Synthese des Vitamins B_{12} gegolten hatte, in Wahrheit ein Strukturelement darstellt, das sich unter struktur-gerechten, d. h. auf den potentiell natürlichen Bildungsweg ausgerichteten Voraussetzungen auf vielfältige Weise und mit grosser Leichtigkeit

bildet. Diese in Schema 3 zusammengefasste experimentelle Erfahrung hat seinerzeit eine tiefgreifende Veränderung unserer Attitüde gegenüber der Vitamin- B_{12} -Struktur ausgelöst, sie hat sozusagen eine Entmythifizierung dieser Struktur herbeigeführt [13]. Unmittelbare Folge davon waren experimentelle Studien, deren Zielrichtung durch folgende Fragen geleitet war: Verhält es sich mit anderen Strukturelementen des Vitamin- B_{12} -Moleküls ebenso wie mit der A/D-Ringverknüpfung? Sind z. B. die charakteristische Anordnung der Doppelbindungen im Corrin-Chromophor, das C-Methylierungsmuster an der Ligand-Peripherie, die Konfiguration an der Ligand-Peripherie, oder die spezifische Art, wie die Nukleotidkette an den Corrin-Liganden geknüpft ist, ebenfalls Strukturelemente, die sich unter struktur-gerechten Voraussetzungen leicht bilden? Oder mit anderen Worten: ist die sich in Aussenansicht präsentierende, strukturelle Komplexität des Vitamin- B_{12} -Moleküls eine im Grunde nur scheinbare Komplexität [13]?

Zu den bislang aus diesen Fragen hervorgegangenen experimentellen Ergebnissen gehören: die Auffindung der Porphyrinogen \rightarrow Pyrrocorphin-Tautomerisierung [18], die Beobachtung der biomimetischen *C*-Methylierung von Pyrrocorphin-Komplexen [19], die Erkennung struktureller Faktoren, welche ring-verengte Corrin-Komplexe gegenüber Komplexen mit corphinoiden Liganden thermodynamisch begünstigen [20], und schliesslich der experimentelle Nachweis, dass die Vitamin-B₁₂-Struktur sozusagen einen intramolekularen Code zur strukturspezifischen Anknüpfung der Nukleotid-Kette an die Propionsäure-Seitenkette des Ringes D besitzt [21]. Diese Einsichten und Ergebnisse erweisen sich als Etappen einer zunehmenden chemischen Rationalisierung sowohl der Struktur als auch der Funktion des Vitamin-B₁₂-Moleküls. Nachträglich rechtfertigen sie auch die ins Extrem extrapolierte Form der Frage, welche unsere experimentellen Untersuchungen zunehmend motiviert: *ist der Strukturtyp des Vitamins B*₁₂ potentiell präbiologischen Ursprungs [22]?

Diese Frage steht nicht für sich allein; sie ist vielmehr Teil einer umfassenden Frage nach dem Ursprung biologischer Cofaktoren überhaupt. Zwar üben die heute im biologischen Geschehen als Coenzyme fungierenden Strukturen ihre katalytischen Funktionen immer im Verein mit Proteinen aus, doch ist bekannt, dass sie auch Katalysatoren an sich sein können⁴). Sind die biologisch quasi ubiquitären Cofaktor-Strukturtypen z. B. des Flavins, der Folsäure, der Dihydronicotinsäure, des Thiamins, des Pyridoxals, sowie der Cofaktoren-Familie der Porphinoide (vgl. *Schema 4*) biosynthetische 'Erfindungen' entwicklungsgeschichtlich ursprünglicher Organismen oder waren sie ursprüngliche 'Vitamine' solcher Organismen? Wurden Strukturen dieses Typs, von jenen Organismen (wie heute die Vitamine) ursprünglich aus der Umwelt aufgenommen, metabolisch verwendet, in späteren Evolutionsphasen durch Entwicklung von Biosynthese-Wegen kopiert und von da an autotroph produziert? Mit anderen Worten: ist die enzymatische Kontrolle über biologische Funktionen der Cofaktoren entwicklungsgeschichtlich älter als die enzymatische Kontrolle über deren Biosynthese⁵)?

Man könnte die Meinung vertreten, dass solches Fragen müssig sei, da ohnehin keine Möglichkeit einer Entscheidung oder einer experimentellen Bearbeitung bestünde. Dies

⁴) Über Vitamin B₁₂ als Katalysator nicht-enzymatischer Reaktionen vgl. z. B. die Arbeiten von Scheffold [23] und Fischli [24].

⁵) Zum Problem des Ursprungs von Biosynthesen vgl. die frühen Betrachtungen von *Horowitz* [25] und zur Frage des Ursprungs von Cofaktoren die Essays [26].

trifft aber nicht zu. Unterstellt man einen präbiologischen Ursprung von Cofaktoren, so kann jegliche strukturelle Komplexität solcher Moleküle eine letztlich nur scheinbare sein, d.h. es muss einfache, potentiell präbiotische Entstehungswege zu diesen Strukturen bzw. Strukturtypen geben. Die Existenz solcher Entstehungswege muss gegebenenfalls experimentell nachweisbar sein, nämlich dadurch, dass man im Laboratorium gezielt nach ihnen sucht.

Die Verfolgung der letztgenannten Zielsetzung in unserem Laboratorium hat u.a. zum Projekt einer systematischen Untersuchung der Stoffklasse der α -Aminonitrile geführt. In der vorliegenden Arbeit umschreiben und begründen wir vorerst die Rahmenvoraussetzungen, innerhalb welcher wir im wesentlichen diese Chemie der α -Aminonitrile durchführen. Hierauf beschreiben wir die Ergebnisse von experimentellen Arbeiten, welche wir zur Frage nach rahmengerechten Bildungswegen des Uroporphyrinogen-octanitrils (Typ III) durchgeführt haben; die Verbindung ist die Aza-Form des Uroporphyrinogens (Typ III), des zentralen porphinoiden Ausgangsprodukts der Biosynthese sämtlicher heute bekannter porphinoider Cofaktor-Strukturen (vgl. Schema 4).

B. Chemie der α -Aminonitrile. Rahmenvoraussetzungen der Untersuchung. – Die Chemie der α -Aminonitrile ist bislang trotz der Tatsache, dass die *Strecker* sche Aminosäuresynthese [27] seit mehr als einem Jahrhundert bekannt ist, weitgehend unbearbeitet. Grund hiefür dürfte die Arbeitsweise bei der *Strecker*-Synthese sein, wonach die labilen

Aminonitril-Zwischenprodukte eigentlich nicht interessieren, sondern direkt der säurekatalysierten Hydrolyse zu den stabilen α -Aminosäuren zu unterwerfen sind. Selbst in der sogenannten präbiotischen Chemie fanden α -Aminonitrile eigentlich nicht die ihnen gebührende Beachtung, wiewohl seit dem klassischen *Miller* schen Experiment des Jahres 1953 [28] unverkennbar ist, dass α -Aminonitrile die zentralen Zwischenprodukte der potentiell präbiotischen Bildungsweisen der α -Aminosäuren sind (vgl. z. B. [29]) und dass es dieser Verbindungstyp ist, der an der Wurzel jeglichen Versuchs einer chemischen Rationalisierung des Strukturtyps der Proteine sitzt. Experimente des *Miller* schen Typs wurden in der Regel⁶) in Gegenwart von H₂O durchgeführt, und – ähnlich wie bei *Strecker* schen Synthesen – direkt auf die Hydrolyse-Produkte hin untersucht. Dies entspricht dem in der präbiotischen Chemie bislang nie ernstlich angefochtenen Dogma, wonach das (ubiquitäre) H₂O das einzige für präbiotische Reaktionen in Frage kommende Lösungsmittel sei [30].

Die Forschung in der traditionellen präbiotischen Chemie war bisher auf das Kriterium der sogenannt 'präbiotisch plausiblen Reaktionsbedingungen' ausgerichtet; sie statuiert solche Bedingungen aus der Summe interdisziplinärer, vorwiegend geologischer, geochemischer und geophysikalischer Information und untersucht systematisch, welche Produkte sich bei Simulierung solcher Reaktionsbedingungen zu bilden imstande sind. Aus der Sicht heutiger synthetisch-organischer Chemie lässt sich jedoch die Auffassung vertreten, dass die Sensibilität organischer Moleküle auf ihre Umwelt, der Einfluss von Details des Reaktionsmilieus auf Reaktionsablauf und Produktverteilung derart sein kann, dass in Anbetracht des Übermasses an Unbestimmtheiten eine Statuierung dessen, was bezüglich Reaktionsbedingungen 'präbiotisch plausibel' bzw. 'unplausibel' sein soll, weitgehend problematisch ist.

Eine alternative und zugleich komplementäre Art des Eindringens in die Problematik potentiell präbiologischer Synthesen richtet sich zunächst auf *rein chemische* Kriterien aus, und zwar dergestalt, dass man auf dem Wege *retro*-synthetischer Analysen strukturelle Zusammenhänge zwischen Ziel- und Vorläufer-Strukturen herstellt, auf experimentellem Wege das Reaktivitätspotential entsprechender Verbindungen oder Verbindungstypen erforscht und dabei gezielt nach den Reaktionsbedingungen sucht, unter welchen solche Zusammenhänge sich verwirklichen. Dabei werden der *retro*-synthetischen Analyse wie auch der Wahl der zum Einsatz gelangenden Reaktionspartner, Reagentien und Katalysatoren definierte arbeitshypothetische Rahmenvoraussetzungen auferlegt, durch welche der besonderen Natur der Problematik Rechnung zu tragen versucht wird.

Stellt man sich der Aufgabe einer *retro*-synthetischen Rückführung der Strukturen von biologischen Grundbausteinen und Cofaktoren auf eine möglichst kleine Zahl von Ausgangsstoffen unter Einsatz einer möglichst kleinen Zahl von Reagens-, Reaktionsund Milieu-Typen, und lässt man sich dabei primär von rein chemischen Kriterien leiten, so stösst man auf folgenden Gesichtspunkt: Ein kohärentes Netzwerk potentiell präbiologischer Synthesewege zu Strukturen biologischer Grundbausteine und Cofaktoren lässt sich ungleich viel leichter dadurch entwickeln, dass man nicht nur den von der präbiotischen Chemie postulierten Ausschluss von O_2 [10] [12], sondern auch den Ausschluss von H_2O in die Rahmenvoraussetzungen aufnimmt. Im Vergleich zu den α -Aminosäuren besitzen die entsprechenden α -Aminonitrile ein bedeutend reicheres Reaktivitätspotential für poten-

⁶) Als wichtige Ausnahme vgl. die Arbeit von Ponnamperuma und Woeller [29].

tiell präbiologische Synthesen. Diese Überlegenheit betrifft die Reaktivität in nicht-oxidierendem Medium und beruht im wesentlichen auf der Tatsache, dass die CN-Gruppe nicht nur eine potentielle COOH-Funktion ist, sondern in α -Stellung zu einer NH₂-Gruppe sich zugleich auch als elektrophile Abgangsgruppe verhalten kann, wodurch α -Aminonitrilen zusätzlich das Reaktivitätspotential entsprechender Noraldehyde zukommt⁷). Diese wichtige Eigenschaft besteht *vor*, jedoch nicht mehr *nach* Hydrolyse der CN-Gruppe. H₂O, soweit es die Hydrolyse von CN-Gruppen impliziert, bedeutet die Vernichtung dieses Synthesepotentials.

¢≡Ν

ć≘Ν

Primäre Zielstrukturen eines unter Ausschluss von H₂O hergleiteten Synthesenetzwerks sind in der Regel nicht die Biomoleküle selbst, sondern deren Aza-Formen (vgl. Schema 5). In den meisten Fällen sind die biologischen Formen Produkte einer Partialhydrolyse ihrer Aza-Formen. Für die präbiotische Chemie impliziert das Postulat des H₂O-Ausschlusses die Vorstellung der zeitlichen Trennung einer eigentlichen (nicht-wässerigen) Aufbau-Phase von einer nachfolgenden Hydrolyse-Phase, in welcher die Produkte der Aufbau-Phase mit H₂O konfrontiert und durch Partialhydrolysen in die O-haltigen Formen übergehen. Solche Partialhydrolysen sind immer exergonische Reaktionen. Thermodynamisch bedeutet das Postulat des H₂O-Ausschlusses nichts anderes als die Forderung, die hohe freie Enthalpie der (CHN)-Ausgangsmaterialien für den Aufbau der strukturell komplexeren Produkte nutzbar zu machen, bevor die Entaktivierung durch Hydrolyse einsetzt.

Es war die Beschäftigung mit *retro*-synthetischen Analysen der vorerwähnten Art, die uns zur Auffassung geführt hat, dass eine gezielte experimentelle Bearbeitung der Chemie der Stoffklasse der α -Aminonitrile eine Voraussetzung für eine experimentell fundierte Beurteilung der Frage nach dem Ursprung der biologischen Cofaktor-Strukturen darstellt. Dabei soll versucht werden, Experimente unter Einhaltung der folgenden restriktiven Rahmenvoraussetzungen durchzuführen: *a*) Kein molekularer Sauerstoff, *b*) kein H₂O, *c*) Gasphase oder in Lösung (CH₃CN), *d*) Wärme, Licht und *e*) Basen, mineralische Oberflächen. In Wahl und Auslegung dieser Richtlinien wird der Frage nach sogenannter 'präbiotischer Plausibilität' vorerst sekundäre Bedeutung zugemessen; Vorrang hat die Erkennung bislang nicht nachgewiesener Verhaltensweisen von α -Aminonitrilen in Abwesenheit von H₂O.

In Schema 6 wird das Ensemble der vier strukturisomeren Nitril-Derivate $C_3H_4N_2$ 1–4 vorgestellt, welchen wir in unserer Herleitung von Strukturtypen biologischer Grundbausteine eine zentrale Rolle zuschreiben. Wir unterstellen, dass diese vier Nitrile letztlich Derivate von elementaren Ausgangsstoffen sind, wie sie von der präbiotischen Chemie (vgl. z. B. [10] [31]) generell postuliert und experimentell auch hinreichend dokumentiert wurden, hier im besonderen HCN, Cyanacetylen und NH₃. Unser Interesse fokussiert sich dabei auf die beiden Bausteine 2-Aziridincarbonitril (2) und 2-Amino-2-propennitril (3); Grund hiefür ist das für diese beiden Verbindungen zu vermutende, reiche Reaktivitätspotential, das geradezu den Anschein erweckt, spezifisch auf Biomolekül-Strukturen ausgerichtet zu sein. Von den vier isomeren $C_3H_4N_2$ -Derivaten war das 2-Amino-2-propennitril (3) bislang unbekannt; von ihm und von einem Weg zu seiner präparativen Herstellung handelt das folgende Kapitel. Von der Chemie des 2-Aziridincarbonitrils (2) wird eine später erscheinende Arbeit handeln.

C. Herstellung von 2-Amino-2-propennitril (3). – Von 2-Amino-2-propennitril darf eine an das HCN erinnernde, multiple Reaktivität der C-Zentren der (C=C)-Doppelbindung erwartet werden. Als Derivat des Acrylonitrils könnte das Molekül am β -ständigen

Methyliden-C-Atoms elektrophile Reaktivität aufweisen, als primäres Enamin müsste es an dieser Methyliden-Gruppe nukleophil zu reagieren vermögen (vgl. **3a** und **3b** in *Schema* 7). Entsprechendes gilt für das zur CN-Gruppe α -ständige C-Zentrum, wobei dessen elektrophile Reaktivität im Ketimin-Tautomeren (vgl. **5a**) zum Zuge kommen würde. Die Tautomeren **3** und **5** stellen in gewissen Sinne Aza-Formen komplementär (an Me- und Acyl-Gruppe) aktivierter Essigsäure dar, wobei der CN-Gruppe die Funktion einer elektrophilen Abgangsgruppe zukommt. Im Zuge der experimentellen Bearbeitung der Verbindung hat sich gezeigt, dass ihre vielleicht interessantesten Reaktionen darauf beruhen, dass sich dem Postulat der captodativen Radikal-Stabilisierung [32] entsprechend leicht ein ungepaartes Elektron auf dem die NH₂- und CN-Gruppe tragenden C-Zentrum lokalisieren kann (vgl. **3c**). Die für die Verbindung **3** zu erwartende Reaktivität der endständigen Methyliden-Gruppe kann demnach eine solche nukleophilen, elektrophilen und zudem radikophilen Typs sein.

Als Folge unseres Postulats [33], dass in 3 ein zentrales Zwischenprodukt für die präbiotische Chemie zu sehen sei, ist die Struktur der Verbindung vorerst rechnerisch durch *Saebo* und *Radom* [34], dann nach deren Herstellung im Jahre 1981 (vgl. [1]) mikrowellenspektroskopisch durch *Bauder* und *Ha* [35] und schliesslich röntgenstrukturanalytisch durch *Seiler* und *Dunitz* [36] untersucht worden. Des weiteren haben *Shevlin et al.* [37] kürzlich in einer wichtigen Arbeit über die Einwirkung von atomarem Kohlenstoff auf NH₃ in Betracht gezogen, dass 2-Amino-2-propennitril eines der (hypothetischen) Zwischenprodukte des von ihnen beobachteten Reaktionsgeschehens darstellt. Nebst HCN, CH₃CN und CH₃NH₂ entstehen aus atomarem C und NH₃ bei -196° (nach hydrolytischer Aufarbeitung) u. a. die Aminosäuren Glycin, Alanin und Asparaginsäure, sowie Serin bei Durchführung der Umsetzung in Anwesenheit von H₂O. Die Bildung der beiden letztgenannten Aminosäuren (primär als α -Aminonitrile) könnte mit dem intermediären Auftreten von 3 zusammenhängen, welches seinerseits durch Addition von HCN an Ketenimin entstehen könnte.

Die Addition von HCN an Ketenimin (dem unstabilen Tautomeren von CH_3CN) ist eine der potentiell präbiotischen Bildungsweisen von 3 und ist demgemäss auch eine der Fragestellungen gewesen, welche wir auf der Suche nach Herstellungsmethoden für 3 bearbeitet haben. Unsere vom Li-Salz des Ketenimins ausgehenden Versuche waren (bislang) jedoch erfolglos. Bei keinem der unter verschiedenen Reaktionsbedingungen (inkl. Silylierungsversionen, vgl. [1]: S. 18 und 118) durchgeführten Experimente konnten nach Kontakt des Li-Salzes von CH₃CN mit überschüssigem HCN bei -78° in THF HCN-Addukte nachgewiesen werden. Der Grund hiefür kann in einer primären *C*- statt *N*-Protonierung des Acetonitrilat-anions, oder in einer zu raschen Tautomerisierung intermediär gebildeten Ketenimins liegen. Ebenso erfolglos waren unsere Versuche, die an sich bekannte Umsetzung von Dicyan mit Li- oder Mg-organischen Verbindungen [38] auf eine Herstellung des 2-Iminopropannitrils (**5**) anzuwenden, um durch anschliessende Tautomerisierung zu **3** zu gelangen. Weder nach direkter, noch nach silylierender oder acylierender Aufarbeitung zahlreicher Umsetzungen von CH₃MgBr (oder CH₃MgCl), CH₃Li oder (CH₃)₂Cd gelang es, entsprechende Derivate von **3** zu isolieren. Die ¹H-NMR-spektroskopische Verfolgung der Umsetzung zeigte, dass der erste Schritt der nukleophilen Substitution des ersten CN-Ions zwar eintritt, offenbar jedoch die Elimination des zweiten CN-Ions zu CH₃CN unter allen untersuchten Bedingungen zu rasch erfolgt (vgl. [1]: S. 17 und 114).

N-Alkyl-Derivate von aliphatischen α,β -ungesättigten α -Aminonitrilen waren zu Beginn unserer Arbeiten mehrfach beschrieben [39] [40], kaum jedoch Vertreter mit unsubstituierter NH₂-Gruppe. Da eine *N*-Alkyl-Gruppe generell bei Enaminen für die Stabilität der Verbindungen wesentlich ist und zudem eine Methyliden-Struktur der Enamin-Doppelbindung ein im Vergleich zu alkylierten Doppelbindungen labilisierendes Strukturelement darstellt, bestand Ungewissheit über die Isolierbarkeit von 3⁸). Die Lösung des Problems kam aus einer Untersuchung der Eigenschaften des Modell-Systems 2-(*tert*-Butylimino)propannitril (**8**; vgl. Schema 8). Dieses haben wir in Anlehnung

an die Arbeiten von *Boyer* und *Kooi* [40] durch *N*-Chlorierung von 2-(*tert*-Butylamino)propannitril (6) mit *tert*-Butyl-hypochlorit und direkt anschliessender Dehalogenierung von 7 mit 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) bei RT. gewonnen und durch Deprotonierung mit LiN(i-Pr)₂ in THF bei -78° und Aufarbeitung mit Na₂CO₃/H₂O in hoher Ausbeute in das *N*-(*tert*-Butyl)-Derivat 9 von 3 übergeführt. Das Imin/Enamin-Gleichgewicht 8=9 in siedendem Benzol lag indessen fast völlig auf der Seite des Imin-Tautomeren 8.

Beim Versuch, diese Reaktionsfolge zwecks Herstellung des unsubstituierten 3 auf das unsubstituierte Alaninnitril $(10)^\circ$) zu übertragen (Schema 9), wurde weder das entsprechende Imin 5, noch allfällig daraus entstandenes 3 isoliert. Dies interpretierte man dahin, dass im Reaktionsmilieu der HCl-Eliminationsstufe beim Aufwärmen auf RT. allenfalls gebildetes 5 durch HCN-Elimination in CH₃CN zerfällt. Dieser Zerfall liess sich dadurch verhindern, dass man das Reaktionsgemisch bei -78° vor dem Aufwärmen mit

⁸) In Vorstudien zum Projekt der Herstellung von 3 hat *Schröder* [41] in unserem Laboratorium das kristalline *N*-Benzoyl-Derivat von 3 durch Pyrolyse von *N*,*N'*-(1-Cyanoethylen)bis(benzamid) bei 290°/10 Torr erhalten.

⁹) Im *Exper. Teil* wird eine gegenüber den Literaturangaben [42] von *v. Planta* [43] verbesserte Vorschrift der *Strecker* schen Synthese angegeben (MeOH statt H₂O als Lösungsmittel).

 $(CH_3)_3SiCl/Et_3N$ behandelt, d. h. das 2-Iminopropannitril (5) durch N-Silylierung abfing. Des weiteren wurde beobachtet, dass sich dieses N-(Trimethylsilyl)imin-Derivat 12 beim Erwärmen vollständig in das entsprechende N-(Trimethylsilyl)enamin-Derivat 13 umlagerte.

Die optimierte Durchführungsart der eher heiklen Reaktionsfolge (vgl. Schema 9) verlangt eine langsame Zugabe von exakt 1 Äquiv. tert-Butyl-hypochlorit zu einer auf 0° gekühlten Lösung von 10 in CH₂Cl₂ (N-Monochlorierung 10 \rightarrow 11), Addition von exakt 1 Äquiv. Et₃N bei -78° (11 \rightarrow 5; Niederschlag von Et₃N·HCl), unmittelbar gefolgt von exakt 1 Äquiv. des äquimolaren Gemisches (CH₃)₃SiCl/Et₃N in THF ebenfalls bei -78° (5 \rightarrow 12), Erwärmen auf RT. und (nach Abfiltration ausgefallenen Et₃N·HCl) kurzes Erhitzen der Lösung unter Rückfluss zwecks Vervollständigung der Tautomerisierung 12 \rightarrow 13. Das N-(Trimethylsilyl)enamin 13 ist eine äusserst empfindliche Verbindung, die aber durch (rasche) Kugelrohrdestillation (120°/15 Torr) gereinigt und isoliert werden kann. Die Desilylierung von 13 zu 3 erfolgt – wie unerwartet beim Versuch der Herstelung eines Ni(II)-Komplexes von 12/13 beobachtet worden war – auf präparativ einfache und praktisch quantitative Weise durch kurzes Schütteln von 12 in einer Aufschlämmung von NiCl₂·6 H₂O in CH₂Cl₂/CH₃CN.

Die silylierende Aufarbeitung nach der Chlorierungs-Dehydrochlorierungstufe $10\rightarrow 5$ gewährleistet nicht nur die Isolierung des Produkts, sondern bedeutet auch eine einfache Lösung des an sich kritischen Tautomerisierungsproblems. Dass das Gleichgewicht $12 \rightleftharpoons 13$ im Gegensatz zum entsprechenden Gleichgewicht $8 \rightleftharpoons 9$ in der N(tert-Butyl)-Reihe (vgl. Schema 8) auf der Enamin-Seite liegt, passt einerseits zur Erfahrung, dass die $(CH_3)_3$ Si-Gruppe nichtbindende Elektronenpaare an Nachbarzentren zu stabilisieren vermag (analog einer Acyl-Gruppe, wenn auch viel schwächer), anderseits auch zur Vorstellung, dass die $(CH_3)_3$ -Si-Gruppe als metalloide σ -Donor-Gruppe die Enamin-Form stabilisiert (vgl. das Gleichgewicht der Li-Salze von 8 und 9). Für das freie 3 bleibt die Frage nach der Gleichgewichtslage $3 \rightleftharpoons 5$ in Lösung (leider) offen, und zwar infolge der Nebenreaktionen, welche Versuche zur Ermittlung der Gleichgewichtslage stören (HCN-Elimination aus 5, Oligomerisation von 3 bei Katalyse durch Säuren; zum Verhalten in der Gasphase, vgl. unten).

Das Aminopropennitril 3 kann durch *rasche* Kurzwegdestillation (*ca.* 120°, 17 Torr), als dünnflüssige farblose Flüssigkeit isoliert und in Lösung spektroskopisch charakterisiert werden (vgl. *Exper. Teil*). Sichere Aufbewahrung der reinen Verbindung verlangt Einfrieren in (z. B.) flüssigem N₂; Belassen bei RT. kann innert kurzer Zeit zu Polymerisation führen. *Ca.* 10% Lösungen in reinem CH₂Cl₂ lassen sich bei -20° tagelang und bei -30° wochenlang ohne nennenswerte Zersetzung aufbewahren; zwischen 0° und RT. können sich solche Lösungen jedoch innert Stunden weitgehend zersetzen.

Verbindung 3 zeigt im Elektronenspektrum in CH₂Cl₂ ein Absorptionsmaximum bei 241 nm ($\varepsilon = 6500$). In seinem IR-Spektrum in CDCl₃ ist die der Streckschwingung der (C=C)-Doppelbindung entsprechende Bande bei 1625 cm⁻¹ die intensivste. Sein ¹H- und ¹³C-NMR-Spektrum sind konstitutionsgerecht (vgl. Fig. 3 und 4 im Exper. Teil). Das Mikrowellenspektrum von 3 ist von Bauder et al. [35] publiziert worden. Im Zuge der Messung des Gasphasen-IR-Spektrums von 3 haben er und Gunde [44a] die wichtige Beobachtung gemacht, dass sich 3 in der Gas-Phase langsam tautomerisiert: eine gas-förmige Probe in einem Glasgefäss bei ca. 1 Torr/RT. im Dunkeln lag nach zwei Monaten praktisch vollständig (nebst geringen Mengen CH₃CN und HCN) als das Imin-Tautomere 5 vor, dessen Konstitution durch das IR- und Mikrowellenspektrum [44b] belegt wurde. In der Gas-Phase ist im Gleichgewicht 3⇒5 demnach das Imin-Tautomere 5 die thermodynamisch stabilere Form. Von den durch die Tieftemperatur-Röntgenstrukturanalyse von 3 (vgl. [36]) erhaltenen Daten ist hier der Befund hervorzuheben, dass die NH₂-Gruppe im Kristall deutlich pyramidalisiert vorliegt (Winkelsumme 340,6°); dies legt die Möglichkeit nahe, dass bei Reaktionen, in denen 3 als Nukleophil zu agieren hat, dies unter Umständen bevorzugt an der NH₂-Gruppe geschieht. Pyramidalität der NH₂-Gruppe wurde rechnerisch vorausgesagt [34] und auch mikrowellenspektroskopisch impliziert [35].

Der in Schema 9 formulierte Bildungsweg zu 3 versteht sich ausschliesslich als Methode einer Laboratoriumsherstellung; dadurch wird vorab eine experimentelle Überprüfung der für die Verbindung vermuteten Reaktivität ermöglicht. Potentiell präbiotische Bildungsweisen der Verbindung, d. h. solche, die innerhalb der im Kap. B umschriebenen Rahmenbedingungen liegen würden, sind für 3 bislang nicht untersucht worden.

Die Herstellung von höheren (C-alkylierten) Homologen von 3 ist im Vergleich zu derjenigen des unsubstituierten 3 bedeutend weniger heikel. Wie die in *Schema 10* formulierte Herstellung der beiden diastereoisomeren 2,3-Didehydroleucinnitrile (E)- und (Z)-16 aus Leucinnitril (14) zeigt, erwies sich das Imin-Derivat 15 als gut isolierbar, und seine Tautomerisierung in das Diastereoisomerengemisch der beiden Enamine gelang durch einfaches Erhitzen in THF-Lösung¹⁰).

¹⁰) Verbindung 15 wurde von Rüger [45] hergestellt (s. Exper. Teil). Auf analoge Weise liessen sich auch 2,3-Didehydrovalinnitril und die beiden diastereoisomeren 2-Amino-2-butennitrile synthetisieren (Versuche von Chinnasamy [46] und Goldener [47]; vgl. [1]: S. 92–99).

D. Zur Chemie von Aminopropennitril 3: Bildung von Glutamindinitril (21). – Am Ausgangspunkt unserer Untersuchungen über die Chemie von 3 hat uns vor allem der strukturelle Zusammenhang dieser Verbindung mit Nitril-Formen von proteinogenen Aminosäuren beschäftigt. Vom (scheinbar¹¹)) offensichtlichen Zusammenhang mit den Nitril-Formen des Alanins, Serins, Glycins, Cysteins und Asparagins abgesehen, interessierte dabei vorab der Zusammenhang der Struktur von 3 mit derjenigen der Dinitril-Form des Glutamins; die Glutaminsäure gehört zu den vier proteinogenen α -Aminosäuren des ursprünglichen *Miller* schen Experiments [28]. Wie *Schema 11* erläutert, korrelieren die Strukturen von 3 und Glutamindinitril *via* den Reaktionstyp einer Schwanz/ Schwanz-Dimerisierung von 3. Der alternative Dimerisationsmodus (Kopf/Schwanz) führt dagegen zum Strukturtyp der Acetessigsäure in ihrer Aza-Form (3-Amino-2-butennitril).

Kopf/Schwanz-Dimerisationsmodus

Schwanz/Schwanz-Dimerisationsmodus

Der Reaktionstyp der Kopf/Schwanz-Dimerisation von 3 lässt sich in apolaren Lösungsmitteln durch geringe H⁺-Konzentration leicht auslösen; die Charakterisierung des Reaktionsablaufs war indessen eher schwierig. Dies lag an der hohen Labilität der primären Dimerisationsprodukte sowie an der ebenfalls leicht eintretenden, zur Dimerisation isomechanistischen Oligomerisation. Einigermassen befriedigend charakterisieren liess sich die Dimerisation durch Verwendung von α -Pyridoniumtosylat (= 1,2-Dihydro-2-oxopyridinium-(*p*-toluolsulfonat)) als Katalysator¹²). Diese in *Schema 12* formulierte Reaktion $3 \rightarrow 17$ (*ca.* 1M Lösung in CH₂Cl₂, in Gegenwart von suspendiertem Katalysator) erfolgt bei RT. innert min. Das Primärprodukt 17 liess sich nach sofortiger Bindung der TsOH an Polymerbase ((Dimethylaminomethyl)polystyrol) chromatographisch (verlustreich) isolieren und spektroskopisch charakterisieren. Die Verbindung ist labil und geht bei RT. durch HCN-Elimination *via* 18 (¹H-NMR) sukzessive in das Gemisch der diastereoisomeren 3-Amino-2-butennitrile (E/Z)-19 über.

¹¹) In orientierenden Vorversuchen misslang die Addition von Nukleophilen wie H_2O , H_2S oder HCN an die 3-Stellung von 3.

¹²) Auch Pyridinium-tosylat in CH₂Cl₂ ist ein gut wirkender Katalysator für die Kopf/Schwanz-Dimerisierung von 3, jedoch infolge Abtrennschwierigkeiten bei der chromatographischen Produktaufarbeitung weniger geeignet. Zur Verwendung von α-Pyridonium-tosylat als Katalysator von anderen Aminonitril-Reaktionen vgl. Schema 16.

Zu den Ergebnissen eingehender Voruntersuchungen sowohl an der Modell-Verbindung (*tert*-Butylamino)-2-propennitril (9) wie auch an 3 selbst gehört die Tatsache, dass es uns auf keine Weise gelungen ist, bei diesen Verbindungen durch Säure- oder Basen-Katalyse Reaktionen hervorzurufen, die einer Schwanz/Schwanz-Dimerisation entsprechen würden¹³). In der Folge zeigte es sich indessen, dass der gesuchte Reaktionstyp der Domäne der Photochemie von 3 angehört.

Unsere Versuche zur photochemischen Dimerisierung von 3 gingen von der Vorstellung aus, dass elektronisch angeregtes 3 im konformationell relaxierten Triplett-Zustand ein Diradikal ist, in welchem eines der ungepaarten Elektronen im π -System residiert, das sich von der NH₂-Gruppe über das α -C-Atom auf die CN-Gruppe erstreckt (captodativ stabilisiertes Radikal [32]), und das andere Elektron auf dem Methyliden-C-Atom lokalisiert ist, wo es sich in einem sp^{ca.3}-Orbital befindet, dessen Achse orthogonal zur p-Achse des benachbarten π -Systems steht (vgl. 3(T) in *Schema 13* und die Berechnungen von *Bauder* und *Ha* [35]). Ein solches Diradikal sollte vorweg die Reaktivität eines unstabilisierten, primären Alkyl-Radikals aufweisen und sich demzufolge an das Methyliden-C-Atom eines nicht-angeregten Moleküls von 3 anlagern können, da so ein Triplett-1,4-Diradikal entsteht, in dem nun *beide* ungepaarten Elektronen in captodativ stabilisierten π -Systems sind. Nach (Triplett -Singulett)-Konversion kann (nebst Rückfall in 3) ein intramolekularer H-Transfer zum aliphatischen Schwanz/Schwanz-Dimeren oder ein Ringschluss zum Dimeren mit Cyclobutan-Struktur erfolgen; Abspaltung von HCN aus ersterem ergäbe das Glutamindinitril.

Dimerisationsreaktionen von α, α -captodativ substituierten Olefinen zu Cyclobutan-Derivaten sind in der Literatur mehrfach erwähnt (vgl. die in [32] gegebene Übersicht); eines der bemerkenswerten Beispiele ist die bereits thermisch bei RT. erfolgende [2 + 2]-Dimerisation von 2-[Alkyl(bzw. Aryl)thio]acrylonitrilen zu 1,2-Di-[alkyl(aryl)thio]cyclobutan-1,2-dicarbonitrilen [49].

Bestrahlte man entgaste konzentrierte Lösungen von 3 in CH₃CN in Gegenwart eines Triplett-Sensibilisators mit einer Hg-Mitteldrucklampe, so liessen sich in bis zu 75% Gesamtausbeute die beiden (kristallinen) diastereoisomeren Cyclodimeren t-20 und c-20 isolieren (Schema 13). In solchen und anderen Bestrahlungsansätzen wurde eingehend, jedoch in allen Fällen erfolglos, nach aliphatischen Schwanz/Schwanz-Dimeren des in Schema 11 formulierten Typs gesucht. Als Sensibilisatoren sind Benzophenon, Thioxanthon und Benzil¹⁴) mit vergleichbarem Erfolg verwendet worden; bei Verwendung von Benzophenon wurden geringe Mengen des Oxetans 22 als Nebenprodukt isoliert. Ohne Sensibilisator bildeten sich auch bei langer Bestrahlung (im Quarzgefäss) die Cyclodimeren 20 nur in geringer Menge; ihre Bildung wurde unter diesen Bedingungen durch

¹³) Vgl. demgegenüber z. B. die erfolgreichen nukleophilen Additionen (von Enolaten) an 2-(N-Phenyl-Nmethylamino)acrylonitril [48].

¹⁴) Triplettenergien: Benzophenon 68,5 kcal, Thioxanthon 65,5 kcal, Benzil 53,7 kcal [50].

konkurrierende photoinduzierte Veränderung von 3 limitiert¹⁵). Das in ebenfalls nur geringen Mengen isolierte Nebenprodukt 23 ist formal ein Umsetzungsprodukt des *cis*-Dimeren *c*-20 mit Alaninnitril. Sein Ursprung wurde insofern nicht geklärt, als ungewiss bleibt, ob das zu seiner Bildung notwendige Alaninnitril durch photochemische Reduktion des Imin-Tautomeren 5 von 3 während der Umsetzung entstanden ist¹⁶).

¹⁵) Eine der Veränderungen ist inzwischen als photoinduzierte (Singulett)-Umwandlung von 3 in 2-Aziridincarbonitril (2) identifiziert worden (Experimente von Prof. J. Ferris in unserem Laboratorium; vgl. eine demnächst erscheinende Zuschrift in Angew. Chem.).

¹⁶) Die Möglichkeit photochemisch induzierter Reduktionen von α-Iminonitrilen zu α-Aminonitrilen in Gegenwart von Glycinnitril ist am Beispiel des 2-Iminoleucin-Derivats 15 in unserem Laboratorium experimentell nachgewiesen worden [45].

Die Konfigurationszuordnung der beiden Dimeren t-20 und c-20 ruht auf dem Befund, dass das *cis*-Isomere (Schmp. 92°) bei der Umsetzung mit (–)-Camphanoyl-chlorid ein konfigurativ einheitliches Diamid c-20a ergab, während die analoge Umsetzung des *trans*-Dimeren t-20 (Schmp. 117°) mit (–)-Camphanoyl-chlorid zu zwei chromatographisch trennbaren, diastereoisomeren Diamiden t-20a/t-20b führte.

Die Cyclobutan-Struktur der Dimeren 20 ist, nicht unerwartet, thermisch relativ labil. So ergab ein orientierender Versuch, in welchem eine *ca*. 0,1M Lösung von *c*-20 in CH₃CN 30 min auf 100° erhitzt wurde, ein Gemisch, in welchem ¹H-NMR-spektroskopisch und im DC Edukt *c*-20 und Aminopropennitril 3, sowie geringe Mengen des *trans*-Dimeren *t*-20 erkannt wurden.

Die Nichtentstehung von offenkettigen Schwanz/Schwanz-Dimeren von 3 bedeutete keineswegs, dass damit die ursprüngliche Erwartung, durch photochemische Dimerisation von 3 zu Glutamindinitril zu gelangen, aufgegeben werden musste; ganz im Gegenteil: die cyclischen Dimeren t/c-20 erwiesen sich als perfekte Vorläufer von Glutamindinitril (21), indem sie bei Behandlung mit einer starken organischen (Guanidin) Base in CH₃CN einheitlich in dieses übergingen (Schema 13)¹⁷). Die Reaktion dürfte via eine durch Entspannung geförderte Fragmentierung des cyclischen Imino-aminonitrils 20c zustande kommen, das nach Elimination von 1 Äquiv. HCN aus t- oder c-20 entstehen kann; ein ähnlicher Fall ist in [51] beschrieben. Unter anderen Reaktionsbedingungen (vgl. Schema 14) bildete sich ein Gemisch von Glutamindinitril (21) und seinem cyclisationsprodukt von 21, sondern bildet sich vermutlich durch eine Reaktionsfolge, in welcher die (C,C)-Fragmentierung vor der HCN-Eliminierung einsetzt, wobei das Fragmentierungsprodukt 20d (Iminonitril-Derivat aus Schema 11) unter HCN-Abspaltung entweder in 21 übergehen oder zu 24 cyclisieren kann.

¹⁷) Die Umsetzung 20→21 mit der Guanidin-Base als Katalysator ist von v. Planta [43] durchgeführt worden (s. Exper. Teil).

Schema 14 zeigt eine Synthese des Pyroglutamin-Derivats 24 aus (racemischem) Pyroglutaminsäure-ester 25 über 26-28. Bemerkenswert daran ist u. a. die Beobachtung, dass für das Gelingen der Aminierungsstufe $28 \rightarrow 24$ die Anwesenheit von NH₄⁺-Ionen wichtig ist; bei *Abwesenheit* von Ammonium-tosylat liess sich *kein* 24 isolieren.

Racemisches Glutamindinitril (21) [52] als Ausgangsmaterial der nachfolgend beschriebenen Versuche (und zum Vergleich mit dem Produkt der Fragmentierung $20 \rightarrow 21$) wurde in grösseren Mengen auf konventionell präparativen Wegen ausgehend von Acrylaldehyd bzw. 4-Oxobutannitril hergestellt (vgl. *Exper. Teil*).

E. Des(aminomethyl)porphobilinogen-dinitril (30): ein rahmengerechter Bildungsweg aus Glutamindinitril (21) und Glycinnitril. – In den ursprünglichen Versuchen zur rahmengerechten *retro*-synthetischen Verknüpfung des Strukturtyps der Uroporphyrinogene mit 3 war das Porphobilinogen-dinitril (29; *Schema 15*) die Zielstruktur gewesen; diese Verbindung ist die rahmengerechte Aza-Form des Porphobilinogens, des zentralen Zwischenprodukts in der heutigen Biosynthese der biologischen Porphinoide. Solch ein biomimetisch ausgerichteter Plan muss jedoch auf eine generelle Schwierigkeit stossen, welche von experimentellen Versuchen zur biomimetischen Chemosynthese des Porphobilinogens bekannt ist, die Schwierigkeit nämlich, dass die nicht-enzymatische Selbstkondensation der 5-Aminolävulinsäure vorwiegend zu einem zu Porphobilinogen isomeren

Pyrrol-Derivat führt [53]. In unserem eigenen Laboratorium haben orientierende Untersuchungen zur Selbstkondensation des 5-Aminolävulinonitrils diese Schwierigkeiten bestätigt [54]. Zwei Gründe haben uns dann veranlasst, nicht die Porphobilinogen-Struktur 29 selbst, sondern ihr Des(aminomethyl)-Derivat 30 als Zielstruktur anzugehen. Die erste war die in Versuchen zu einer konventionell-präparativen Synthese von 29 gemachte Erfahrung, dass sich sein leichter zugängliches Des(aminomethyl)-Derivat 30 säure-katalysiert in Gegenwart von Formaldehyd-dimethylacetal leicht zum statistischen Gemisch der vier isomeren Uroporphyrinogen-octanitrile tetrameroidisiert [5] [55] (vgl. Kap.G). Zum zweiten haben wir bei der Bearbeitung eines potentiellen Monoterpen-Vorläufers der Konstitution 31 die richtungsweisende Beobachtung gemacht [56], dass diese Verbindung pyrolytisch in Cyclisationsprodukte der Konstitutionen 32-34 übergehen kann¹⁸). Dabei führte uns die mechanistische Deutung der Bildung des Fünfring-Produkts 32 via die hypothetischen Zwischenprodukte 31a und 32a auf die Spur des Ylids 35a und seines cyclischen Valenztautomeren 35b. Mit dieser Spur war der Plan gewonnen (vgl. Schema 15), durch thermische Kondensationen von Glutamindinitril und Glycinnitril zum α,β ungesättigten Iminonitril 35 zu gelangen, hieraus via die Ylid-Cyclisierung $35a \rightarrow 35b$ HCN zu eliminieren und somit ausgehend von 3 über 21 auf rahmengerechtem Wege zum Des(aminomethyl)porphobilinogen-dinitril (30) zu kommen. Schema 16 resümiert die experimentelle Realisierung dieses Plans.

Erhitzte man Glutamindinitril (21) ohne Lösungsmittel unter N2 während Tagen auf 80°, so bildete sich praktisch ausschliesslich das Gemisch der beiden diastereoisomeren Dimeroide¹⁹) 36a, b im ungefähr äquimolaren Verhältnis. Die beiden Isomeren wurden nach chromatographischer Trennung in je ca. 25% Ausbeute kristallin isoliert und charakterisiert. Die Dimeroidisierung¹⁹) $21 \rightarrow 36a$, b entspricht einer vom Alaninnitril her [57] bekannten, allgemeinen Reaktion von α -Aminonitrilen, die vermutlich via die Reaktionsfolge HCN-Elimination, Dimerisation mit Edukt-Molekül, NH₃-Elimination zum dimeroiden Imin (vgl. 37) und HCN-Readdition abläuft. Destillation z. B. des Dinitrils 36a führte praktisch quantitativ zu 37; dieses Iminonitril ist in Übereinstimmung mit Literaturerfahrungen über die Konfiguration von Aldiminen (vgl. [58]) konfigurativ einheitlich (E). Seiner Natur als Imin-Derivat eines Aldehyds entsprechend, liess sich 37 unter verschiedenen Bedingungen durch Abspaltung eines Glutamindinitril-Bausteins mit sich selbst 'aldolisieren', wobei unter geeigneten Bedingungen, z.B. mit α -Pyridonium-tosylat als Katalysator in THF bei 50° das Glutamindinitril-Trimeroid 38 als binäres Diastereoisomerengemisch $((E)/(Z) \approx 6:1)$ in guter Ausbeute entstand. Die Charakterisierung eines konfigurativ einheitlichen Vertreters dieses Konstitutionstyps erfolgte im Falle des Diastereoisomerengemisches 44 ($(E)/(Z) \approx 7$), das man auf analoge Weise durch 'Aldolisierung' des aus Glutamin- (21) und Asparagindinitril (42) abgeleiteten Iminonitrils 43²⁰) erhielt. Aus diesem Reaktionsprodukt liess sich das Hauptisomere

¹⁸) Die Cyclisationsprodukte 32 und 33 bildeten sich u. a. bei der Gasphasen-Pyrolyse von 31 über basischem Glaspulver bei 300°; das labile Dien-amin 34 entstand (in geringer Menge) bei GC von 31 an Carbowax 20 M (basisch) auf Chromosorb P-NAW bei ca. 200°; vgl. [56].

¹⁹) Als 'Oligomeroide' bezeichnen wir Produkte aus Reaktionen mit identischen Reaktionspartnern, welche im Unterschied zu echten Oligomeren mit dem Ensemble der Edukte bezüglich ihrer Elementarzusammensetzung nicht identisch sind. Entsprechende Bedeutung soll dem Begriff 'Oligomeroidisierung' zukommen.

²⁰) Präparativ hergestellt durch Umsetzung von Asparagindinitril (42; aus Fumarodinitril und NH₃) mit 4-Oxobutannitril in CH₂Cl₂ in Gegenwart von Molekularsieb 4 Å (vgl. *Exper. Teil, Exper. 8.11*).

(*E*)-44 leicht in kristalliner Form isolieren (Schmp. 104°). Die Konfigurationszuordnung beruht auf der stark unterschiedlichen Lage des Aldimin-H-Signals im ¹H-NMR-Spektrum (CDCl₃) der beiden Diastereoisomeren (8,14 ppm für (*E*) und 8,66 ppm für (*Z*)). Dieser Unterschied tritt auch bei den entsprechenden Derivaten der Glutaminyl-glutamin-Reihe (8,16 und 8,61 ppm für (*E*)- bzw. (*Z*)-**38**) und ebenso der Glutaminyl-glycin-Reihe (8,11 und 8,56 ppm für (*E*)- bzw. (*Z*)-**35**; vgl. unten) auf; im letzten Fall ist die Zuordnung durch NOE-Analyse bewiesen worden (vgl. *Exper. Teil*).

Beide 'Aldolisierungsprodukte' 38 und 44 liessen sich H⁺-katalysiert (α-Pyridoniumtosylat in THF bzw. Montmorillonit in CH₃CN) mit überschüssigem Glycinnitril zum (E/Z)-Gemisch 35 'umiminieren', in welchem nunmehr zwei Glutamin-Bausteine mit einem Glycinnitril-Baustein vereinigt sind. Zu diesem wichtigen Zwischenprodukt führte auch ein direkter Weg: Erhitzen von Glutamindinitril (21) in Gegenwart eines 10fachen Überschusses von Glycinnitril ergab in hoher Ausbeute das gemischte Kondensationsprodukt 39, welches bei der Destillation unter HCN-Abspaltung selektiv in das Iminonitril 40 überging²¹). Die Dimeroidisierung dieser Verbindung zum Zielprodukt 35 wurde unter diversen Reaktionsbedingungen durchgeführt, u.a. auch mit dem sozusagen rahmengerechten Katalysatorpaar Montmorillonit/2-Amino-5-methylpyrimidin in CH₃CN. Im Unterschied zu den analogen Reaktionen von 37 und 43 bildete sich aus 40 unter solchen Bedingungen nicht nur das Dimeroidisierungsprodukt 35 (E/Z), sondern auch (unter den in Schema 16 aufgeführten Bedingungen in überwiegender Menge) ein trimeroides Diastereoisomerenpaar der Konstitution 41 (cis/trans). Dieses stellt das Produkt einer Diels-Alder-analogen Cycloaddition der Dimeroide 35 (E/Z) mit dem Monomer 40 dar. Die beiden Diastereoisomeren 41 waren chromatographisch trennbar; ihre Konfiguration bleibt indessen unbestimmt. Durch Pyrolyse bei (z. B.) 300°/0,005 Torr war die Cycloaddition $35 + 40 \rightarrow 41$ leicht umkehrbar: das kristalline Isomere des Diastereoisomerenpaars 41 ergab dabei in hoher Ausbeute je 1 Äquiv. des Monomers 40 und des (praktisch diastereoisomerenfreien) (E)-Dimeroids 35. Das unterschiedliche Produktbild bei den Dimeroidisierungen der Imin-Derivate 40, 37 und 43 ist zweifellos durch den sterischen Faktor bedingt. Cycloadditionsprodukte des Typs 41 sind übrigens in unserem Laboratorium zuvor von Hess [59] bei Oligomeroidisierungsversuchen in der Alanyl-glycin-Reihe beobachtet worden.

In orientierenden Experimenten ist durch basenkatalysierte Deuterierung die Frage nach der relativen kinetischen Azidität der verschiedenen CH_2 -Protonen des Imin-Derivats **35** (*E/Z*) geprüft worden. Unter Bedingungen (1 Äquiv. 1,4-Diazabicyclo-[2.2.2]octan, 10 Äquiv. D₂O, CD₃CN, RT.), da die CH₂-Gruppe des *C*-gebundenen CH₂CN-Substituenten z. B. zu 6% deuteriert wurde, fand sich die CH₂-Gruppe des *N*-gebundenen CH₂CN-Substituenten zu 82% deuteriert, während die allyl-ständige CH₂-Gruppe des Glutamin-Restes undeuteriert blieb. Analog verhielt sich das System in CH₃OD als Lösungsmittel (nebst partieller Addition von CH₃OD an die Imino-Gruppe). Dass sich die CH₂-Gruppe des Glycin-Bausteins als die acideste aller in **35** (*E/Z*) vorhandenen CH₂-Gruppen erwies, ist für die Frage nach den möglichen Reaktionswegen für den Übergang von **35** (*E/Z*) in das Pyrrol-Derivat **30** von Bedeutung.

Die eine Abspaltung von HCN implizierende Cyclisierung von 35 (E/Z) zum Zielprodukt Des(aminomethyl)porphobilinogen-dinitril (30) gelang auf Anhieb unter Bedingungen einer 'flash'-Vakuum-Pyrolyse (FVP) über Quarz (*ca.* 0,2 Torr, in N₂, 350–600°). Dabei stellte sich heraus, dass das Reaktionsergebnis stark von den apparativen Gegebenheiten abhing, und die Ausbeute hauptsächlich durch die Schwierigkeit limitiert wurde, das Edukt unzersetzt in die Gas-Phase zu befördern²²). Das gesuchte Pyrrol-Derivat 30 war der Hauptbestandteil (*ca.* 20%) des aus solchen Experimenten gewonnenen

²¹) Präparative Mengen von 40 wurden durch Kondensation von 4-Oxobutannitril mit Glycinnitril hergestellt (vgl. Exper. Teil, Exper. 8.7 und Fussnote 20).

²²) Herrn Dr. Martin Karpf und Prof. André Dreiding, Universität Zürich, danken wir für wertvolle apparative Informationen zur Durchführung von FVP.

Materials; die Verbindung wurde nach chromatographischer Reinigung in kristalliner Form isoliert und IR-, ¹H-NMR- und ¹³C-NMR- sowie massenspektroskopisch mit einer auf unabhängigem Wege synthetisierten Probe von **30** [5] [55] (vgl. auch *Kap. F*) identifiziert. Die Pyrolyse liess sich mit einer etwas besseren Materialbilanz direkt am Trimeroid **41** durchführen; dabei war allerdings die Reinisolierung von **30** durch das sich aus dem Monomer **40** pyrolytisch bildende Succinodinitril (vgl. unten) erschwert.

Wir prüften den Reaktionstyp der thermisch induzierten Pyrrol-Bildung aus N-Alkylidenglycinnitril-Derivaten auch an der einfachsten Modellsubstanz **45** (Schema 17); diese war durch Umsetzung von Acrylaldehyd mit Glycinnitril zugänglich. Über einen breiten Pyrolyse-Temperaturbereich hinweg (ca. 300–700°) bildete sich Pyrrol als Hauptprodukt; an mechanistisch aufschlussreichen Nebenprodukten wurden nebst HCN die diastereoisomeren Crotono- und Isocrotononitrile identifiziert. Der in Anbetracht der Natur der Reaktionsbedingungen wahrscheinliche Reaktionsweg umfasst die primäre Bildung des Carbens **45a** durch α -Elimination von HCN, gefolgt von Cyclisation zu den Zwischenprodukten **45b** und/oder **45c**, die sich beide zu Pyrrol umlagern können; **45c** kann sich ausserdem durch eine En-Reaktion (vgl. **45d**) in Isocrotononitril (Z) umwandeln.

Wie entscheidend die zur (C=N)-Bindung konjugierte (C=C)-Bindung für den Verlauf obiger Pyrolysen ist, zeigen die Befunde, welche bei der unter analogen Bedingungen durchgeführten Pyrolyse des Glutaminyl-glycin-Dimeroids **40** gemacht wurden (*Schema* 17). Das Produktgemisch war vergleichsweise sehr komplex, aus insgesamt 12 identifi-

zierten Reaktionsprodukten ragen Succinodinitril, CH3CN und Acrylonitril als Hauptprodukte heraus; Pyrrol war nur spurenweise anwesend. Wie ein separat durchgeführter Testversuch mit Succinodinitril bestätigte, ist das Acrylonitril sehr wahrscheinlich das unter den Reaktionsbedingungen durch HCN-Elimination entstandene Folgeprodukt des Succinodinitrils, und dieses offenbar das Produkt der Abspaltung von CH₃CN aus 40. Die Anwesenheit von Glutarodinitril im Gemisch der Reaktionsprodukte (ca. 7%) ist bemerkenswert, jedoch mechanistisch mehrdeutig; eine für die Chemie der α -Aminonitrile interessante Möglichkeit wäre die durch das Formelbild 40b angedeutete. Es ist jedoch auch denkbar, dass sich 40a über das entsprechende Nitril-isonitril thermisch in das Glutarodinitril umwandelt. Das Auftreten des Konstitutionstyps des Crotononitrils weist darauf hin, dass ein entsprechender Teil der Reaktion via das Zwischenprodukt 45c läuft, was eine vorgängige β -Elimination der endständigen CN-Gruppe voraussetzt. Eine solche β -Elimination wird zum dominanten Prozess, wenn das Pyrolyserohr nicht nur mit Quarz-Ringen, sondern zusätzlich mit Zeolith (3 Å oder 4 Å)-Stückchen beschickt wird. Wie grundlegend verschieden die Pyrolysen von 40 über Quarz einerseits und über Zeolith (3 Å) anderseits bei ansonst im wesentlichen gleichen Bedingungen verlaufen, zeigen die beiden in Schema 17 aufgeführten Experimente; in letzterem ist Pyrrol das dominierende Hauptprodukt einer überraschend sauber ablaufenden Reaktion. Wie diese und andere (in späteren Veröffentlichungen zu beschreibende) Experimente [2] nachweisen, verhalten sich Zeolithe unter den Bedingungen der FVP als hervorragende HCN-Abspaltungskatalysatoren. Die Chemie der sich aus Glutamindinitril und anderen α -Aminonitrilen ableitenden Dimeroide des Konstitutionstyps 40 wird dadurch wesentlich bereichert²³). Zur Wirkungsweise der Zeolithe stellen wir uns vor, dass sie die Enamin- (oder Enaminat)-Bildung der Aldimin-Gruppe in 40 erleichtern und damit die Elimination der endständigen CN-Gruppe herbeiführen; im Zusammenhang mit dieser Frage ist die in orientierenden Experimenten gemachte Beobachtung relevant, wonach bei der Pyrolyse von 40 Pyrrol-Bildung bereits um 200° einsetzt, wenn den Quarz-Ringen der Pyrolyse-Rohrfüllung KOH-Plätzchen beigefügt sind.

Da FVP über Zeolithen tendenziell tiefere Reaktionstemperaturen benötigen, haben wir nachträglich auch die Bildungsreaktion für Des(aminomethyl)porphobilinogen-dinitril $35 \rightarrow 30$ (Schema 16) unter solchen Bedingungen geprüft. Dabei bildeten sich jedoch, nicht ganz unerwartet, keine fassbaren Produkte. Der Grund hiezu ist durch das Ergebnis eines Testversuches belegt, in welchem das Pyrrol-Derivat 30 den Standardbedingungen der Pyrolyse über Zeolith (3 Å) unterworfen wurde. Dabei liessen sich weder Edukt 30 noch ein Produkt isolieren, jedoch die Bildung von 0,56 mol-Äquiv. HCN nachweisen (UV/VIS-spektroskopische Auswertung der Reaktion von freiem HCN mit [Aquocyano-cobyrinsäure-heptamethylester]-perchlorat). Zeolith bewirkt offenbar die Elimination einer CN-Gruppe aus 30, und zwar zweifellos jener, welche Teil einer vinylogen α -Aminonitril-Gruppierung ist (Acetonitril-Seitenkette).

Die hier aufgezeigte Bildung von Pyrrol-Derivaten aus N-Alkyliden- α -aminonitril-Derivaten α,β -ungesättigter Aldehyde erinnert an eine in der klassischen Pyrrol-Literatur beschriebene Synthese von 1,2-Diarylpyrrolen [60]. Bildungs- und Verhaltensweisen carbenoider Zentren des in den Formelbildern **40a** bzw. **45a** dargestellten Typs sind insbe-

²³) Hierzu gehört vor allem die Bildung von 1,4-Dihydronicotinonitril bei der Pyrolyse von Glutamin-asparagindinitril-Dimeroiden (Arbeiten von *Bender* in unserem Laboratorium, vgl. [2]).

sondere aus Arbeiten von Schmid und Mitarbeitern [61] oder Padwa [62] bekannt. Der Chemie unserer Pyrrol-Bildung nahe liegen neulich insbesondere von Grigg [63] beschriebene Cycloadditionen und Cyclisierungen carbonyl-stabilisierter Ylid-Zwischenprodukte vom Typ **35a** (Schema 15). Wenn auch für die hier beschriebene pyrolytische Variante der Pyrrol-Bildung der Weg über carbenoide Zwischenprodukte als wahrscheinlich betrachtet wird, bleibt die Frage offen, ob alternative Reaktionsbedingungen existieren, in welchen eine Pyrrol-Bildung den ursprünglich betrachteten Weg über Ylide des Typs **35a** nimmt. Eine experimentelle Suche nach solchen (vermutlich spezifische Katalysatoren benötigenden, eventuell photochemischen) Wegen steht noch aus.

F. Des(aminomethyl)porphobilinogen-dinitril (30): Herstellung aus Pyrrol. – In der Bearbeitung der Chemie der α -Aminonitrile pflegen wir wichtige Zwischenprodukte von Reaktionssequenzen, die innerhalb der gesteckten Rahmenbedingungen realisiert werden, zu Vergleichs- oder Nachschubzwecken jeweils auch durch nicht-rahmengebundene, dafür präparativ leistungsfähige Methoden herzustellen. Dies gilt insbesondere auch für das Des(aminomethyl)porphobilinogen-dinitril (30), von welchem für die in *Kap. G* beschriebenen Tetrameroidisierungs-Versuche grössere Mengen benötigt wurden. Unsere

ursprüngliche und bereits publizierte [55], im Rückblick eher umständliche Synthese dieser Verbindung war von 5-Chlorpyrrol-2-carbonsäure-methylester ausgegangen (vgl. Schema 18); ihr Kern war der mehrfache Gebrauch des aus den Arbeiten zur Vitamin-B12-Synthese stammenden, kristallinen Mannich-Reagens Dimethyl(methyliden)ammonium-iodids [64] als Vehikel der Einführung der beiden Cyanalkyl-Substituenten in den Pyrrol-Kern. Hier beschreiben wir eine präparativ einfachere Variante, die vom unsubstituierten Pyrrol ausgeht. Diese Möglichkeit hat sich aus dem kürzlich von Muchowski und Sola [65] publizierten Befund ergeben, wonach die (i-Pr), Si-Gruppe (im Unterschied z. B. zur Ph₃Si-Gruppe [55]) die präparativ verwendbare Eigenschaft aufweist, als Sperrgruppe am N-Atom des unsubstituierten Pyrrols elektrophile Substitutionsreaktionen an den beiden benachbarten a-Stellungen zu verhindern und sie in die β -Stellungen zu leiten. Die im Schema 19 zusammengefasste Synthese von 30 aus 1-(Triisopropylsilyl)-1H-pyrrol (46) eröffnet durch einfache Variation der Reaktionsstufen zugleich auch noch eine ergiebige Herstellung der beiden Pyrrol-Derivate 53 und 54, in denen die beiden β -Stellungen des Pyrrol-Kerns symmetrisch durch zwei 2-Cyanethylbzw. zwei Cyanmethyl-Gruppen substituiert sind; solche Pyrrol-Derivate haben uns auch in anderem Zusammenhang interessiert (vgl. [66]).

Das in praktisch quantitativer Ausbeute durch Silylierung von Natrium-pyrrolat mit Triisopropylchlorsilan zugängliche **46** [65] lieferte bei der Umsetzung mit 2,5 mol-Äquiv. Dimethyl(methyliden)ammonium-iodid [64] in siedendem trockenem CH₃CN und anschliessender Desilylierung mit CsF in CH₃OH bei RT. selektiv das kristalline β , β -disubstituierte Pyrrol-Derivat **47**; geringe Mengen des entsprechenden Monosubstitutionspro-

dukts liessen sich auf Grund von dessen Wasserlöslichkeit bei alkalischem pH extraktiv leicht vom Hauptprodukt 47 abtrennen. Die Konstitutionszuordnung als β , β -Disubstitutionsprodukt 47 fusst auf den ¹H- und ¹³C-NMR-Spektren, welche beide eine symmetrisch erfolgte Disubstitution anzeigen; das isomere α , α -Disubstitutionsprodukt ist bekannt [67]. Bemerkenswerterweise ist das Gelingen der selektiven β , β' -Substitution 46 \rightarrow 47 von der Natur des Gegenions des zur Verwendung gelangenden *Mannich*-Salzes abhängig: das (heute) leichter zugängliche und billigere Dimethyl(methyliden)ammonium-*chlorid* [68] erwies sich in diesem speziellen Fall als unbrauchbar, da es (offenbar) während der Umsetzung Desilylierung herbeiführt, womit die kinetisch raschere α -Substitution einsetzt.

Durch vorsichtige Umsetzung des Diamins 47 mit 0,95 mol-Äquiv. CH₃I bei tiefer Temperatur gelang es, ein Alkylierungsprodukt zu erhalten, das nebst dem Bis(ammonium)-Salz 51 vor allem das Mono-ammonium-Salz 48 enthielt. Nach Reaktion eines

Schema 19

solchen Gemisches mit KCN in DMSO bei 10° liess sich das gewünschte Dimethylaminomethyl-pyrrol-acetonitril **49** als Hauptprodukt (50%) nebst 16% Edukt **47** und 15% Pyrrol-bis(acetonitril) **54** isolieren; die unterschiedliche Basizität der Komponenten (pK(47) = 10,7; pK(49) = 9,5 in H₂O) ermöglichte deren Trennung durch extraktive Verfahren. Interessanterweise hing das Produktbild der Reaktion des Trimethylammonium-Salzes **48** mit CN⁻ in DMSO stark von der Reaktionstemperatur ab (vgl. *Schema* 20); lag diese über *ca.* 30°, so bildete sich (offenbar durch S_N2 -Substitution an einer CH₃-Gruppe der Ammonium-Gruppierung) hauptsächlich das Edukt **47** zurück. Die auffallend hohe Temperaturempfindlichkeit des Reaktionsverlaufs spricht für die Richtigkeit der Annahme, dass die beiden Substitutionen **48** \rightarrow **49** und **48** \rightarrow **47** nicht durch den gleichen Reaktionstyp zustandekommen, d. h. dass erstere *via* Elimination (von (CH₃)₃N) und Addition (von CN⁻) abläuft²⁴).

Die Umwandlung der Dimethylaminomethyl-Gruppe von **49** in eine Cyanethyl-Gruppe zur Gewinnung der Zielverbindung **30** gelang durch Umsetzung des *N*-Methylierungsprodukts **50** mit dem Li-Salz von CH₃CN bei -70° in *N*,*N'*-Dimethyl-ethylenharnstoff (DMEU [70]). Dieses Verfahren hatten wir im Zuge der Bearbeitung der frühren Variante der Herstellung von **30** ausgearbeitet [55]; die Reaktion läuft zweifelsohne *via* Elimination von (CH₃)₃N zum Azafulven-Zwischenprodukt und anschliessender Addition des Acetonitrilat-Anions ab.

Unmittelbar neben dem eben besprochenen Syntheseweg liegen einfache Zugänge zu den symmetrisch substituierten Pyrrol-dinitrilen 53 und 54. N-Methylierung von 47 mit einem Überschuss von CH₃I führt zum Bis(ammonium)-Salz 51, welches mit KCN umgesetzt, das Bis(acetonitril) 54 liefert, durch Reaktion mit Na-Salz von Cyanessigsäure-methylester²⁵) und nachfolgende halolytische Esterspaltung [71] und Decarboxylierung jedoch das Bis(propiononitril) 53 ergibt. Schliesslich ist – einer Anregung von *Leumann et al.* folgend [72] – beobachtet worden, dass Umsetzung des Ammonium-Salzes 50 mit Dimethyl(methyliden)ammonium-iodid selektiv zu 55 und damit zum Konstitutionstyp des Porphobilinogen-dinitrils führt; die entsprechenden Reaktionsstufen 50 \rightarrow 55 \rightarrow 56 werden in einer nachfolgenden Arbeit im Detail beschrieben werden [72].

²⁴) Für eine Übersicht über frühere Beispiele der Substitution von (CH₃)₃N an N-methylierten pyrrolischen Mannich-Basen vgl. [69].

²⁵) Infolge Unlöslichkeit des Bis(ammonium)-Salzes 51 in Lösungsmitteln wie THF bei -70° misslangen Versuche zur direkten Überführung von 51 in 53 mit Lithium-acetonitrilat. Die Einhaltung der tiefen Reaktionstemperatur ist wegen der Unstabilität des Nitrilats bei Temperaturerhöhung für das Gelingen solcher Reaktionen Voraussetzung.

G. Tetrameroidisierung von Des(aminomethyl)porphobilinogen-dinitril (30) zu den vier isomeren Uroporphyrinogen-octanitrilen 57–60. – Das ursprüngliche Ziel der hier beschriebenen Arbeiten war die Herstellung der Uroporphyrinogen-octanitrile 59 und 57 (Typen III bzw. I; s. Schema 21) zum Zwecke der Untersuchung deren chemischen Verhaltens im Zusammenhang mit der Frage, ob es Reaktionsbedingungen gibt, welche eine Umwandlung dieser Porphyrinogene in Derivate mit Corrin-Struktur herbeizuführen imstande sind. Orientierende Untersuchungen mit solcher Zielrichtung [13] [17] hatten wir zuvor in der Modellreihe des Octaethylporphyrinogens durchgeführt; das bis dahin wichtigste Ergebnis dieser Versuche war die Auffindung des Reaktionstyps der (Porphyrinogen \rightarrow Pyrrocorphin)-Tautomerisierung, welche eine direkte Verbindung zwischen den Strukturtypen der Porphyrinogene und der Corphine herstellt [18] [20]. Eine

Möglichkeit der (Corphin \rightarrow Corrin)-Umwandlung wurde in einer Decamethyl-Modellreihe experimentell realisiert [14d, e]. Hier behandeln wir die Tetrameroidisierung des Pyrrol-dinitrils **30** zum statistischen Gemisch der vier Uroporphyrinogen-octanitrile, z. T. unter rahmengerechten Bedingungen, sowie die chromatographische Auftrennung der vier Isomeren und ihre spektroskopische Strukturzuordnung. Ergebnisse zur (Porphyrinogen \rightarrow Pyrrocorphin)-Tautomerisierung in dieser Reihe werden in der Folgemitteilung [72] behandelt werden.

Zu den bedeutendsten Befunden der bioorganischen Porphyrinchemie gehört die Tatsache, dass der für die Biosynthese der Porphyrine zentrale Vorgang der Tetrameroidisierung des Porphobilinogens zu den Uroporphyrinogenen (Typen I und III) nicht nur enzymatisch, sondern bei geeigneten Bedingungen unter dem Einfluss von Säuren auch nicht-enzymatisch mit grosser Leichtigkeit abläuft [74] [75]. Entscheidendes Merkmal des enzyma-

1141

tisch gesteuerten Prozesses ist die (unter Normalbedingungen der Biosynthese erfolgende) Umleitung der oligomeroidisierenden Reaktionsfolge zum Zwecke der selektiven Bildung des Typ-III-Isomeren [76]. Demgegenüber verfällt die nicht-enzymatische, durch Säure in wässeriger Lösung ausgelöste Tetrameroidisierung des Porphobilinogens leicht in einen von Isomerisierungen des C-Gerüsts begleiteten, thermodynamisch kontrollierten Reaktionsverlauf, wobei sich – wie insbesondere *Mauzerall* [75] durch indirekte Analyse eines solchen Reaktionsprodukts²⁶) gezeigt hat – das Gemisch der vier konstitutionsisomeren Uroporphyrinogene (Typen I–IV) ungefähr im statistisch zu erwartenden Mengenverhältnis [74] [75] [77] von 1:1:4:2 bildet.

Einstündiges Erhitzen von Des(aminomethyl)porphobilinogen-dinitril (30) auf 70° in 0,33M entgaster DMF-Lösung in Gegenwart von 5 mol-Äquiv. Formaldehyd-dimethylacetal und 2,3 mol-Äquiv. H₂SO₄ ergab in 73% Ausbeute das Gemisch der vier konstitutionsisomeren Uroporphyrinogen-octanitrile 57-60 (Schema 21). Für die Isolierung, Charakterisierung und Bearbeitung dieser Verbindungen entscheidend erwies sich deren Eigenschaft, an der Luft zwar autoxidationsempfindlich zu sein, dies jedoch in merklich geringerem Masse als es z. B. für Octaethylporphyrinogen [78] [79] zutrifft. Diese erhöhte Stabilität gegenüber O₂ ist eine an sich nicht unverständliche Folge der Häufung elektrophiler CN-Gruppen an der Molekül-Peripherie. Schema 21 zeigt das analytische HPLC eines in solchen Tetrameroidisierungsrohprodukts (in AcOEt löslicher Anteil); es besteht im wesentlichen nur aus den vier isomeren Uroporphyrinogen-octanitrilen 57-60, und diese treten innerhalb der Fehlergrenze der UV/VIS-spektroskopischen Integration exakt in dem zu erwartenden statistischen Verhältnis auf. Das Reaktionsgemisch zeigt im DC dem HPLC entsprechend – drei getrennte Zonen und lässt sich säulenchromatographisch an Silicagel (unter Luftausschluss) in drei Fraktionen auftrennen, von welchen die erste reines 57 (Typ I; Gew.-Ausb. 10%), die letzte reines 60 (Typ IV; Gew.-Ausb. 21%) und die Hauptfraktion ein Gemisch 59/58 (Typen III und II; Gew.-Ausb. 42%) enthalten. Zur spektroskopischen Charakterisierung wurde ein solches Typ-III/II-Gemisch im HPLC aufgetrennt; für die Isolierung des Typ-III-Isomeren 59 im präparativen Maßstab eignete sich eher die fraktionierende Kristallisation aus CH₃CN/CH₂Cl₂, wobei (leider) das Typ-III-Hauptisomer 59 (Schmp. 189°) leichter löslich ist als das Typ-II-Nebenisomer 58 (Schmp. 290°).

Die Konstitutionszuordnung der vier Isomeren beruht – über das Indiz des statistischen Mengenverhältnisses hinaus – auf dem Vergleich der vier ¹H-NMR-Spektren (300 MHz), in welchen die Anzahl der jeweils auftretenden Singulett-Signale für die *meso*-CH₂-Protonen sowie für die CH₂-Protonen der Acetonitril-Seitenketten als Konsequenz der unterschiedlichen konstitutionellen Symmetrie für die Konstitution der vier Isomeren spezifisch sind.

In Fig. 1 (oberer Teil) sind die erwartete und die beobachtete Anzahl der Signale für die CH_2 -Gruppen einander gegenübergestellt. Des weitern zeigt Fig. 1 einen Ausschnitt des ¹H-NMR-Spektrums des Typ-III-Isomeren **59** in (D₅)Pyridin, wo Singulett-Signale aller 4 $CH_2(meso)$ -Gruppen wie aller 4 CH_2CN -Gruppen (A) voneinander getrennt auftreten. Eine partielle Zuordnung der $CH_2(meso)$ -Signale ergibt sich daraus, dass im NOE-Experiment das $CH_2(meso)$ -Singulett bei 4,035 ppm mit zwei CH_2CN -Singuletten (3,77 und 3,83 ppm) korreliert, während dies das $CH_2(meso)$ -Singulett bei 4,043 ppm mit keinem der CH_2CN -Signale tut. Deshalb gehört das erste Signal zu $CH_2(20)$ (zwischen den Ringen A und D) und das zweite zu $CH_2(15)$ (zwischen den Ringen C und D; vgl. Fig. 1, unterer Teil).

²⁶) Reaktionsbedingungen: 1N wässr. HCl, 98°, Luftausschluss [75]. Analysenmethode: Umwandlung des Gemisches der ¹⁴C-markierten Uroporphyrinogene in die Gemische der vier Uroporphyrine bzw. vier Coproporphyrine und radiometrische Gehaltsbestimmung papierchromatographisch erhaltener Zonen von Typ I, II und (im Gemisch) III/IV.

Fig. 1. Vergleich der ¹H-NMR-Daten der Uroporphyrinogen-octanitrile 57-60 vom Typ I-IV

Die Identität des Isomeren mit geringster HPLC-Laufzeit ist unabhängig durch den Befund belegt, dass es (nebst *ca.* 5% Typ III) als Hauptprodukt der Tetrameroidisierung des (Hydroxymethyl)pyrrol-Derivats **61**²⁷) in HCOOH/CH₃OH bei RT. anfällt (vgl. *Schema 22*). Diese Umsetzung (bzw. ihr Analogon ausgehend vom leichter zugänglichen (Methoxymethyl)pyrrol-Derivat **56**, vgl. *Schema 19* und [72]) ist die für präparative Zwecke geeignete Herstellungsmethode für das Typ-I-Uroporphyrinogen-octanitril **57**, wiewohl dieses Isomer aus dem statistischen Tetrameroidisierungs-Gemisch chromatographisch von allen vier Isomeren am leichtesten abtrennbar ist. Offenbar ist das vom natürlichen Uroporphyrinogen in wässerig-saurer Lösung her bekannte Verhaltensmuster der leicht erfolgenden Äquilibrierung in das Gemisch der vier Isomeren [74] [75] (aus

²⁷) Die Herstellung des Pyrrol-Derivats 61 ist in [55] beschrieben.

wiederum nicht unverständlichen Gründen, vgl. oben) nicht ohne weiteres auf die Octanitril-Reihe übertragbar. In einem von HPLC-reinem Typ-I-Isomer 57 ausgehenden, im HPLC verfolgten Äquilibrierungsexperiment in HCOOH bei RT. waren nach 30 h 89% des Edukts 57 unverändert (vgl. Schema 22), und nach 75 h waren nebst immer noch ca. 75% 57 die Isomeren 58 und 59 vom Typ II bzw. III zu ca. 25% und weniger als 3% des Typ-IV-Isomeren 60 nachweisbar. Wir konnten indessen nachweisen, dass in diesem Medium die Äquilibrierung durch geringe Mengen eines geeigneten Formaldehyd-Äquiv. wirkungsvoll katalysiert wird. Ein analoges Experiment wie das vorerwähnte, jedoch in Gegenwart von 0,12 mol-Äquiv. Formaldehyd-dimethyl-acetal durchgeführt, zeigte nach 24 h die nahezu statistische Verteilung der vier Uroporphyrinogen-octanitrile 57–60 (vgl. Schema 22); unter solchen Bedingungen sank allerdings auch der Gesamtgehalt am Gemisch der Isomeren auf 70% ab. Im Gegensatz zu Formaldehyd-dimethyl-acetal erwies sich das Pyrrol-Derivat **61** unter solchen Bedingungen nicht als Äquilibrierungskatalysator.

Ein gewichtiger Teil des Reaktionsgemisches, das jeweils bei der oben erörterten Tetrameroidisierung des Pyrrol-Derivats **61** anfiel, ist ein sehr polares Material, dem wir insbesondere auf Grund seiner ¹H-NMR-spektroskopischen Daten (vgl. *Exper. Teil*) den Konstitutionstyp **62** eines linearen Oligomeren zuschreiben. Dieser Annahme entsprechend, liess sich solches Material unter dem Einfluss von katalytischen Mengen (0,04 Äquiv. pro Pyrrol-Ring) Formaldehyd-dimethyl-acetal und HCOOH in 63% Ausbeute in das (ungefähr) statistische Gemisch der vier Uroporphyrinogene **57–60** überführen (vgl. *Schema 22*).

Im Zuge unserer Untersuchungen zur Tetrameroidisierung von Des(aminomethyl)porphobilinogen-dinitril (**30**) haben wir uns auch der Aufgabe gestellt, diese Reaktion rahmengerecht (im Sinne der Erörterungen in *Kap. B*) durchzuführen. Die Einschränkungen in der Wahl der Reaktionsumstände betrafen hier die Natur des Formaldehyd-Äquiv., jene des Katalysators und das Reaktionsmedium. *Schema 23* illustriert eine experimentelle Lösung, die sowohl vom Standpunkt der Rahmenvoraussetzungen wie auch aus rein chemischer Sicht als nahezu perfekt erscheint: Halbstündiges Erhitzen auf 180° von **30** in entgastem CH₃CN zusammen mit 0,4 mol-Äquiv. *N*-Methylidenglycin-nitril-Trimer (**63**)²⁸) in Gegenwart von 10 Gewichtsteilen des Tonminerals *Montmorillonit K10*²⁹) ergab ein Rohprodukt, das an im HPLC erfassbaren, UV-aktiven Komponenten ausschliesslich die vier Uroporphyrinogen-octanitrile **57–60** enthielt, und zwar im perfekt statistischen Verhältnis in einer (durch Flächenvergleich bestimmten) Reaktionsausbeute von 79 ± 2% (vgl. das HPLC des Rohprodukts in *Schema 23*). Die Isomeren **57** und **60** vom Typ I bzw. Typ IV wurden nach Säulenchromatographie in kristalliner Form isoliert

²⁸) Kristallines Hexahydro-1,3,5-triazin-1,3,5-tris(acetonitril) (Reaktionsprodukt aus NH₃, HCHO und HCN [80], auch 'Methylenimino-acetonitril' genannt [81]). Das echte (monomere) 2-(Methylidenamino)acetonitril ist eine äusserst unstabile Verbindung, welche z. B. nach Thermolyse des Trimeren über Molekularsieb spektroskopisch beobachtet werden kann (vgl. [2], S. 20 und 117, sowie [82]).

²⁹) Montmorillonit K10 (Fluka AG), 220–270 m²/g, zuvor im Hochvakuum 4 h bei 350° aktiviert.

(Ausbeute 84 bzw. 89% bezogen auf HPLC-Gehalte) und die Isomeren **58/59** als (1:4)-Gemisch (80%) identifiziert. Nebst bei der Chromatographie nicht laufendem, polarem Material (16 Gew.-%) wurde als Folgeprodukt des eingesetzten Reagens das 2,2'-Iminobis(acetonitril) ('Di(glycin-nitril)') nachgewiesen.

Die Reaktion lief auch bei RT. ab; dabei benötigte sie aber für einen Umsatz von *ca.* 20% eine Reaktionsdauer von einer Woche. Unterwarf man reines Isomer **57** (Typ I) den Tetrameroidisierungsbedingungen ($c = 2,5 \cdot 10^{-3}$ M, 30 Gew.-Äquiv. *Montmorillonit K10*, 6 mol-Äquiv. **63**, kein **30**, 180°, 30 min), so stellte man keine Spur einer Äquilibrierung von Typ I in die drei anderen Typen fest.

N-Methylidenglycin-nitril-Trimer **63** ist unter den obigen und ähnlichen Reaktionsbedingungen ein viel besserer CH₂-Lieferant für die Tetrameroidisierung von **30** als dies z. B. Hexamethylentetramin (= Urotropin = 1,3,5,7-Tetraazatricyclo[3.3.1.1^{3,7}]decan) ist. In vergleichenden Versuchen hat sich unter diversen Tonmineralien (*Montmorillonite K10*³⁰) und KSF³⁰), *H-Mordenit*³¹), *Sepiolit*³¹), *Ittapulgit*³¹)) *Montmorillonit K10* als weitaus wirksamster Katalysator erwiesen; *Zeolithe* (4 Å, 10 Å)³⁰) waren inaktiv. Die Aktivität dürfte im wesentlichen eine Frage der Azidität sein; TsOH erwies sich unter sonst gleichen Reaktionsbedingungen als sehr wirksamer Katalysator.

Wie sehr die Bildung des statistischen Gemisches der vier Uroporphobilinogen-octanitrile ein kinetisch und thermodynamisch begünstigter Prozess ist, illustriert eine Versuchsreihe, in welcher ein (1:1)-Gemisch der (Aminomethyl)pyrrol-Derivate 29 und 29a (Herstellung vgl. [55]) in entgastem CH₃CN bei 130° in Gegenwart von konstanten Mengen Montmorillonit K10 oder TsOH bei verschiedenen Anfangskonzentrationen von 29/29a umgesetzt wurde. Halbstündiges Erhitzen von 29/29a auf 130° bei einer Konzentration von 1,0·10⁻² M in Gegenwart von 20 Gew.-Äquiv. bzw. 3 mol-Äquiv. Katalysator ergab das statistische Gemisch der Uroporphyrinogene 57–60 in rund 50% Ausbeute. Bei den Rohprodukten von Experimenten, die mit fallender Edukt-Konzentration, sonst aber gleichen Bedingungen durchgeführt wurden, war das charakteristische HPLC-Bild der Uroporphyrinogene bis hinunter zu Anfangskonzentrationen von 29/29a von $1.0 \cdot 10^{-5}$ M noch klar vorhanden (geschätzte Ausbeuten um 10%) und bei $1.0 \cdot 10^{-6}$ M eben gerade noch erkennbar. Diese Grenzkonzentration entspricht einem Reaktionsmedium, in welchem 1 mg Pyrrol-Vorläufer in 5 l CH_3CN gerade noch tetrameroidisiert. Es handelt sich hier nicht um einen spezifischen Konzentrierungseffekt des Montmorillonits, denn das Phänomen trifft auch für die Katalyse mit TsOH zu.

Verschiedene Beobachtungen bezeugen, dass in der Porphobilinogen-dinitril-Reihe die α -Hydroxy- oder α -Alkoxymethyl-Derivate zur Tetrameroidisierung in Säure als Lösungsmittel geeigneter sind als entsprechende Aminomethyl-Derivate. Unter den in der Literatur gegebenen Bedingungen der Tetrameroidisierung von 2-(Dimethylamino-

³⁰) Bezogen von Fluka AG, Buchs.

³¹) Wir danken Dr. K. H. Laube (Chemische Fabrik, Uetikon) für die Überlassung dieser Materialien.

methyl)-3,4-diethylpyrrol zum Octaethylporphyrinogen [78] [83] hatten wir in orientierenden Vorversuchen mit dem Gemisch der (Trimethylammonio)methyl-Derivate **64/64a** keine Tetrameroidisierung beobachtet, ebensowenig wie unter den Bedingungen (HCOOH, RT.), unter welchen das Hydroxymethyl-Derivat **61** (Schema 22) zu **57** reagiert. Unplausibel ist dies nicht: ein Ammonium-Salz ist ein thermodynamisch weniger geeigneter Carbeniumion-Vorläufer als ein entsprechendes Oxonium-Salz, und als Substrat einer elektrophilen Substitution ist ein neutrales [Hydroxy(bzw. alkoxy)methyl]pyrrol-Derivat reaktiver als ein entsprechendes positiv geladenes Ammonium-Derivat.

Schema 24 orientiert über die Tetrameroidisierung der beiden im Zusammenhang mit Schema 19 erwähnten symmetrisch substituierten Pyrrol-Derivate 53 und 54. Lehrreich war hier die Beobachtung, dass im Reaktionsmilieu, in dem das *Bis(acetonitril)* 54 in hoher Ausbeute zu 66 tetrameroidisierte, das (im Pyrrol-Kern nukleophilere) *Bis(propionitril)* 53 überhaupt kein Porphyrinogen bildete, sondern innert weniger min in ein schwarzes Gemisch polaren Materials umgewandelt wurde. Die präparative Lösung des Problems bestand in der Verwendung von 0,4 statt 2,0 mol-Äquiv. des Katalysators H₂SO₄. Damit sind die vollsymmetrischen Porphyrinogen-octanitrile 65 und 66 leicht zugängliche Zwischenprodukte einer Synthese von Derivaten der erstmals von *Franck et al.* [84] beschriebenen Reihe der Porphyrin-octaessigsäuren bzw. -octapropionsäuren³²). Darüberhinaus haben uns die beiden symmetrischen Porphyrinogen-octanitrile als wert-

³²) Vgl. die Herstellung der den Porphyrinogenen 65 und 66 entsprechenden Nickel(II)-isobacteriochlorinat-Komplexe in [4], S. 175 und 179. Zur praktisch quantitativen Dehydrierung der Uroporphyrinogen-octanitrile mit DDQ zu den Porphyrinen und anschliessender Methanolyse der CN-Gruppen (Untersuchungen in Zusammenarbeit mit *Iwanowski*) vgl. [3].

volle Vergleichsmodelle bei der Untersuchung der chemischen Eigenschaften der Uroporphyrinogen-octanitrile gedient (vgl. unten, sowie [72]).

Mit der hier in den Schemata 21-23 dokumentierten HPLC-Trennung der vier Uroporphyrinogen-octanitrile 57-60 ist es erstmals gelungen³³), die vier uroporphinoiden Konstitutionstypen auf der Oxidationsstufe der Porphyrinogene chromatographisch zu trennen und damit die Voraussage der statistisch begründeten Zusammensetzung des Isomerengleichgewichts [74] [75] [77] experimentell direkt und eindeutig zu dokumentieren. Was die Typenbezeichnung (I-IV) der Uroporphyrinogene betrifft, so ist diese seinerzeit von Fischer und Bartholomäus [87] rein willkürlich den vier formal möglichen Konstitutionstypen der Uroporphyrin-Struktur zugeordnet worden. Es erweist sich nun als amüsanter Zufall, dass die in unserer Arbeit konsistent beobachtete, spezifische HPLC-Elutionsreihenfolge der vier Uroporphyrinogen-octanitrile exakt der Fischerschen Numerierung entspricht. Im übrigen bietet diese Elutionsreihenfolge ein Stück lehrreicher Information zur Frage, welche strukturelle Faktoren bei solchen Systemen die chromatographische Selektion bestimmen. Fig. 2 vergleicht unter identischen HPLC-Bedingungen ermittelte Retentionszeiten der vier Uroporphyrinogen-octanitrile 57-60 sowie der symmetrischen Octanitrile 65 und 66. Vorab sticht die drastisch längere Retentionszeit der Octakis(cyanmethyl)-Verbindung gegenüber der Octakis(cyanäthyl)-Verbindung ins Auge. Erstere ist gegenüber der letzteren zweifelsohne die generell elektrophi*lere* Verbindung, ihre Pyrrol- π -Systeme sind weniger nukleophil und ihre NH-Protonen sind acider. Plausiblerweise liegen die Retentionszeiten der Uroporphyrinogen-octanitrile zwischen den beiden Extremen. Dabei überrascht allerdings, dass der Typ I in seiner Retentionszeit so nahe an die Octakis(cyanäthyl)-Verbindung herankommt. Was den Typ I von seinen Isomeren heraushebt, ist seine Symmetrie. Demgegenüber ist das Isomer mit der längsten Retentionszeit, Typ IV, das Isomer mit dem (vermutlich) grössten Dipolmoment. Es ist diese Eigenschaft, welche der dominante Selektionsfaktor der Trennung der vier Isomeren zu sein scheint. Dabei wirft die nicht unbeträchtliche Retentions-

Fig. 2. Vergleich der Retentionszeiten im HPLC der Uroporphyrinogen-octanitrile 57–60 vom Typ I–IV und von 2,3,7,8,12,13,17,18-Porphyrinogen-octapropionitril (65) bzw. -octaacetonitril (66)

³³) Über HPLC-Trennungen von Uroporphyrin- und Coproporphyrin-Isomeren vgl. [85] bzw. [86].

differenz der beiden Dipol-freien Typen I und II die Frage auf, ob Identität der Substituenten an benachbarten '*peri*'-Stellungen, d. h. Parallelität von Acetonitril- bzw. Propionitril-Seitenketten retentionsverlängernd wirkt. Insofern nicht nur die pyrrolischen Bezirke, sondern auch die Nitril-Funktionen an selektionierenden Adsorptionsvorgängen teilnehmen, erscheint ein solcher synergistischer Effekt nicht unplausibel; er lässt an die Möglichkeit entsprechend selektionierender chemischer Reaktionen denken.

H. Zusammenfassung und Ausblick. – Die Kap. D, E und G dieser Arbeit enthalten die Beschreibung einer Reaktionssequenz, welche im wesentlichen innerhalb des Bereichs der im Kap. B erörterten, restriktiven Rahmenvoraussetzungen ausgehend von 2-Amino-2propennitril (3) zum statistischen Gemisch der vier isomeren Uroporphyrinogen-octanitrile 57–60 führt. Die Schemata 25 und 26 heben in stilisierter Form verschiedene Aspekte dieser Reaktionssequenz nochmals hervor. Die Uroporphyrinogene erscheinen in diesem Reaktionsrahmen als Abkömmling des Glycinnitrils und des (racemischen) Glutamindinitrils (21), wobei diese letztere Verbindung intrinsisch ein Photodimer von 3 darstellt. Die Reaktionsstufen zwischen 21 und den Substraten der Tetrameroidisierungsreaktion illustrieren einige grundlegende Charakteristika der Chemie der α -Aminonitrile unter Ausschluss von H₂O und molekularem Sauerstoff (Schema 25): Der fortschreitende

Aufbau zunehmend komplexerer Molekül-Strukturen schafft keine Abfallprodukte, sondern regeneriert immer wieder α -Aminonitril-Edukte nebst HCN und NH₃, welche ihrerseits Baustoffe der α -Aminonitrile sind; sämtliche Produkte am Reaktionsweg bleiben auf der Oxidationsstufe der α -Aminonitrile, d. h. es finden vorab weder Oxidationen noch Reduktionen statt, sondern es handelt sich bei allen Stufen um im Grunde thermisch induzierbare Reaktionen. Schema 26 betont mit seiner Graphik den Blickwinkel, welcher in der Reaktionsfolge zum Strukturtyp der Uroporphyrinogen-octanitrile vor allem den stufenweisen fortschreitenden Oligomeroidisierungsprozess erkennen lässt.

Dieser Aspekt erscheint deshalb von Belang, weil in der Molekül-Synthetik der Prozesstyp der Oligomeroidisierung immer dann die Strategie der Wahl ist, wenn es darum geht, grosse Moleküle mit dem Minimum an Mitteln aufzubauen. Die Biosynthetik, inklusive der Biosynthese der Porphinoide, bietet eindrücklichste Beispiele dieses Prinzips.

Es besteht kaum ein Zweifel, dass innerhalb des Edukt- und Reaktionsrahmens, der durch die Reaktionssequenz der *Schemata 25* und *26* abgesteckt ist, noch alternative Reaktionswege zu Uroporphyrinogen-octanitril-Vorläufern (die Nitril-Form des Porphobilinogens inbegriffen) existieren. Diese experimentell aufzufinden, darf als lohnendes Ziel zukünftiger Untersuchungen gelten.

Alles, was wir heute über die Biosynthese, Chemosynthese sowie über die Chemie des Strukturtyps der Uroporphyrinogene wissen, drängt zur Auffassung, dass der Ursprung dieses Strukturtyps durch das Nadelöhr der Tetrameroidisierung entsprechend substituierter, monopyrrolischer Vorläufer hindurch erfolgt sein muss, d.h. *aus chemischer Sicht existiert der Strukturtyp der Uroporphinoide kraft der Existenz der zum Strukturtyp der Uroporphyrinogene führenden Tetrameroidisierung*. Die ausserordentliche Bereitschaft, mit der dieser Reaktionstyp auch nicht-enzymatisch verläuft (vgl. auch die früheren Beobachtungen von Cookson [74] und *Mauzerall* [75]) macht die Entstehung der Uroporphyrinogene durch säurekatalysierte Tetrameroidisierung von Porphobilinogen und verwandter monopyrrolischer Vorläufer zu einem Musterbeispiel der Fähigkeit eines komplexen Biomolekül-Strukturtyps zum intramolekular kodierten Selbstaufbau. Das bereits bekannt gewesene [74] [75] [77], jedoch in dieser Arbeit erstmals klar dokumentierte Phänomen, wonach im Gleichgewicht der vier isomeren Uroporphyrinogene das wenigst-symmetrische Isomer vom Typ III aus statistischen Gründen das Hauptprodukt darstellt, ist in diesem Zusammenhang von besonderem Interesse. Die Tatsache, dass sämtliche, heute biologisch funktionellen Uroporphinoide eben diesem Typ III angehören, dessen biosynthetische Konstruktion, wie man heute weiss [76], eine beträchtliche Komplizierung und Ausweitung des Biosynthesewegs erfordert, ist nach verschiedenen Kriterien kaum ein Zufall, sondern sie fügt sich zwanglos in das Bild von der Cofaktor-Biosynthese, die sich am nicht-enzymatisch enstandenen, jedoch bereits biologisch funktionellen Cofaktorstruktur-Vorbild entwickelt hat³⁴).

Das chemische Nadelöhr auf dem Wege zu den Uroporphinoiden macht diesen Strukturtyp innerhalb der Problematik der Herkunft der Biomoleküle zu einem Ausnahmefall. Für die Mehrzahl der Biomolekül-Strukturtypen dürfte gelten, dass der experimentelle Nachweis von potentiell präbiotischen Reaktionsfolgen nicht bedeuten kann, damit die Elemente einer detaillierten chemischen Theorie des Ursprungs dieser Strukturtypen beschafft zu haben; die Praxis der organischen Synthetik lehrt uns da zur Genüge, wie unabsehbar die Zahl der Reaktionsmöglichkeiten organischer Verbindungen tatsächlich ist, und wie extrem empfindlich deren Verhalten von Details der Umweltbedingungen abhängen kann. Der experimentelle Nachweis solcher Reaktionsfolgen hat vielmehr die Funktion einer gezielten Ausweitung unserer chemischen Kenntnisse in einer präbiotisch relevanten Richtung, die Funktion der Aufdeckung von bisher nicht eingesehenen strukturellen Zusammenhängen zwischen heutigen Biomolekülen und einer kleinen, problemgerechten Auswahl einfachster Edukt-Moleküle. Eine möglichst umfassende Kenntnis solcher Zusammenhänge wird zum Rahmen gehören müssen, den die organische Chemie in die Diskussion um chemische Modelle des Ursprungs des Biologischen einzubringen haben wird.

Unterstützung für diese Arbeit verdanken wir dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung, der Ciba-Geigy AG, Basel, sowie der Firma Firmenich & Co., Genf. Herrn Dr. J. Meili (MS-Gruppe des org.-chem. Laboratoriums der ETH, Leitung Prof. J. Seibl) danken wir für die Aufnahme der FAB-Massenspektren und Frl. B. Brandenberger für die Aufnahme der 300-MHz-¹H-NMR-Spektren.

Experimenteller Teil

1. Allgemeines. – AcOEt über K_2CO_3 dest.; abs. CH_2Cl_2 , dest. über P_4O_{10} ; CH_3I (*Fluka, puriss.*), über Alox filtriert; 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU; *Fluka, purum*); Dimethoxymethan (*Fluka, pract.*), dest.; Et₃N (*Fluka, puriss.*); EtOH (*Fluka, puriss.*), KCN (*Merck, p.a.*); K_2CO_3 (*Merck, p.a.*), H_2O -frei; MeCN (*Fluka, purum*); abs. MeOH, über Mg(OMe)₂ 3 h unter Rückfluss gekocht, dest.; THF *Fluka purum*, vor Gebrauch über Na/Benzophenon dest.; TsOH · H_2O (*Fluka, puriss.* p. a.). Handschuhkasten: *Dri-Lab DLX 001-S-P/Dri-Train HE-493, Vacuum Atmospheres Corp.*, Sauerstoffgehalt ≤ 5 ppm. *Pyrolyse-Apparatur* (vgl. *Karpf* und *Dreiding* [93]): Thermostatisierter horizontaler zylindrischer Ofen mit einem mit Füllkörpern bepackten Quarz-Rohr und Druckreguliersystem (Dreiweghahn, Nadelventil, Blasenzähler mit Rückschlagventil) zum Einleiten eines schwachen N₂-Stromes während bzw. zum Begasen nach der Pyrolyse (vgl. Abb. in [1], S. 79). Das Ende des Pyrolyse-Rohres wurde auf *ca.* 200° erwärmt (Heizband), um vorzeitige Kondensation des Pyrolysats zu vermeiden, das erst im mit flüssigem N₂ gekühlten Küblfallengefäss (bzw. in manchen *Exper.* an einem mit H₂O gekühlten Küblfallengefäss (bzw. in flüchtige Edukte) oder in einem Schiffchen mit Eisenkern, das in der kalten Zone des Pyrolyse-Rohres vor dem Ofen bereitgestellt und bei Erreichen der Pyrolysebedingungen (Druck, Temperatur) mit Hilfe eines

³⁴) Über früher gemachte Äusserungen zu diesem Thema vgl. Mauzerall [88] und Woodward [89].

Magneten in die Ofenöffnung verschoben wurde. Bei Pyrolyse über zeolith-haltigen Rohrfüllungen wurde diese zuvor 5 h bei 500° aktiviert (Austrieb von H₂O). Aufarbeitung/Produktisolierung: Wenn keine abweichende Vorgangsweise beschrieben ist, wurden Reaktionsgemische mit org. Lsgm. verdünnt, mit H₂O oder wässr. Lsg. ausgeschüttelt, die wässr. Phasen mit org. Lsgm. rückextrahiert, die vereinigten org. Lsg. getrocknet (Na₂SO₄), filtriert, i. RV. bei RT. bis ca. 40° von Lsgm. befreit und der Rückstand i. HV. (ca. 0,01-0,001 Torr) bei RT. getrocknet. Kristallisate wurden vor Auswaage/Charakterisierung mehrere h i. HV. bei RT. getrocknet. Säulenchromatographie im 'flash'-Verfahren [90] auf Kieselgel (Merck, Typ 60, Korngrösse 0,040-0,063 mm), Kieselgel G (nach Stahl für DC, Merck, Typ 60) oder Alox (Aluminiumoxid Woelm, nähere Angaben im Text). DC: sofern nichts anderes erwähnt, Fertigplatten Kieselgel 60 Merck, Schichtdicke 0,25 mm; Anfärbung mit Phosphormolybdänsäure (Fluka), I₂ in Quarzsand bzw. für Pyrrol-Derivate Ehrlich-Reagenz (1% (Dimethylamino)benzaldehyd in EtOH/konz. HCl 1:1). GC: Carlo Erba Fractovap 4160, 'on-column'-Einspritzung, FID-Detektor, Glaskapillarsäulen belegt mit OV 1701 [91], Säulenlänge und Temp.-Programm jeweils angegeben, t_R in min. HPLC: Eigenbau-System von Dr. J. Schreiber (ETH Zürich), Säulen nach 'slurry'-Methode gepackt [92]; Det. = Detektion, $t_{\rm R}$ in min. UV/VIS: in MeCN, wenn kein Lsgm. erwähnt, Angabe in nm (lg e). IR: in CHCl₃; nur wichtige Banden. NMR (δ-Werte in ppm bezogen auf TMS): in CDCl₃, wo nichts anderes erwähnt. FAB-MS: Kratos MS-50 mit 'M-scan'-FAB-System, 8-10 keV; Glycerin-Matrix, wenn nichts anderes angegeben (Matrix-Piks nicht aufgeführt); nur wichtigste Piks.

2. Exper. zu Schema 8. – 2.1. 2-(tert-Butylimino) propannitril (8). Zu 18,6 g (0,148 mol) Aminonitril 6 [40] (vgl. auch [1], S. 85) in 120 ml Et₂O tropfte man bei 0° 19,5 g (0,180 mol) tert-Butyl-hypochlorit [94] und rührte 2 h (Bildung des (N-Chloramino)nitrils 7). Dann wurde mit 32,1 g (0,211 mol) DBU in 15 ml Et₂O versetzt (HCl-Elimination), auf RT. erwärmt, 5 h gerührt, eingedampft und Hexan zugegeben. Die ausgefällten Salze wurden durch Celite abfiltriert. Eindampfen des Filtrats und Kugelrohr-Destillation (55°/45 Torr) des Rohproduktes ergaben (nebst 2,8 g mit wenig t-BuOH verunreinigtem 8) 4,9 g (27%) 8 als farbloses Öl. IR: 2965s, 2930m, 2900m, 2865w, 2205w, 1628s. ¹H-NMR (60 MHz): 1,40 (s, (CH₃)₃C); 2,30 (s, CH₃). MS: 124 (8, M^+), 109 (41), 82 (37), 57 (100).

2.2. 2-(tert-Butylamino)-2-propennitril (9). Unter N₂ wurden bei -78° 0,86 ml 2N BuLi (in Hexan, Fluka pract., titriert) mit 0,24 ml (1,7 mmol) (i-Pr)₂NH³⁵) in 3 ml THF zu LiN(i-Pr)₂ umgesetzt und dann mit 0,214 g (1,7 mmol) **8** in 3 ml THF zugetropft. Nach 20 min Rühren bei -78° wurde mit ges. Na₂CO₃-Lsg./Et₂O aufgearbeitet. Umkondensieren des Rohprodukts i. HV. durch leichtes Erwärmen/Ausfrieren des Destillats bei -78° gab 0,174 g (81%) 9 als farblose Flüssigkeit. UV (CH₂Cl₂): 259 (3,672). IR: 3430m, 2975s, 2935s, 2870m, 2232m, 1600s, 1500s. ¹H-NMR (90 MHz): 1,30 (s, (CH₃)₃C); 3,30 (br. s, NH); 4,66 (m, CH₂). MS: 124 (8, M^{++}), 109 (36), 82 (29), 57 (100).

Beim Kochen in Benzol unter Rückfluss tautomerisierte sich 9 innert 4 h beinahe vollständig (95%) zu 8 zurück.

3. Exper. zu Schema 9. – 3.1. rac-Alaninnitril (10) (von Susanne Drenkard in Anlehnung an eine von v. Planta [43] ausgearbeitete Vorschrift; vgl. Fussnote 9). In 1,81 MeOH wurden 200 g NH₃ (11,8 mol) einkondensiert, dazu 31,5 g (0,6 mol) NH₄Cl und 39,0 g KCN (0,6 mol) gegeben (z. T. ungelöst) und dann in zwei Portionen 28,2 ml (0,5 mol) Acetaldehyd (Fluka; frisch dest.) in 350 ml MeOH rasch zugetropft. Nach Rühren unter N₂ bei RT. über Nacht wurde von den Salzen abfiltriert, MeOH bei RT. abgedampft, der Rückstand in AcOEt aufgenommen, filtriert und das Lsgm. abgedampft (RV., dann kurz i. HV.). Das Rohprodukt wurde bei ca. 0,02 Torr langsam unter kräftigem Rühren in einen auf 45° erhitzten (Ölbad) Zweihalskolben getropft. Das kontinuierlich durch eine 10-cm-Vigreux-Kolonne abdestillierende 10 (Sdp. ca. 20°) kondensierte im von NaCl/Eiswasser durchströmten Kühler und tropfte in die durch Aceton/Trockeneis gekühlte Vorlage (bei dieser schonenden Destillation blieb das Nebenprodukt 2,2'-Iminobis(propannitril) (10a) im Rückstand, und thermische HCN-Eliminierung aus 10a zu flüchtigem N-Ethyliden-alaninnitril wurde unterdrückt). Nach erneuter Destillation liess man das über Nacht im Tiefkühlschrank aufbewahrte Produkt noch 1,5 h bei 0° i.HV. i. RV.: 25,8 g (73%) farbloses Öl. DC (Et₂O/CH₂Cl₂ 1:1, Anfärbung mit Ninhydrin): R_f 0,25. ¹H-NMR: neben sehr wenig AcOEt und schwachen Fremdsignalen um 0,8 bzw. 2,2 ppm nur Signale von 10 (vgl. unten). Das Alaninnitril 10 wurde mit 250 ml CH₂Cl₂ verdünnt (in Substanz Bildung von 10a) im Tiefkühlschrank aufbewahrt.

Daten von 10 aus einem früheren Ansatz (H₂O statt MeOH als Lsgm.; vgl. [1], S. 106). ¹H-NMR (300 MHz): 1,47 (d, J = 7,0, CH₃); 1,65 (s, NH₂); 3,77 (q, J = 7,0, CH). ¹³C-NMR (75,47 MHz): 21,55 (q); 38,40 (d); 123,18 (s, CN). Anal. ber. für C₃H₆N₂: C 51,41, H 8,63, N 39,97; gef.: C 51,37, H 8,49, N 39,85.

3.2. 2-[(Trimethylsilyl)amino]-2-propennitril (13). Zu einer vor Licht geschützten, auf 0° abgekühlten Lsg. von 13,2 g (188 mmol) 10 in 125 ml abs. CH₂Cl₂ wurden unter N₂ während 25 min 20,35 g (188 mmol)

³⁵) Fluka, puriss., p.a.

tert-Butyl-hypochlorit [94] getropft, 2 h bei 0° gerührt, mit 190 ml abs. CH₂Cl₂ verdünnt, auf -78° abgekühlt und mit 26,2 ml (188 mmol) Et₃N in 190 ml abs. CH₂Cl₂ versetzt. Nach 20 min Rühren wurde ein Gemisch aus 26,2 ml (188 mmol) Et₃N und 23,8 ml (188 mmol) (CH₃)₃SiCl (Fluka, pract.) in 190 ml THF zugetropft, langsam auf RT. erwärmt, das durch Celite filtrierte Gemisch 20 min unter Rückfluss gekocht und i. RV. (HV., RT.) vorsichtig auf ca. ¹/₃ eingeengt. Durch Zugabe der ca. 3fachen Menge Et₂O fällte man den grössten Teil der noch gelösten Salze aus, filtrierte wiederum durch Celite und engte das Filtrat vorsichtig wie oben auf ca. 20 ml ein. Eine unmittelbar folgende Chromatographie an einer mit Eiswasser gekühlten Säule auf neutralem Alox mit CH₂Cl₂/Et₂O 4:1 gab Mischfraktionen 13/3; diese wurden bei RT. eingeengt und in zwei Portionen im Kugelrohr (120°/15 Torr) sofort und rasch destilliert: 6,3 g bzw. 4,0 g farbloses Destillat, laut ¹H-NMR 13/3 4:1 bzw. 13:6 mit weniger als 5% Fremdkomponenten: Gesamtausbeute 43 % bzgl. 10. Zur Charakterisierung gelangte die erste, einheitliches 13 enthaltende Fraktion (39%) der Kugelrohr-Destillation aus einem Ansatz mit 59 mmol 10, die noch 1mal (für die C,H,N-Analyse noch 2mal) destilliert worden war. DC (CH₂Cl₂/Et₂O 4:1): R_f 0,53. UV (CH₂Cl₂): 256 (3,908). IR (abgebildet in [1], S. 109): 3420m, 3400w, 2960m, 2900w, 2230w, 1600s, 1415s. ¹H-NMR (100 MHz): 0,22 (s, 3 CH₃); 3,1 (br. s, NH); 4,61 (s, CH₂). ¹³C-NMR (25,2 MHz): -0,8 (q, 3 CH₃); 100,6 (t, CH₂); 117,5 (s, CN); 123,3 (s, C). MS: 140 (28, M⁺⁺), 125 (32), 99 (11), 98 (100). Anal. ber. für C₆H₁₂N₂Si: C 51,38, H 8,62, N 19,97; gef.: C 51,39, H 8,70, N 19,93.

3.3. 2-Amino-2-propennitril (3). Eine Aufschlämmung von 2,60 g (11 mmol) fein pulverisiertem NiCl₂· 6 H₂O in 50 ml MeCN wurde bis zum Verblassen der anfänglich stark blauen Färbung geschüttelt, rasch mit 1,41 g (10,1 mmol) 13 in 50 ml CH₂Cl₂ versetzt, unter gelegentlichem Schütteln 7 min stehen gelassen und dann durch *Celite* filtriert. Das i. RV. vorsichtig bei RT. eingedampfte und sofort im Kugelrohr (120°/17 Torr) rasch destillierte Filtrat gab 606 mg (88%) 3 als farblose, glasklare Flüssigkeit. DC (CH₂Cl₂/Et₂O 4:1): R_f 0,50. UV (CH₂Cl₂): 241 (3,813). IR (CHCl₃; vgl. *Fig. 3*): 3480m, 3390m, 3200w, 2238m, 1625s. IR (Gasphase [46a]): vgl. [1], S. 120 bzw. Abb. auf S. 21. Mikrowellenspektrum. vgl. [35]. ¹H-NMR (100 MHz; abgebildet in [1], S. 112; vgl. *Fig. 4*): 3,47 (br. s, NH₂); 4,69 (d, J = 1,7, 1 H, CH₂=C); 4,77 (d, J = 1,7, 1 H, CH₂=C). ¹³C-NMR (25,2 MHz; abgebildet in [1], S. 112; vgl. *Fig. 4*, 29 (s). MS: 68 (71, M^+), 53 (100). Für eine Tieftemperatur-Röntgenstrukturanalyse vgl. [36]. Anal. ber. für C₃H₄N₂: C 52,93, H 5,92, N 41,15; gef.: C 53,10, H 5,98, N 40,84.

Aminonitril 3 kann in CH_2Cl_2 (*ca.* 10%) bei -20° während Tagen und ohne Lsgm. bei -196° über Monate aufbewahrt werden. Für N-Deuterierung von 3 durch Schütteln einer CH_2Cl_2 -Lsg. mit D₂O vgl. [1], S. 113.

4. Exper. zu Schema 10. – 4.1. rac-Leucinnitril (14). Nitril 14 wurde durch Strecker sche Synthese in wässr. Lsg. aus 1 mol frisch dest. Isovaleraldehyd, 5,6 mol NH₄Cl, 145 ml 25% wässr. NH₃-Lsg. und 1 mol KCN hergestellt. Das mit CH₂Cl₂ extrahierte Rohprodukt chromatographierte man an Kieselgel mit CH₂Cl₂/Et₂O 7:1, wobei zuerst 2,2'-Iminobis(4-methylpentannitril), gefolgt von 14 (64%), eluiert wurde. DC (CH₂Cl₂/Et₂O 7:1): R_f 0,18. GC (14 m; 5 min 45°, 5°/min \rightarrow 180°): t_R 13,8. IR: 3390m, 3330w, 2965s, 2940s, 2875m, 2230w, 1620w (br.), 1470s. ¹H-NMR (300 MHz): 0,96, 0,97 (2d, J = 6, 6, 2 CH₃); 1,52–1,71 (*m*, CH₂); 1,57 (br. *s*, tauscht mit D₂O aus, NH₂); 1,83–1,98 (*m*, CH(4)); 3,70 (dd, J = 8, 7, 5, wird nach D₂O-Austausch zu scharfem Signal, CH(2)). ¹³C-NMR (25,2 MHz):

22,0, 22,4 (2q, 2 CH₃); 24,9, 41,8 (2d, 2 CH); 44,3 (t, CH₂); 122,6 (s, CN). MS: 165 (23, M^{++} – HCN – CH₃ des Iminobis(nitrils)), 112 (28, M^{++} von 14), 111 (55), 109 (37), 57 (100).

4.2. 2-Imino-4-methylpentannitril (15, Exper. von Rüger [50]). Zur Lsg. von 1,12 g (10,0 mmol) 14 in 15 ml abs. CH₂Cl₂ bei 0° wurden im Dunkeln 1,08 g (10,0 mmol) tert-Butyl-hypochlorit [94] in 2 ml abs. CH₂Cl₂ getropft und 10 min gerührt. Dann tropfte man zur auf -78° abgekühlten Lsg. 1,01 g (10,0 mmol) Et₃N in 20 ml abs. CH₂Cl₂, rührte 30 min bei -78° , entfernte das Kältebad und rührte weitere 90 min. Die farblose Lsg. wurde bei RT. eingedampft und sofort chromatographiert (Kieselgel, CH₂Cl₂/Et₂O 19:1): 0,80 g (73%) 15, laut GC 97–99% rein. Kugelrohr-Destillation (80°/0,1 Torr) lieferte analysenreines, farbloses 15. DC (CH₂Cl₂/Et₂O 19:1): R_f 0,40. GC: t_R 7,9. UV (Hexan): 258 (2,41). IR: 3280m, 3265 (sh), 3005m, 2965s, 2935m, 2900m, 2880m, 2240w, 2220w, 1620s, 1467s. ¹H-NMR (300 MHz): Hauptisomer 1,02 (d, J = 6,7, 2 CH₃); 2,06–2,47 (Signalhaufen, CH₂, CH); 10,94 (br. s, tauscht mit D₂O aus, NH); Nebenisomer 1,00 (d, J = 6,7, 2 CH₃); 2,06–2,47 (Signalhaufen, CH₂, CH); 10,53 (br. s, tauscht mit D₂O aus, NH): ¹³C-NMR (75,47 MHz): Hauptisomer 21,96 (q, 2 CH₃); 25,73 (d, CH); 50,95 (t, CH₂); 116,04 (s, CN); 159,00 (s, C). MS: 110 (9, M^{++}), 95 (57), 68 (100). Anal. ber. für C₆H₁₀N₂: C 65,42, H 9,15, N 25,43; gef.: C 65,30, H 9,00, N 25,60.

4.3. 2-Amino-4-methyl-2-pentennitril ((E/Z)-16). Das in 200 ml THF gelöste 15 (in situ hergestellt aus 9,5 g (84,8 mmol) 14, mit Et₂O versetzt, filtriert und eingedampft) tautomerisierte man durch 15 h Kochen unter Rückfluss zu (E/Z)-16. Die dunkle Lsg. wurde eingedampft, mit Et₂O versetzt, durch eine Schicht aus Celite und Na₂SO₄ filtriert, eingeengt und chromatographiert (Kieselgel, CH₂Cl₂): 2,5 g (27%) (E/Z)-16.

Daten von (Z)-16. Probe aus analogem Ansatz, in dem bei der Chromatographie zuerst reines (Z)-16 (GC), gefolgt von (E/Z)-16, eluiert worden war. DC (CH₂Cl₂): R_f 0,28. GC: t_R 16,3. UV (Hexan): 233 (3,924). IR: 3470m, 3380m, 3005m, 2970s, 2935m, 2875m, 2230s, 1641s, 1610s, 1465m. ¹H-NMR (300 MHz): 1,03 (d, J = 6,7, 2 CH₃); 2,46 (d sept., J = 6,7, 9,4, CH(4)); 3,10 (br. s, tauscht mit D₂O aus, NH₂); 5,08 (d, J = 9,4, CH(3)). ¹³C-NMR (25,2 MHz): 21,7 (q, 2 CH₃); 26,0 (d); 114,4, 118,1 (2s); 127,4 (d). MS: 110 (19, M^+), 95 (100).

Daten von (E)-**16**. Aus (E/Z)-**16** 44:56 stammend. DC (CH₂Cl₂): R_f 0,23. GC: t_R 14,9. ¹H-NMR (300 MHz): 1,03 (*d*, J = 6,7, 2 CH₃); 2,67 (*d sept.*, J = 6,7, 10,0, CH(4)); 2,96 (br. *s*, tauscht mit D₂O aus, NH₂); 5,26 (*d*, J = 10,0, CH(3)). ¹³C-NMR (75,47 MHz): 23,11 (q, 2 CH₃); 29,59 (*d*); 114,65, 115,93 (2s); 129,52 (*d*).

Die Konfiguration (Z)- und (E)-16 wurde eindeutig mittels NOE bewiesen: Einstrahlung in das NH₂-Signal eines (56:44)-Isomerengemisches führte beim Hauptisomeren zu einem starken NOE auf CH(4) bei 2,46 ppm, während CH(3) bei 5,08 ppm unbeeinflusst blieb (= (Z)-16); beim Nebenisomeren (= (E)-16) blieb das CH(4)-Signal bei 2,67 ppm unverändert, hingegen zeigte CH(3) bei 5,26 ppm einen NOE (*Exper.* von *W. Rüger* [50]; vgl. Abb. in [1], S. 105).

5. Exper. zu Schema 12. – 2-Amino-4-imino-2-methylglutarodinitril (17; nicht optimierter Versuch). Zu einer Lsg. von 178 mg (2,6 mmol) 3 in 3 ml CH₂Cl₂ gab man auf einmal 0,16 g (0,60 mmol) 1,2-Dihydro-2-oxopyridinium-(p-toluolsulfonat)³⁶), rührte 5 min und versetzte die Suspension mit 0,22 g (0,56 mmol) (Dimethylaminomethyl)polystyrol (2,45 mol-Äquiv./g). Nach 10 min kräftigem Rühren wurde dekantiert und auf 1 ml eingeengt. Chromatographie an NaClO₄-imprägniertem Kieselgel gab eine unstabile Fraktion (nicht isoliert), gefolgt von 47 mg (26%) 17 als dickflüssiges Öl. IR: 3510w, 3400m, 3290m, 2985m, 2940w, 2235w, 1760w, 1655m, 1614s, 1570m, 1550m. ¹H-NMR (80 MHz): 1,62 (s, CH₃); 2,31 (br. s, NH₂); 2,85, 3,02 (*AB*, *J* = 17, CH₂); 11,25–11,6 (2 überlagerte br. s, NH).

Bereits bei RT. eliminierte das Produkt in Lsg. 1 bzw. 2 HCN-Moleküle zum Gemisch von 2-Amino-2-methylbutandinitril (18) und 3-Aminocrotononitril ((E/Z)-19; Vergleich mit IR und ¹H-NMR von authentischem (E/Z)-19 (*Fluka*)). ¹H-NMR von 18 (80 MHz; Daten aus 18/(E/Z)-19 bestimmt): 1,72 (s, CH₃); 2,10 (br. s, NH₂); 2,82 (s, CH₂).

6. Exper. zu Schema 13. – 6.1. (cis/trans)-1,2-Diaminocyclobutan-1,2-dicarbonitril (c/t-20). Die verwendeten Glaswaren wurden vorgängig über Nacht in KOH/i-PrOH gereinigt, mit dest. H₂O gewaschen und im Trockenschrank getrocknet. Eine durch 2maliges Einfrieren in fl. N₂ und Evakuieren entgaste Lsg. von 350 mg (5,15 mmol) 3 und 94 mg (0,1 Äquiv.) Benzophenon (*Fluka, purum*; aus EtOH krist.) in 1 ml MeCN wurde unter Ar 46 h mit einer Hg-Mitteldrucklampe (125 W) bei RT. in einem ¹H-NMR-Rohr (in H₂O gekühlt) bestrahlt. AcOEt/CH₂Cl₂ 1:1 als Laufmittel der Chromatographie des braunen Gemisches an Kiesegel (3 × 10 cm) eluierte nach Benzophenon eine Mischfraktion Benzophenon/22, dann 111 mg (32%, Schmp. 115°, ¹H-NMR-rein) *t*-20, mit wenig c/t-20 verunreinigtes 23 sowie 147 mg (42%, Schmp. 87°, ¹H-NMR-rein) c-20.

 ³⁶) Hergestellt aus 37,4 g (196 mmol) TsOH · H₂O und 18,7 g (196 mmol) 2-Hydroxypyridin (*Fluka, pract.*) durch 3 h Rühren bei RT. in 300 ml CH₂Cl₂: 39,1 g (75%) nach Umkristallisieren aus EtOH, Schmp. 152°.

Daten von t-20. Durch Überschichten einer Lsg. von t-20 in CH₂Cl₂ mit Pentan kristallisierte eine Probe nach 2 Tagen bei RT. und 1 Tag bei 4°. Schmp. 117°. DC (AcOEt): R_f 0,49. IR (KBr; Abb. in [1], S. 128): 3367s, 3355s, 3290s, 2241m, 2225m. ¹H-NMR (300 MHz; vgl. *Fig. 5a*): 1,99–2,11 (m, 2 H–CH); 2,13 (s, tauscht in D₂O aus, 2 NH₂); 2,65–2,78 (m, 2 H–CH). ¹³C-NMR ((D₆)Aceton, 25,2 MHz): 30,4 (t, 2 CH₂); 59,2 (s, 2 C–CN); 120,6 (s, 2 CN). MS: 69 (5), 68 (100, M^+ des Monomers), 67 (13). FAB-MS (Xe, 8,8 keV): 137 (100, M^+ + 1), 110 (50, 137 – HCN). Anal. ber. für C₆H₈N₄: C 52,93, H 5,92, N 41,15; gef.: C 52,99, H 5,88, N 41,13.

Fig. 5. 300-MHz-¹H-NMR-Spektrum (CDCl₃) von a) trans-1,2-Diaminocyclobutan-1,2-dicarbonitril (t-20) und b) cis-1,2-Diaminocyclobutan-1,2-dicarbonitril (c-20) in CDCl₃

Daten von c-20. Eine Probe wurde wie oben aus CH₂Cl₂/Pentan kristallisiert. Schmp. 92°. DC (AcOEt): R_f 0,30. IR (KBr; Abb. in [1], S. 129): 3368*s*, 3355*s*, 3280*s*, 3245*m*, 3165*m*, 2242*w*, 2235*w*, 2220*w*. ¹H-NMR (300 MHz; vgl. *Fig. 5b*): 1,98 (*s*, tauscht in D₂O aus, 2 NH₂); 2,04–2,18 (*m*, 2 *H*–CH); 2,55–2,70 (*m*, 2 *H*–CH). ¹³C-NMR ((D₆)Aceton, 25,2 MHz): 31,0 (*t*, 2 CH₂); 56,9 (*s*, 2 *C*–CN); 121,6 (*s*, 2 CN). MS: 69 (9), 68 (97, M^{++} des Monomers); 67 (10), 53 (100). FAB-MS (Xe, 8,3 keV): 137 (100, M^{+} + 1), 110 (31, 137 – HCN). Anal. ber. für C₆H₈N₄: C 52,93, H 5,92, N 41,15; gef.: C 52,96 H 5,90, N 41,20.

Daten von 2,4-*Diaza-3-methylbicyclo*[3.2.0]*heptan-1,5-dicarbonitril* (23). Nach Chromatographie an Kieselgel G mit CH₂Cl₂/Et₂O 19:1 gaben die 23 enthaltenden Mischfraktionen (vgl. oben) 31,6 mg (11%, ¹H-NMR-rein) kristallines Produkt, das aus 1 ml AcOEt/Hexan 1:1 heiss umkristallisiert 20,6 mg 23 lieferte. Schmp. 142°. DC (AcOEt): R_f 0,33. IR (KBr; Abb. in [1], S. 131): 3275*s*, 2241 (sh), 2233*m*. ¹H-NMR (300 MHz; Abb. in [1], S. 131): 1,52 (*d*, J = 5,7, CH₃); 2,05–2,19 (*m*, 2 *H*–CH); 2,25 (*d*, J = 11,5, 2 NH); 2,68–2,81 (*m*, 2 *H*–CH); 4,29 (*qt*, $J_q = 5,7, J_t = 11,4$, CH(3)). ¹³C-NMR (CD₂Cl₂, 75,47 MHz): 17,94 (*q*, CH₃); 30,07 (*t*, 2 CH₂); 65,54 (*s*, 2 *C*–CN); 74,19 (*d*, CH(3)); 118,40 (*s*, 2 CN). MS: 161 (3, $M^{++} - 1$), 147 (6), 120 (10), 119 (100). Anal. ber. für C₈H₁₀N₄: C 59,24, H 6,21, N 34,54; gef.: C 59,15, H 6,37, N 34,38.

Daten von 3-Amino-2,2-diphenyloxetan-3-carbonitril (22). Säulenchromatographie der Mischfraktion aus Benzophenon/22 an Kieselgel mit CH₂Cl₂ (*ca.* 5faches Säulenvolumen), dann CH₂Cl₂/Et₂O 9:1 gab 44 mg Benzophenon und 36 mg (2,8 %, ¹H-NMR-rein) kristallines 22, das aus CH₂Cl₂/Pentan (vgl. oben) umkristallisiert wurde: 31 mg (2,4%) 22, Schmp. 134°. DC (CH₂Cl₂): $R_{\rm f}$ 0,14. UV (MeOH): 221 (4,097), 253 (2,623), 259 (2,690), 265 (2,580). IR (KBr; Abb. in [1], S. 132): 3373s, 3312s. ¹H-NMR (300 MHz; abgebildet in [1], S. 132): 1,79 (br. *s*, NH₂); 4,40 (*d*, *J* = 6,8, H–CH); 4,98 (*d*, *J* = 6,8, H–CH); 7,31–7,34 (*m*, arom. H); 7,38–7,45 (*m*, arom. H); 7.55–7,62 (*m*, arom. H). ¹³C-NMR (25,2 MHz); 59,0 (*s*); 77,7 (*t*); 94,7 (*s*); 119,6 (*s*, CN); 124,9, 126,0, 128,1, 128,3, 128,7 (5*d*, 10 arom. CH); 138,4, 141,6 (2*s*). MS: 220 (4, *M*⁺ – CH₂=O), 183 (44), 105 (100). Anal. ber. für C₁₆H₁₄N₂O: C 76,78, H 5,64, N 11,19; gef.: C 76,72, H 5,56, N 11,13.

6.2. Konfigurationsbestimmung von t-20 und c-20 durch Umsetzung mit (-)-Camphanoyl-chlorid. 6.2.1. N,N'-(trans-1,2-Dicyancyclobutan-1,2-diyl)bis(camphanamide) (t-20a und t-20b). Unter Luftausschluss wurden 14,3 mg (0,105 mmol) t-20 und 68 mg (0,315 mmol) (-)-Camphanoyl-chlorid [95] in 2 ml Pyridin 6 h bei RT. gerührt, das Pyridin i. HV. bei RT. entfernt und der Rückstand an Kieselgel (1 × 10 cm) mit AcOEt/Hexan/CH₂Cl₂ 4:4:1 chromatographiert, wobei 55 mg farbloses Öl isoliert wurden, das bei Zugabe von 1 ml Hexan kristallisierte: 46,0 mg (88%) t-20a/t-20b als farblose Kristalle (Daten: vgl. [1], S. 135). Ein Teil (29 mg) davon wurde mit CH₂Cl₂/ Et₂O 19:1 an Kieselgel G (2 × 10 cm) getrennt: 10 mg t-20b (rascher eluiert), 13 mg t-20a (langsamer eluiert), 4 mg Mischfraktionen. Die beiden Fraktionen lieferten bei Kristallisation aus CH₂Cl₂/Hexan farblose Kristalle. *Daten von* t-**20a**: Schmp. 250–252° (Zers.). DC (CH₂Cl₂/Et₂O 19:1³⁷)): R_{f} 0,16. [α]_D = -39° (c = 1,08, CHCl₃). IR (KBr): 3365s, 3340 (sh), 2245w, 1795s, 1779s, 1691s, 1673s. ¹H-NMR (100 MHz): 0,99 (s, 2 CH₃); 1,11 (s, 4 CH₃); 1,60–2,20, 2,35–3,05 (2m, 6 CH₂); 7,96 (s, 2 NH). ¹³C-NMR (75,47 MHz): 9,70 (q, 2 CH₃); 16,66 (q, 4 CH₃); 29,00, 29,05, 30,37 (3t, 6 CH₂); 54,64, 55,48, 56,11 (3s, 6 C); 91,72 (s, 2 C–O); 115,53 (s, 2 CN); 168,36 (s, 2 CO₂); 177,65 (s, 2 C=O). MS: 498 (2), 497 (8), 496 (14, M^{++}), 83 (100).

Daten von t-20b: Schmp. 235–236° (Zers.). DC (CH₂Cl₂/Et₂O 19:1³⁷)): R_f 0,14. [α]_D = -8.7° (c = 1,00, CHCl₃). IR (KBr): 3370m, 2240w, 1795s, 1693s, 1675s. ¹H-NMR (100 MHz): 1,00, 1,07, 1,09 (3s, 6 CH₃); 1,50–2,15, 2,35–2,95 (2m, 6 CH₂); 7,97 (s, 2 NH). ¹³C-NMR (75,47 MHz): 9,70, 16,35, 16,50 (3q, 6 CH₃); 28,86, 28,93, 30,34 (3t, 6 CH₂); 54,75, 55,48, 56,16 (3s, 6 C); 91,63 (s, 2 C–O); 115,86 (s, 2 CN); 168,34 (s, 2 CO₂); 177,88 (s, 2 C=O). MS: 498 (1), 497 (5), 496 (15, M^{+1}), 83 (100).

6.2.2. N,N'-(cis-1,2-Dicyancyclobutan-1,2-diyl)bis(camphanamid) (c-20a). Unter Luftausschluss wurden 28,1 mg (0,207 mmol) c- 20, 134 mg (0,62 mmol) (-)-Camphanoyl-chlorid [95] und 4 ml Pyridin 6 h bei RT. gerührt. Das Lsgm. wurde i. HV. entfernt und der kristalline, weisse Rückstand an Kieselgel (1 × 10 cm) mit Hexan/AcoEt 1:1 chromatographiert: 83 mg (81%) kristallines, DC-einheitliches *c*-20a. Schmp. 225°. DC (AcOEt/CH₂Cl₂ 1:1): R_f 0,52. DC (CH₂Cl₂/Et₂O 19:1; auf 20-cm-Kieselgel-Platte 6mal bis *ca.* $\frac{3}{4}$ der Plattenhöhe laufen gelassen): R_f 0,20. [α]_D = -56° (*c* = 0,78, CHCl₃). IR (KBr): 3402*m*, 3258*m*, 2245*w*, 1790s, 1682s. ¹H-NMR (100 MHz): 0,92, 0,95 (2s, 2 CH₃); 1,08 (*s*, 3 CH₃); 1,12 (*s*, CH₃); 1,5-2,2, 2,38-3,1 (2*m*, 6 CH₂); 7,23, 7,42 (2 br. *s*, 2 NH). ¹³C-NMR (75,47 MHz): 9,60, 9,66 (2*q*, 2 CH₃); 16,52, 16,61 (2*q*, 2 CH₃); 28,89, 29,06, 29,50, 29,76, 29,98, 30,68 (*c*, 6 CH₂); 53,78, 54,29, 54,68, 54,89 (4*s*, 4 C); 55,40 (*s*, 2 C); 91,76, 91,91 (2*s*, 2 C-O); 115,72, 116,05 (2*s*, 2 CN); 168,14, 169,80 (2*s*, 2 CO₂); 177,39, 177,82 (2*s*, 2 C=O). MS: 497 (17), 496 (49, *M*⁺⁺), 83 (100). Anal. ber. für C₂₆H₃₂N₄O₆: C 62,89, H 6,50, N 11,28; gef.: C 62,59, H 6,48, N 11,17.

6.3. Ringöffnung von t/c-20 zu rac-Glutamindinitril (21; Exper. von v. Planta). Eine unter Ar hergestellte Lsg. von 50 mg (0,37 mmol) t/c-20 (1:1) und 255,5 mg (1,83 mmol) 1,5,7-Triazabicyclo[4.4.0]dec-5-en (Fluka, purum; bei 100°/0,01 Torr frisch sublimiert) in 15 ml abs. MeCN wurde 30 min bei 70° gerührt, bei 30° eingedampft, der Rückstand in 5 ml AcOEt gelöst und durch Kieselgel filtriert, das Lsgm. entfernt (RV./30°, dann HV.): 29,9 mg (73%) 21 als bräunliches Öl. DC (AcOEt; Anfärbung mit Phosphormolybdänsäure): ein einheitlicher Fleck bei R_f 0,28 (Produktreinheit ca. 95% laut ¹H-NMR. Ausbeutebereich in analogen Ansätzen 62–84%). ¹H-NMR (300 MHz): mit demjenigen der in 7.1 charakterisierten Probe übereinstimmend.

7. Exper. zu Schema 14. – 7.1. Ringöffnung von t/c-20 zu rac-Glutamindinitril (21)/Pyroglutamin-Derivat 24. In einer Ampulle mit 402 mg (2,95 mmol) t-20/c-20 (1:1) und 1,2 g (22 mmol) NH₄Cl kondensierte man im N₂-Gegenstrom ca. 10 ml NH₃ ein und rührte nach Abschmelzen der Ampulle i. V. in einem Autoklaven 60 h bei 35°. Der Ampulleninhalt wurde nach Abkühlen auf –78° auf 25 ml CH₂Cl₂ gegossen, durch Watte filtriert und der Rückstand mit MeOH gewaschen. Chromatographie des eingedampften Filtrats an einer eisgekühlten Kieselgel-Säule (3 × 10 cm) mit bei RT. mit NH₃ ges. CH₂Cl₂/MeOH 19:1 gab 124 mg ¹H-NMR-reines 21 als gelbes Öl sowie 58 mg (noch verunreinigtes) kristallines 24. Das rohe 21 wurde an einer eisgekühlten Kieselgel-Säule mit Et₂O/ CH₂Cl₂ 1:1 nochmals chromatographiert: 98,7 mg (31%) 21 als farbloses Öl. DC (CH₂Cl₂/Et₂O 1:1): R_f 0,10. IR (vgl. Fig. 6): 3670w, 3405s, 3340m, 3020s, 2940m, 2867w, 2250s, 2235 (sh), 1623m (br.), 1446s, 1424s, 1368w, 1310m,

Fig. 6. IR-Spektrum von rac-Glutamindinitril (21) in CHCl₃

³⁷) Auf 20-cm-Kieselgel-Platte 2mal laufen gelassen, mit H₂SO₄ angefärbt.

Fig. 7. 300-MH2-¹H-NMR-Spektrum (CDCl₃; gespreizter Ausschnitt) von rac-Glutamindinitril (21)

1115*s*, 1039*m*, 960*m*, 932*m*. ¹H-NMR (300 MHz; Abb. in [1], S. 141, vgl. *Fig. 7*): 1,58 (*s*, *ca*. 1 H, H₂O?); 1,66 (br. *s*, NH₂); 1,99–2,21 (*m*, CH₂); 2,59, 2,67 (*AB t*, $J_{AB} = 17,0, J_t = 7,5$, CH₂); 3,81 (*t*-artiges *m*, J = 7, CH). ¹³C-NMR (25,2 MHz): 13,7, 30,7 (2*t*); 41,9 (*d*); 118,8, 121,3 (2*s*, 2 CN). MS: 134 (6, 2 $M^{++} - NH_3 - HCN - CH_2CN$), 120 (5), 109 (3, M^{++}), 93 (8), 86 (11), 84 (18), 55 (100). Anal. ber. für C₅H₇N₃: C 55,03, H 6,47, N 38,51; gef.: C 55,11, H 6,39, N 38,58.

Daten von 5-Iminopyrrolidin-2-carbonitril (24). Zur Analyse wurde das rohe 24 mit CH₂Cl₂/MeOH (NH₃-ges.) 10:1 an Kieselgel chromatographiert: 47,5 mg (15%) ¹H-NMR-reines 24, das 2mal aus CH₂Cl₂/Hexan umkristallisiert wurde. Schmp. 130–132°. DC (CH₂Cl₂/MeOH 9:1, NH₃-ges.): R_f 0,38. UV: 203 (3,845). IR (KBr; Abb. in [1], S. 142), ¹H-NMR (300 MHz; Abb. in [1], S. 142), ¹³C-NMR (CD₃OD, 75,47 MHz), MS und C,H,N-Analyse: mit den Daten der Vergleichsprobe aus 7.2 übereinstimmend.

7.2. 24 aus rac-Pyroglutaminsäure. 7.2.1. rac-Pyroglutaminsäure-methylester (= rac-5-Oxypyrrolidin-2-carbonsäure-methylester; 25). Zu einer Suspension von 10,0 g (77,4 mmol) rac-Pyroglutaminsäure (Fluka, puriss.) in 100 ml MeOH tropfte man unter Eiskühlung 2 ml konz. H_2SO_4 und rührte ca. 45 min bei RT. Die nun klare Lsg. wurde auf 100 ml eiskalte ges. NaHCO₃-Lsg./100 ml CH₂Cl₂ gegossen, wobei durch laufende Zugabe von festem NaHCO₃ ein pH-Wert von 7-8 eingehalten wurde. Die wässr. Phase wurde 3mal mit 75 ml CH₂Cl₂ extrahiert und das Rohprodukt nach Entfernen des Lsgm. destilliert (112°/0,01 Torr): 7,3 g (66%) 25 als farbloses, viskoses Öl. Sdp. 112°/0,01 Torr. DC (AcOEt/MeOH 9:1): R_f 0,34. IR: 3440m, 3000m, 2960m, 1745s, 1705s, 1600w. ¹H-NMR (80 MHz): 2,0-2,7 (m, 2 CH₂); 3,80 (s, CH₃); 4,1-4,5 (m, CH); 7,1 (br. s, NH). MS: 143 (7, M^+), 84 (100).

7.2.2. rac-Pyroglutaminamid (= rac-5-Oxopyrrolidin-2-carboxamid; 26). Eine Lsg. von 7,0 g (48,9 mmol) 25 in 15 ml MeOH versetzte man mit 7 ml 25% wässr. NH₃-Lsg., rührte über Nacht und dampfte ein (RV., dann 2 h HV.): 6,0 g (96%) Rohprodukt, Schmp. 195-202°. Umkristallisation aus heissem abs. MeOH (Löslichkeit *ca.* 30 mg/ml) gab nach 5 h i. HV. bei RT. 5,2 g (83%) reines 26 als farblose Nadeln, Schmp. 211–214°. DC (AcOEt/MeOH 19:1): R_f 0,05. IR (KBr): 2960w, 2880w, 2805w, 1680s. ¹H-NMR ((D₆)DMSO, 80 MHz): 1,5–2,5 (*m*, 2 CH₂); 3,6–4,0 (*m*, CH); 6,2–8,0 (br. *m*, NH, NH₂). MS: 128 (5, M^+ ⁺), 85 (10), 84 (100).

7.2.3. 5-Ethoxy-3,4-dihydro-2H-pyrrol-2-carboximidsäure-ethylester (27). Unter N₂ wurden 11,69 g (91,3 mmol) 26 in einer Lsg. von 52,0 g (274 mmol) Et₃O⁺BF₄⁻ [96] in 300 ml abs. CH₂Cl₂ aufgeschlämmt und unter Rückfluss gekocht, wobei sich 26 löste (1,5 h). Nach weiteren 3 h Kochen kühlte man ab, gab 30,0 g (297 mmol) Et₃N zu, erhitzte zur Zerstörung des überschüssigen Oxonium-Salzes erneut 10 min unter Rückfluss, setzte dann unter Eiskühlung 65,0 g fein pulverisiertes K₂CO₃ und 100 ml H₂O zu und rührte noch 30 min. Die ausgefallenen Salze wurden durch *Celite* abfiltriert. Die wässr. Phase wurde mit NaCl gesättigt und mit 3 × 75 ml CH₂Cl₂ extrahiert. Der nach Abdampfen (40°) verbleibende Rückstand wurde destilliert: 10,42 g (62%) 27 als farbloses Öl, Sdp. 69°/0,01 Torr. DC (AcOEt): R_f 0,23. IR: 3300w, 2980s, 2900m, 1655 (sh), 1648s, 1637s. ¹H-NMR (80 MHz): 1,30, 1,33 (2r, J = 7, 2 CH₃); 1,6–2,8 (Signalhaufen, 2 CH₂); 4,0–4,6 (Signalhaufen, 2 CH₂, CH); 7,4 (br. s, NH). MS: 184 (3, M^+), 112 (68), 84 (100).

7.2.4. 5-*Ethoxy-3,4-dihydro-2H-pyrrol-2-carbonitril* (28). Unter N₂ versetzte man 184 mg (1,00 mmol) 27 mit 4 ml (*ca.* 1,5 mmol) *t*-BuOK-Lsg. in *t*-BuOH, rührte 10 min bei RT., goss die Mischung in 25 ml eisgekühlte ges. NaHCO₃-Lsg., extrahierte mit 3×25 ml CH₂Cl₂ und dampfte bei 40° ein. Kugelrohr-Destillation (80°/0,01 Torr) des Rückstandes gab 133 mg (96%) reines 28 als farbloses Öl. DC (AcOEt): *R*_f 0,52. IR: 2990*m*, 2940 (sh), 2903*w*, 2890*w*, 2245*w*, 1638 (sh), 1630s. ¹H-NMR (80 MHz): 1,32 (*t*, *J* = 7, CH₃); 2,1–2,8 (Signalhaufen, 2 CH₂); 4,25 (*q*, *J* = 7, CH₂); 4,5–4,8 (*m*, CH). MS: 138 (32, *M*⁺⁺), 54 (100).

7.2.5. 5-Iminopyrrolidin-2-carbonitril (24). In einer 50-ml-Ampulle wurden 804,5 mg (5,82 mmol) 28 und 1,00 g (5,82 mmol) TsOH (TsOH \cdot H₂O 3mal in Benzol aufgeschlämmt, bei RT. eingedampft und 1 h i. HV. getrocknet) unter N₂ vorgelegt und mit 40 ml 12M NH₃-Lsg. in abs. MeOH versetzt. Nach Abschmelzen der Ampulle i.V.

erhitzte man 1 h auf 90°, öffnete die Ampulle nach Abkühlen auf -190° und liess unter N₂ (Ballon) auftauen. Die NH₃-Lsg. wurde auf 40 ml abs. Et₂O gegossen (NH₄⁺TsO⁻ fiel aus), durch Watte filtriert und das eingedampfte Filtrat an einer Kieselgel-Säule mit CH₂Cl₂/MeOH 19:1 (NH₃-ges.) chromatographiert: 514,5 mg (81 %) rohes **24** mit Schmp. 132–134°, das aus abs. CH₂Cl₂/Hexan umkristallisiert 348,7 mg (55%) **24** gab. C,H,N-Analyse und p*K*-Wert stammen von einer Probe, die noch 2mal aus CH₂Cl₂/Hexan umkristallisiert und 24 h i. HV. getrocknet worden war. Schmp. 135–136° (Sublimation bei *ca.* 120°/0,01 Torr). DC (CH₂Cl₂/MeOH (NH₃-ges.) 4:1): *R*_f 0,56. p*K* (Methyleellosolve/H₂O 8:2; potentiometrische Titration mit 0,1N HCl) = 6,95. IR (KBr): 2990*m*, 2925*m*, 2882*m*, 2840*w*, 2680*w*, 2580*w*, 2245*m*, 1670*s*, 1612*s.*¹H-NMR (300 MHz): 2,2–2,8 (Signalhaufen, 2 CH₂); 3,6–5,2 (*m*, NH₂); 4,63 (*ddt*, *J_d* = 8,1, *J_d* = 5,2, *J_t* = 0,8, CH). ¹³C-NMR (CD₃OD, 25,2 MHz): 30,0, 32,8 (2*t*); 57,1 (*d*); 122,4 (*s.* CN); 173,2 (*s*). MS: 109 (94, *M*⁺⁺), 83 (11), 82 (93), 81 (100). Anal. ber. für C₅H₇N₃: C 55,03, H 6,47, N 38,50; gef.: C 55,21, H 6,55, N 38,37.

7.3. rac-Glutamindinitril (21). 7.3.1. Aus Acrylaldehyd [52]. In einem 50-ml-Zweihalskolben mit Magnetrührer und 2 durch NaCl/Eiswasser gekühlten Dimroth-Schlangenkühlern in Serie wurden unter Ar 4,0 ml (60 mmol) frisch dest. Acrylaldehyd und 21,5 ml einer Lsg. von 4,1 g (0,15 mol) HCN in MeCN auf -20° abgekühlt und unter Rühren mit 0,11 g (1 mmol) frisch sublimiertem t-BuOK versetzt. Das sich beim anschliessenden Kochen unter Rückfluss innert 15 min nach gelbbraun bis schwarz verfärbende Gemisch wurde auf -10° abgekühlt und mittels Pipette auf ca. 60 ml NH₃-Lsg. gegossen, die sich eingefroren in einem Stahlautoklaven befand. Man erhitzte das Gemisch im Autoklaven 2 h auf 50°, überführte die schwarze Lsg. mit wenig CH₂Cl₂ in einen Kolben, liess das überschüssige NH₃ abdampfen und filtrierte die schwarze Lsg. mit AcOEt durch eine 10-cm-Kieselgel-Säule: 5,4 g gelbes Öl, gemäss ¹H-NMR zu ca. 90% reines 21. Nach Chromatographie an Kieselgei (5 × 10 cm) mit CH₂Cl₂/ Et₂O 1:1 erhielt man 4,0 g (61%) reines 21. DC (CH₂Cl₂/Et₂O 1:1): R_f 0,15; charakterisiert durch IR, ¹H-NMR (80 MHz), MS und C,H,N-Analyse.

7.3.2. Aus 4-Oxobutannitril. Unter Feuchtigkeitsausschluss und Eiskühlung wurden 11,5 g (0,68 mmol) NH₃ in 200 ml abs. MeOH eingeleitet und dieser Lsg. 3,15 g (59,5 mmol) NH₄Cl und 3,9 g (60 mmol) KCN zugesetzt. Dann tropfte man unter N₂ bei RT. innert 5 min eine 62% Lsg. von 4,1 g (50 mmol) 4-Oxobutannitril ([97]; vgl. [1], S. 145–146) in CH₂Cl₂, verdünnt mit 40 ml abs. MeOH, zu und rührte 17 h bei RT. Durch Filtration der rotbraunen Suspension, Eindampfen des Filtrats, Lösen des Rückstandes in 150 ml AcOEt, erneutes Abfiltrieren und Einengen liessen sich die anorg. Salze teilweise abtrennen. Chromatographie des Rückstandes an einer eisgekühlten Kieselgel-Säule (3 × 5 cm) mit AcOEt gab 4,16 g salz-freies Rohprodukt, das in 50 ml AcOEt gelöst, mit einer Lsg. von 7,25 g (38 mmol) TsOH H₂O in 50 ml AcOEt und 6 ml MeOH versetzt und unter Rühren durch Zugabe von einigen Tropfen Et₂O kristallisiert wurde: 7,99 g (57%) rac-Glutamindinitril-(p-toluolsulfonat) als farblose Kristalle, die nach Umkristallisation aus MeOH/Et₂O charakterisiert wurden (21 · TsOH). Schmp. 144-146°. UV (MeOH): 222 (4,029), 256 (2,299), 262 (2,384), 269 (2,236). IR (KBr): 3005s, 2958s, 2925s, 2710m, 2260m, 1620m, 1600*m*. ¹H-NMR (CD₃OD, 300 MHz): 2,28–2,36 (*m*, CH₂(3)); 2,37 (*s*, CH₃); 2,74, 2,77 (*AB t*, $J_{AB} = 17, 4, J_t = 7, 6$, $CH_{2}(4)$; 4,60 (*dd*, J = 8,2,6,7, CH(2)); 7,21–7,25, 7,69–7,73 (*2m*, 4 arom. H). ¹³C-NMR (D₂O, 25,2 MHz): 12,8 (t); 20,1 (q); 25,6 (t); 40,0 (d); 114,3, 118,5 (2s, 2 CN); 125,0, 129,1 (2d, 4 arom. CH); 139,2, 142,0 (2s). MS: 172 (82, TsOH), 109 (21, M⁺⁺ von 21), 108 (27), 107 (38), 91 (100). Anal. ber. für C₁₂H₁₅N₃O₃S: C 51,23, H 5,37, N 14,94, S 11,40; gef.: C 51,30, H 5,32, N 14,79, S 11,51.

Zur Freisetzung von **21** wurde in eine im Eisbad gekühlte Suspension von **21** TsOH in 25 ml CH₂Cl₂/Et₂O 1:1 während 2 min NH₃ eingeleitet, das ausgefallene NH₄⁴TsO⁻ abgenutscht, der Filterkuchen mit CH₂Cl₂/Et₂O 1:1 gewaschen und das Filtrat eingedampft: 376 mg (97%) **21** als farbloses, gemäss ¹H-NMR (CD₃OD, 80 MHz) reines Öl.

8. Exper. zu Schema 16. – 8.1. 2,2'-Iminobis(1,5-pentandinitril) (36a/b). Im schwachen N₂-Strom wurden 4,00 g 21 62 h bei 80° gerührt, das beim Abkühlen erstarrte Gemisch (im ¹H-NMR keine Aldimin-H-Signale) wurde in 20 ml EtOH heiss gelöst und nach Zugabe von Impfkristallen eines Diastereoisomeren (36a) teilweise kristallisiert. Abnutschen, Waschen mit 3×3 ml CH₂Cl₂ und Trocknen i. HV. lieferten 3,5 g klebrigen Festkörpers, der aus einem heissen Gemisch von 10 ml EtOH/CH₂Cl₂ 7:3 kristallisiert wurde. Abpipettieren der Mutterlauge, Waschen der Kristalle mit 5×3 ml CH₂Cl₂ und Trocknen i. HV. gaben 0,99 g farblose Kristalle, nach Umkristallisation aus 15 ml heissem EtOH 0,85 g (23%) 36a vom Schmp. 108–109°. Ein GC (100°, 5°/min→200°) der vereinigten Mutterlaugen zeigte im wesentlichen Signale von 37 (aus 36 durch HCN-Elimination entstanden) und Edukt 21 (*ca.* 4:1). Chromatographie der Mutterlaugen an Kieselgel (5 × 10 cm, eisgekühlt, Gemisch als ges. Lsg. in Aceton öls, das gemäss ¹H-NMR *ca.* 80% 21 enthielt (10% bzgl. eingesetztem Edukt). Die 1. Fraktion wurde heiss aus 15 ml EtOH kristallisiert, abgenutscht, mit 4 × 1 ml CH₂Cl₂ gewaschen und i. HV. getrocknet: 957 mg (26%) farblose Kristalle von 36b mit Schmp. 65–76° (gemäss ¹H-NMR noch mit 36a verunreinigt).

Daten von **36a**. Eine Probe (216 mg) **36a** (Schmp. 108–109°) wurde aus 5 ml heissem EtOH/Aceton 19:1 umkristallisiert. Nach Abfiltrieren, Waschen mit 2 ml EtOH/CH₂Cl₂ 1:1 bzw. 3×1 ml CH₂Cl₂ und Trocknen fielen 175 mg Kristalle von **36a** an. Schmp. 113°. DC (AcOEt): $R_{\rm f}$ 0.56. IR (KBr; Abb. in [1], S. 161): 2975w, 2965w, 2945m, 2928w, 2245m, 2235w. ¹H-NMR ((D₆)DMSO, 300 MHz; Abb. in [1], S. 161): 1,91–2,13 (m, 2 CH₂); 2,63 (t, J = 7,3, 2 CH₂CN); 3,80–3,94 (Signalhaufen, 1 H tauscht mit D₂O aus, dabei Vereinfachung zu *dd* mit J = 6, 9, 2 CH, NH). ¹³C-NMR ((D₆)DMSO, 25,2 MHz): 13,1, 29,1 (2t, 4 CH₂); 47,0 (d, 2 CH); 119,0, 119,6 (2s, 4 CN). MS: 175 (4, M^{++} – CN), 174 (10), 120 (100). Anal. ber. für C₁₀H₁₁N₅: C 59,69, H 5,51, N 34,80; gef.: C 59,55, H 5,51, N 34,63.

Isolierung und Daten von 36b. Ein bei versuchter Kristallisation von 957 mg an 36b angereichertem Gemisch 36a/b (Schmp, 65-76°) aus EtOH 'ausölendes' Gemisch (849 mg) wurde auf Kieselgel G (4 × 11 cm) mit 100 ml CH₂Cl₂, gefolgt von 5% AcOEt in CH₂Cl₂ chromatographiert. Da 36a/b im DC nicht unterscheidbar sind, wurden die Produkt-Fraktionen nach steigender Verweilzeit auf der Säule willkürlich unterteilt: 1 (290 mg farbloses Öl), 2 (400 mg, teilweise kristallin), 3 (140 mg farblose Kristalle). Beim langsamen Abkühlen des in 2 ml heissem EtOH gelösten Öls aus Fraktion 1 isolierte man 184,5 mg farblose Kristalle vom Schmp. 56°, laut ¹H-NMR ((D_6)DMSO, 300 MHz) 36b mit 10% 36a. Vermischt mit 1 g Quarzsand wurden 166 mg dieser Kristalle auf eine frische Säule (Kieselgel G, 2×13 cm) aufgetragen, mit 2 g Quarzsand überschichtet und mit CH₂Cl₂/AcOEt 19:1 eluiert. Man isolierte farbloses Material aus folgenden, wiederum willkürlich unterteilten 3 Fraktionen: 4 (100 mg Öl), 5 (41 mg, Öl), 6 (23 mg Kristalle). Beim Stehenlassen im Kühlschrank des in 0,5 ml heissem EtOH gelösten Öls aus Fraktion 4 kristallisierten 70 mg 36b. Schmp. 56°. DC (AcOEt): Rf 0,56. IR (KBr; abgebildet in [1], S. 163): 3010w, 2983w, 2965w, 2955w, 2940w, 2247m, 2240 (sh). ¹H-NMR ((D₆)DMSO, 300 MHz; Abb. in [1], S. 163): 2,03–2,10 (m, 2 CH₂); 2,65 (t, J = 7,4, 2 CH₂CN); 3,81 (t, J = 7,7, tauscht mit D₂O aus, NH); 3,95–4,02 (m, nach Schütteln mit $D_2O \rightarrow t \text{ mit } J = 7,5; 2 \text{ CH}$. ¹³C-NMR ((D_6)DMSO, 25,2 MHz): 11,9, 26,8 (2t, 4 CH₂); 45,0 (d, 2 CH); 117,5, 118,3 $(2_5, 4 \text{ CN})$. MS: 202 (0,5, M^{++} + 1), 175 (21, M^{++} - CN), 120 (100). Anal. ber. für C₁₀H₁₁N₅: C 59,69, H 5,51, N 34,80; gef.: C 59,76, H 5,52, N 34,62.

8.2. 2-f(E)-(3-Cyanpropyliden)amino]-1,5-pentandinitril (= N²-f(E)-3-Cyanpropyliden]glutamindinitril;37). Im Kugelrohrofen (210°/0,2 Torr) wurden 80,0 mg (0,398 mmol) **36a** (Schmp. 108–109°) 2mal destilliert, wobei die Kristalle beim Aufheizen zur ersten Destillation zwischen 100 und 180° Ofentemp. unter Gasentwicklung schmolzen: 67,5 mg (97%) farbloses Öl **37**. UV: 228 (2,230). IR (Abb. in [1], S. 164): 2942*m*, 2920*w*, 2890*w*, 2255*m*, 1687 (sh), 1677 (sh), 1673s. ¹H-NMR (300 MHz; Abb. in [1], S. 164): 2,16–2,39 (*m*, CH₂); 2,55–2,82 (*m*, 3 CH₂); 4,64 (*ddd*, *J* = 7,3, 5,4, 1,8, CH); 8,14 (*dt*, *J*_t = 2,6, *J*_d = 1,8, CH). ¹³C-NMR (25,2 MHz): 12,6, 13,4, 29,8, 30,9 (4t); 55,9 (*d*); 116,6, 118,5, 119,4 (3s, 3 CN); 164,9 (*d*). MS: 175 (0,6, *M*⁺⁺ + 1), 173 (0,6, *M*⁺⁺ - 1), 27 (100). Anal. ber. für C₉H₁₀N₄: C 62,05, H 5,79, N 32,16; gef.: C 62,19, H 5,93, N 32,33.

8.3. (3 E/Z)-3-[(E)-N-(1,3-Dicyanpropyl)iminomethyl]-3-hepten-1,7-dinitril (= N²-[(1E,2E/Z)-5-Cyan-2cyanmethyl-2-pentenyliden]glutamindinitril; (E/Z)-38). In einer Ampulle wurden 348 mg (2,00 mmol) 37 mit 50 mg (0,187 mmol) 1,2-Dihydro-2-oxopyridinium-(p-toluolsulfonat)³⁶) und nach Evakuieren und Begasen mit N₂ mit 1,3 ml THF versetzt. Die Ampulle wurde in fl. N₂ eingefroren und i. HV. abgeschmolzen. Die nach 70 h Rühren bei 50° braune Aufschlämmung enthielt gemäss ¹H-NMR (80 MHz) und DC ein Gemisch von vorwiegend (E/Z)-38 und 21 und wurde direkt auf eine Kieselgel-Säule (3 × 10 cm) aufgetragen, mit 20 ml CH₂Cl₂ in kleinen Portionen nachgewaschen und schliesslich mit 4% Et₂O in CH₂Cl₂ eluiett: 16,0 mg 4-Oxobutannitril, gefolgt von 129,3 mg (E/Z)-38 (mit sehr wenig 21 verunreinigt), 74,4 mg 21/(E/Z)-38 sowie 78,7 mg gemäss ¹H-NMR reines 21. Weitere Chromatographie der ersten Mischfraktion auf diese Weise 39,4 mg (E/Z)-38 und 30,5 mg 21 lieferte. Total 162,8 mg (68%) (E/Z)-38 ((E/Z) ca. 6:1), das laut IR noch Spuren 3-Formyl-3-hepten-1,7-dinitril enthielt, gemäss ¹H-NMR

Daten von (E/Z)-**38** ((E/Z) ca. 3:1). Um das in Spuren anwesende Hydrolyseprodukt von (E/Z)-**38**, das entsprechende Formyldinitril (IR: 1693w. ¹H-NMR: *s* von HCO bei 9,48 ppm), abzutrennen, wurden 68,5 mg rohes (E/Z)-**38** zwischen 5 ml CH₂Cl₂ und 3 × 3 ml ges. NaHSO₃-Lsg., gefolgt von 3 × 3 ml H₂O, unter kräftigem Schütteln verteilt. Die org. Phase gab 61,4 mg farbloses Öl mit folgenden Daten. DC (CH₂Cl₂/Et₂O 4:1): R_f 0,26. UV: 223 (4,301). IR (Abb. in [1], S. 167): 2943*m*, 2255*s*, 1655 (sh), 1652*s*, 1635*s*. ¹H-NMR (300 MHz; Abb. in [1], S. 167): 2,20–2,43 (*m*, CH₂); 2,56–2,89 (*m*, 3 CH₂); 3,46 (*s*, 0,54 H, CH₂(2)); 3,47, 3,53 (*AB d*, $J_{AB} = 17, 2, J_d = 0, 5, 1,46$ H, CH₂(2)); 4,74–4,80 (*m*, CH); 6,40 (*t*, J = 7, 5, 0,73 H, CH₄(4)); 6,47 (*t*, J = 8, 0, 0,27 H, CH₄(4)); 8,16 (*dd*, J = 1, 7, 0, 3, 0,73 H, CH–C(3)); 8,61 (*d*, J = 1, 5, 0,27 H, CH–C(3)). ¹³C-NMR (25,2 MHz): 13,6, 14,4, 16,4, 17,0, 21,1, 23,2, 24,7, 30,1 (8*t*, 10 CH₂); 55,55,62 (2*d*, 2 CH); 116,5 (*s*, 2 CN); 117,1, 117,6 (2*s*, 2 CN); 118,5, 118,7 (2*s*, 4 CN); 129,9, 131,7 (2*s*, 2 C); 139,9, 144,2, 158,9, 164,2 (4*d*, 4 CH). FAB-MS (3 mg Probe/30 μ MeOH); 240 ($M^{++} + 1$).

8.4. (3 E/Z)-3-[(E)-N-(Cyannethyl)iminomethyl]-3-hepten-1,7-dinitril (= N²-[(1E,2E/Z)-5-Cyan-2-(cy-annethyl)-2-pentenyliden]glycinnitril; (E/Z)-35). Unter N₂ rührte man ein Gemisch von 246 mg (1,03 mmol) (E/Z)-38 ((E/Z) = 6:1), 560 mg (10 mmol) Glycinnitril³⁸) und 30 mg (0,11 mmol) 1,2-Dihydro-2-oxopyridinium-(p-toluolsulfonat)³⁶) in 4 ml THF 20 h bei RT. Chromatographie des Gemisches an Kieselgel (3 × 10 cm) mit 5% Et₂O in CH₂Cl₂ gab 130 mg (68%) um-iminiertes (E/Z)-35, das gemäss ¹H-NMR (80 MHz) noch ca. 3% 3-Formyl-3-hepten-1,7-dinitril enthielt, gefolgt von 139 mg Gemisch (¹H-NMR) aus (E/Z)-38 (ca. 15%), 21 (ca. 85%) und wenig Glycinnitril.

Daten von (E/Z)-35 ((E/Z) ca. 5,2:1). Erneute Chromatographie von 40 mg der obigen Produkt-Fraktion an Kieselgel (1,5 × 10 cm) mit 8% Et₂O in CH₂Cl₂ lieferte 33 mg mit ca. 10% Formyldinitril verunreinigtes (¹H-NMR) (E/Z)-35 als Öl, das in 3 ml CH₂Cl₂ gelöst, zuerst mit 3 × 2 ml ges. NaHSO₃-Lsg. (je ca. 3 min; Abtrennung des Formyldinitrils) und dann mit 3×2 ml H₂O gerührt wurde. Aus der org. Phase isolierte man 26 mg (E/Z)-35 ((E/Z) = 5,2:1) als Öl. DC (CH₂Cl₂/Et₂O 4:1): R_f 0,31. UV: 221 (4,342). IR (Abb. in [1], S. 169): 2960w, 2930w, 2890w, 2255m, 1655s, 1640s. ¹H-NMR (300 MHz): 2,56–2,64 (m, CH₂); 2,74–2,85 (m, CH₂); 3,45 (d, J = 1, 1, 0, 32H, $CH_{2}(2)$, (Z); 3,52 (s, 1,68 H, $CH_{2}(2)$, (E)); 4,60 (d, J = 1,3, 1,68 H, $CH_{2}N$, (E)); 4,62 (d, J = 1,7, 0,32 H, $CH_{2}N$, (Z); 6,34 (t, J = 7, 4, 0, 84 H, CH(4), (E); 6,43 (t, J = 7, 5, 0, 16 H, CH(4), (Z); 8,11 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 6,34 (t, J = 7, 0, 84 H, CH-C(3), (Z); 6,34 (t, J = 7, 0, 84 H, CH-C(3), (Z); 6,34 (t, J = 7, 0, 84 H, CH-C(3), (Z); 6,34 (t, J = 7, 0, 84 H, CH-C(3), (Z); 6,34 (t, J = 7, 0, 84 H, CH-C(3), (Z); 6,34 (t, J = 7, 0, 84 H, CH-C(3), (Z); 6,34 (t, J = 7, 0, 84 H, CH-C(3), (Z); 7,40 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, CH-C(3), (Z); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J = 1, 7, 0, 84 H, C); 7,50 (t, J(E)); 8,56 (d, J = 1,5,0,16 H, CH–C(3), (Z)). Differenz-NOE-Experiment: Einstrahlen auf das s bei 3,52 (CH₂(2)) des Hauptisomeren) gab einen starken NOE bei 2,74-2,85 (CH₂(5)) und je einen schwachen NOE bei 4,60 (CH₂N) und 8,11 (CH-C(3)); Einstrahlen auf das d bei 3,45 (CH₂(2) des Nebenisomeren) einen starken NOE bei 6,43 (CH(4)) und einen schwachen NOE bei 8,56 (CH-C(3)); woraus für das Hauptisomere die (3 E)-Konfiguration folgt. ¹³C-NMR (75,47 MHz): 14,08, 16,47, 24,74, 44,90 ((E)-Isomer) bzw. 17,10, 21,02, 23,24, 45,53 ((Z)-Isomer) (8t, je 4 CH₂); 115,11, 116,85, 117,34, 118,37 (4s, 6 CN); 130,00 ((Z)), 131,95 ((E)) (2s, je 1 C); 138,33, 158,72 ((Z)) bzw. 142,80, 164,11 ((E)) (4d, je 2 CH). MS: 186 (0,6, M^{++}), 146 (7, $M^{++} - CH_2CN$), 119 (17, M^{+-} – CH₂CN – HCN), 27 (100). Anal. ber. für C₁₀H₁₀N₄: C 64,50, H 5,41, N 30,09; gef.: C 64,60, H 5,39, N 30,27. Für H/D-Austauschexper. an (E/Z)-35 vgl. [1], S. 190-191.

8.5. rac-N²-(*Cyanmethyl)glutamindinitril* (**39**). Ein Gemisch von 307,8 mg (2,82 mmol) **21** und 1,58 mg (28,2 mmol) Glycinnitril³⁸) wurde 16 h bei 80° im schwachen N₂-Strom gerührt. Beim Eindampfen i. RV. (HV., 3 h) bei RT. verflüchtigte sich der grösste Teil des überschüssigen Glycinnitrils, zurück blieben 1,07 g braunes Öl, das an einer mit Eiswasser gekühlten Kieselgel-Säule (5 × 10 cm) mit Hexan/CH₂Cl₂/AcOEt 2:2:1 chromatographiert wurde: 177 mg farblose Kristalle von 2,2'-Imino-bis(acetonitril)³⁹) und 376 mg **39** als farbloses Öl. Dieses löste man heiss in 1 ml EtOH, setzte 2 ml Et₂O zu, kühlte auf RT. ab, impfte an und stellte in den Kühlschrank: 332 mg (80%) farblose Kristalle vom Schmp. 42°. Zur Charakterisierung wurde **39** erneut aus 0,7 ml EtOH/1,4 ml Et₂O umkristallisiert (311 mg, 75%). Schmp. 41°. DC (AcOEt/Hexan/CH₂Cl₂ 1:2:2): *R*_f 0,06. IR (KBr; Abbi in [1], S. 171): 2985w, 2950m, 2252m, 2239m, 1500m. ¹H-NMR (300 MHz; abgebildet in [1], S. 172): 1,83 (*dt*, *J*_a = 9, *J*_a = 6, NH); 2,13–2,29 (*m*, CH₂(3)); 2,61, 2,67 (*AB* t, *J*_{AB} = 17,1, *J*_a = 6,7, *J*_a = 7,4, CH₂(4)); 3,75, 3,80 (*AB* d, *J*_{AB} = 16,6, *J*_a = 6,2, *J*_a = 6,0, CH₂N); 3,87 (*ddd*, *J* = 8,0, 6,5, *J*(NH) = 9,0, CH(2)): ¹³C-NMR (75,47 MHz): 13,81, 28,88, 35,39 (3t); 48,28 (d); 116,37, 117,46, 117,97 (3s, 3 CN). MS: 149 (1,4, *M*⁺⁺ + 1), 148 (3,6, *M*⁺⁺), 121 (16, *M*⁺ – HCN), 67 (100). Anal. ber. für C₇H₈N₄: C 56,74, H 5,44, N 37,81; gef.: C 56,71, H 5,51, N 37,92.

8.6. 4-[N-(*Cyanmethyl*)*imino*]*butannitril* (= N²-[(E)-3-*Cyanpropyliden*]*glycinnitril*; **40**). Dreimaliges Destillieren von 103 mg (0,69 mmol) **39** im Kugelrohr (240°/18 Torr) gab 71,8 mg schwach gelb gefärbtes Öl; nach erneuter Destillation (170°/0,1 Torr) 69,0 mg (82%) farbloses, öliges **40**. GC (*OV* 1701, nicht immobilisiert, 19 *m*; 5 min 45°, 5°/min \rightarrow 200°, 1 min 200°): *t*_R 30,0. UV: 220 (2,447). IR (Abb. in [1], S. 174): 2940 (sh), 2930 (sh), 2920w, 2893*m*, 2830*w*, 2255*m*, 1677*s*. ¹H-NMR (300 MHz; Abb. in [1], S. 174): 2,64–2,69, 2,71–2,78 (2*m*, 2 CH₂); 4,47 (*dt*, *J_d* = *J_t* = 1,9, CH₂N); 8,06 (*tt*, *J* = 2,6, 1,9, CH). ¹³C-NMR (75,47 MHz): 12,70, 30,94, 45,47 (3*t*); 115,50, 119,30 (2*s*, 2 CN); 164,89 (*d*). MS: 121 (2, *M*⁺⁺), 120 (3), 94 (12, *M*⁺⁺ – HCN), 67 (100). Anal. ber. für C₆H₇N₃: C 59,49, H 5,82, N 34,69; gef.: C 59,33, H 5,88, N 34,58.

8.7. **40** aus 4-Oxobutannitril und Glycinnitril. Eine Emulsion von 3,7 g (44,6 mmol) 4-Oxobutannitril ([97]; vgl. [1], S. 145–146), 2,65 g (47,3 mmol) Glycinnitril³⁸) und 28 ml Benzol wurde 35 min unter N₂ am Wasserabscheider unter Rückfluss gekocht. Die nach H₂O-Abscheidung dann klare, farblose Lsg. wurde i. RV. i. HV. eingedampft: 5,4 g (>95%) laut ¹H-NMR reines **40**. Zur ¹H-NMR-Analyse wurde eine Probe im Kugelrohr (Ofen auf 200° vorgeheizt) bei 0,1 Torr destilliert (88% farbloses Öl).

³⁸) Aus einer eisgekühlten Aufschlämmung von 152 mg Glycinnitril-hydrochlorid (*Fluka, purum*) in 550 ml abs. MeOH mit 1 Äquiv. MeONa (*Fluka, pract.*) in 50 ml abs. MeOH freigesetzt (vgl. [97] und [1], S. 168) und im Kugelrohr bei 130°/15 Torr destilliert (Ausb. 59%); das farblose Öl wurde als 10% Lsg. in CH₂Cl₂ bei -20° aufbewahrt und vor Gebrauch i. RV. vom Lsgm. befreit.

³⁹) Schmp. 74° nach Umkristallisation aus EtOH/Et₂O 1:2.

8.8. Umsetzung von 40 zu 1,3,5-Tris(cyanmethyl)-1,2,3,4-tetrahydropyrimidin-2,4-bis(propiononitril) (41a/b) und (E/Z)-35. Frisch destilliertes 40 (426,3 mg, 3,53 mmol) wurde unter N₂ in einer 5-ml-Ampulle vorgelegt und mit 94 mg (0,35 mmol) 1,2-Dihydro-2-oxopyridinium-(p-toluolsulfonat)³⁶) und 2 ml abs. MeCN (Fluka, puriss., über P_4O_{10} , dann über K_2CO_3 dest.) versetzt. Nach Einfrieren in flüssigem N_2 schmolz man die Ampulle i. V. ab und erhitzte 63 h auf 60°. Das Gemisch wurde eingeengt, in Aceton gelöst und an einer eisgekühlten Kieselgel-Säule $(4 \times 10 \text{ cm})$ mit 11 MeCN/CH₂Cl₂ 1:9, gefolgt von 0,51 MeCN/CH₂Cl₂ 1:3, eluiert: 35,4 mg (11%) (*E*/*Z*)-35 als Öl $(^{1}$ H-NMR-rein (*E*/*Z*) = 3,5), 194,5 mg (54%) **41a/b** (1 H-NMR-rein (CD₃CN)) und *ca*. 20 mg stark verunreinigtes Glycinnitril. Eine Lsg. von 194,5 mg 41a/b in 5 ml MeCN wurde mit 2,5 g Kieselgel versetzt und eingedampft, das Adsorbat zwischen zwei Schichten Quarzsand auf eine Kieselgel-G-Säule $(2 \times 11 \text{ cm})$ aufgetragen und mit 5% AcOMe (über K₂CO₃ dest.) in CH₂Cl₂ eluiert (das zuerst eluierte **41a** zeigte im ¹H-NMR (CD₃CN) das Signal des olef. H bei tieferem Feld): Fraktionen 1 (14,0 mg, 41a/b = 6,0), 2 (13,4 mg, 41a/b = 3,3), 3 (33,2 mg, 41a/b = 0,89), 4 (35.0 mg, 41a/b = 0.44), 5 (77.6 mg, 41a/b = 0.17). Das aus der Lsg. von Fraktion 5 in 0.5 ml MeCN nach Versetzen mit 10 ml Et₂O ausfallende Material kristallisierte beim Stehen im Kühlschrank: 53,5 mg gemäss ¹H-NMR (CD₃CN) reines **41b** vom Schmp. 119–120°. Die Mutterlauge und das zum Waschen der Kristalle verwendete CH₂Cl₂ enthielten ein an **41a** angereichertes Gemisch **41a/b**, das zusammen mit dem Material aus den Fraktionen 1 und 2 erneut chromatographiert wurde (Kieselgel G, 2×20 cm, AcOEt/CH₂Cl₂ 1:2): Fraktion 6 enthielt 13,4 mg ¹H-NMR-reines (CD₃CN, 80 MHz) 41a, Fraktion 7 9,3 mg 41a/b.

Daten von **41a**. Beim Stehenlassen einer Lsg. von *Fraktion 6* in 0,5 ml MeCN in einem viel Et₂O enthaltenden, abgeschlossenen Gefäss 'ölten' 12,5 mg **41a** aus. Die Restlsg. wurde abpipettiert, das Öl mit Et₂O gewaschen und im HV. getrocknet. DC (AcO(i-Pr)): R_f 0,30. UV: 238 (3,869). IR (in Substanz; Abb. in [1], S. 184): 2960*m*, 2938*m*, 2890 (sh), 2245*s*, 1669*s*, 1589*w*. ¹H-NMR (CD₃CN, 300 MHz; Abb. in [1], S. 184): 1,64–1,76 (*m*, H–CH); 1,92–2,09 (Signalhaufen, H–CH, CH₂, überlagert von Lsgm.-Signalen); 2,37–2,71 (*m*, 2 CH₂CN); 3,11 (br. *d*, $J \approx 11$, CH(4)); 3,14 (*d*, J = 0,9, CH₂); 3,63, 3,73 (*AB*, J = 17,4, CH₂); 3,98 (*dd*, J = 7,9, 6,8, CH(2)); 4,06 (*s*, CH₂); 6,24 (*dt*, $J_d = 3,0, J_t = 1,1$, CH(6)); zusätzliche Signale von *ca*. 5% **41b**. ¹³C-NMR ((D₆)Aceton, 75,47 MHz): 14,33 (*t*, 2 CH₂); 20,85, 27,88, 29,94, 41,39, 46,10 (5*t*, 5 CH₂); 59,13, 75,51 (2*d*, 2 CH); 101,24 (*s*, C(5)); 118,03 (*s*, 2 CN); 118,65, 120,03, 120,58 (3*s*, 3 CN); 130,74 (*d*, C(6)); das sonst durch Lsgm.-Signale überdeckte *t* bei 29,94 ppm war nur im DEPT-¹³C-NMR zu erkennen. MS: 307 (2, M^+ '), 253 (23, $M^{++} - 1$ HCN), 67 (100).

Daten von **41b**. Lösen der Kristalle aus *Fraktion 5* (Schmp. 119–120°) in 2,5 ml MeCN und Kristallisieren in einem viel Et₂O enthaltenden, abgeschlossenen Gefäss ergab nach Wiederholung 47,5 mg **41b**. Schmp. 127–128°. DC (AcO(i-Pr)): R_f 0,27. UV: 231 (3,929). IR (KBr; Abb. in [1], S. 186): 2992*m*, 2965*m*, 2945*m*, 2935*m*, 2905*w*, 2880*w*, 2870 (sh), 2260 (sh), 2250*s*, 1669*s*. ¹H-NMR ((D₆)Aceton, 300 MHz; Abb. in [1], S. 186): 1,80–1,93 (*m*, H–CH); 2,09–2,41 (*m*, CH₂, *H*–CH); 2,54–2,76 (*m*, 2 CH₂); 3,34 (*dd*, $J \approx 10, 2,3, CH(4)$); 3,36 (*s*, CH₂); 3,46, 3,92 (*AB*, $J = 17, 6, CH_2$); 4,08 (*dd*, J = 10, 6, 4, 9, CH(2)); 4,23 4,31 (*AB*, $J = 18, 3, CH_2$); 6,36 (*dd*, J = 2, 3, 1, 1, CH(6)). ¹³C-NMR ((D₆)Aceton, 75,47 MHz): 13,79, 14,14, 20,50, 24,76, 30,10, 36,45, 39,76 (7*t*, 7 CH₂); 60,50, 68,81 (2*d*, 2 CH); 106,23 (*s*, C(5)); 116,42 (*s*, CN); 118,38 (*s*, 2 CN); 120,03, 120,50 (2*s*, 2 CN); 134,99 (*d*, CH(6)). MS: 307 (0,4, M^{++}), 253 (20, $M^{++} - 2$ HCN), 67 (100). Anal. ber. für C₁₆H₁₇N₇: C 62,53, H 5,58, N 31,90; gef.: C 62,59, H 5,67, N 32,03.

8.9. retro-Diels-Alder-*Reaktion von* **41b**. Ein gut mit H₂O gewaschenes und im Trockenschrank getrocknetes Glührohr mit 7,0 mg (0,023 mmol) **41b** wurde im Bombenrohr bei 0,005 Torr in den auf 300° vorgeheizten Sublimationsofen eingeführt. Das sich abscheidende ölige Kondensat (5,6 mg, 80%) wurde in CDCl₃ gelöst und ¹H-NMR-spektroskopisch (300 MHz) analysiert (Integral in Flächeneinheiten). ¹H-NMR von (*Z*)-**35**: 6,44 (*t*, J = 8, ca. 0,8 Flächeneinheiten, CH(4)); 8,58 (br. *s*, *ca.* 0,7, CH–C(3)). ¹H-NMR von (*E*)-**35**: 6,33 (*t*, J = 7,4,7,5, CH(4)); 8,11 (*t*, J = 1,7,7, CH–C(3)). ¹H-NMR von **40**: 4,47 (*q*, J = 1,8, 16, CH₂); 8,06 (*m*, 8, CH) ((1:1)-Gemisch von (*E*/*Z*)-**35** (mit (*E*/*Z*) > 10) und **40**).

8.10. rac-Asparagindinitril (42). Ein Gemisch von 25,0 g (0,32 mol) Fumarodinitril (Fluka, pract.), 100 ml wässr. NH₃-Lsg. (25%) und 500 ml Dioxan (Fluka, purum) wurde 100 h kräftig bei RT. gerührt. Die schwarze Mischung wurde i. RV. bei 30° eingedampft, 2mal in 30 ml Toluol aufgenommen, eingeengt und an Alox neutral (5 × 36 cm) mit AcOMe (über K₂CO₃ dest.) chromatographiert: 25,8 g (84%) ¹H-NMR-reines 42 als leicht bräunliches Öl; dieses wurde als 10% Lsg. in CH₂Cl₂ bei 4° aufbewahrt. ¹H-NMR (0,5 ml CDCl₃/2 Tropfen CD₃CN, 80 MHz): 2,05 (br. s, NH₂); 2,85 (d, J = 6,5, CH₂); 3,8–4,3 (m, CH).

8.11. rac- N²-[(E)-3-Cyanpropyliden]asparagindinitril (43). Unter N₂ rührte man 2,85 g (34,3 mmol) 4-Oxobutannitril (als 57% Lsg. in CH₂Cl₂; [97] und [1], S. 145), 3,1 g (32,6 mmol) 42 und 7 g Molekularsieb 4 Å ($\frac{1}{8}$ " Stäbchen, *Fluka*; 8 h bei 300° i. HV. aktiviert) in 60 ml CH₂Cl₂ 20 h bei RT. Filtration durch *Celite* und Eindampfen des Filtrats i. HV. gab 4,67 g gelbes Öl, das gemäss ¹H-NMR aus 95% 43 (d. h. Ausbeute 81%) und 5% 4-Oxobutannitril bestand. Destillation von 349 mg Rohprodukt im Kugelrohr (150°/0,001 Torr) lieferte 299 mg 43 als farbloses Öl. UV: 237 (2,210), 290 (sh, 1,62). IR: 2980w, 2945w, 2922w, 2900w, 2258m, 1675s. ¹H-NMR (300

MHz): 2,65–2,71, 2,77–2,86 (2m, 2 CH₂); 3,01, 3,03 (*AB d*, J_{AB} = 16,8, J_d = 6,2, J_d = 5,9, CH₂); 4,77 (*tdt*, J_t = 6,1, J_d = J_t = 1,8, CH); 8,17 (*dt*, J_d = 1,8, J_t = 2,7, CH(1')). ¹³C-NMR (25,2 MHz): 12,7, 23,8, 30,9 (3t); 53,8 (*d*); 115,4 (*s*, 2 CN); 119,4 (*s*, CN); 166,6 (*d*, CH(1')). MS: 160 (0,7, M^{++}), 120 (100). Anal. ber. für C₈H₈N₄: C 59,99, H 5,03, N 34,98; gef.: C 59,73, H 5,05, N 35,07.

8.12. (3 E/Z)-3-[(E)-N-(1,2-Dicyanethyl)iminomethyl]-3-hepten-1,7-dinitril (= rac-N²-[(1E,2E/Z)-5-Cyan-2-(cyanmethyl)-2-pentenyliden Jasparagindinitril; (E/Z)-44). Unter N₂ legte man in einer 5-ml-Ampulle 433 mg (2,70 mmol) 43 vor, gab 72,2 mg (0,27 mmol) 1,2-Dihydro-2-oxopyridinium-(p-toluolsulfonat)³⁶) und 2 ml THF zu, fror das Gemisch in fl. N2 ein, evakuierte und schmolz die Ampulle zu. Nach 24 h Rühren bei 50° hatte sich eine braune, etwas trübe Lsg. gebildet, die direkt auf eine mit Eiswasser gekühlte Kieselgel-Säule (3 × 10 cm) aufgetragen und mit $\text{Et}_2\text{O}/\text{CH}_2\text{Cl}_2$ 1:4 eluiert wurde: 223,7 mg (73%) kristallines, ¹H-NMR-reines (E/Z)-44 ((E/Z) = 7), gefolgt von 90 mg (70%) laut ¹H-NMR reinem 42. Zur Charakterisierung wurde 2,33 g (E/Z)-44 mit 5 ml CHCl₃ (frisch durch basisches Alox filtriert) versetzt, 30 min stehen gelassen, abfiltriert und mit 10 ml CHCl3 gewaschen: 1,3 g Kristalle, die im ¹H-NMR nur noch Signale des (E)-Isomeren zeigten. Man löste 200 mg in 12 ml $CH_2Cl_2/$ MeCN 5:1, stellte 15 h in ein Et₂O enthaltendes Gefäss und isolierte nach Abpipettieren der Lsgm., Waschen der feinen, farblosen Nadeln mit 6 ml CH₂Cl₂/Et₂O 1:1 und Trocknen 145,6 mg (E)-44. Schmp. 104°. DC (Et₂O/ CH₂Cl₂ 1:4): R_f 0,22. UV: 223 (4,389). IR (KBr): 3008m, 2995m, 2980m, 2970m, 2938w, 2930 (sh), 2890w, 2262 (sh), 2255m, 2242 (sh), 1655s, 1638s. ¹H-NMR (CD₃CN, 300 MHz): 2,58–2,63, 2,69–2,76 (2m, CH₂ (5), CH₂(6)); 3,07, 3,09 (AB d, $J_{AB} = 16,8, J_d = 5,9, CH_2$); 3,50 (s, CH₂(2)); 4,91 (td, $J_t = 6,0, J_d = 1,2, CH$); 6,47 (t, J = 7,2,CH(4)); 8,14 (*dd*, J = 1,4, 0,4, CH-C(3)). ¹³C-NMR (CD₃CN, 75,47 MHz): 14,92, 16,98, 24,75, 25,83 (4t); 54,75 (d); 117,15, 117,32, 118,4, 120,46 (4s, 4 CN); 132,61 (s, C(3)); 147,17, 167,25 (2d). MS: 225 (8, M⁺⁺), 27 (100). Anal. ber. für C₁₂H₁₁N₅: C 63,99, H 4,92, N 31,09; gef.: C 63,73, H 4,95, N 30,91.

8.13. Um-iminierung von (E)-44 zu (E/Z)-35. Zu einer Aufschlämmung von 200 mg Montmorillonit (Fluka, 220–270 m²/g, 4 h bei 350° i. HV. aktiviert) in einer Lsg. von 230 mg (4,1 mmol) Glycinnitril³⁸) in 3 ml abs. MeCN (Fluka, puriss.; über P₄O₁₀; dann über K₂CO₃ dest.) gab man unter N₂ 92,5 mg (0,41 mmol) (E)-44 und rührte 95 h bei RT. Der Montmorillonit wurde abzentrifugiert, mit CH₂Cl₂ ausgewaschen und die überstehende Lsg. nach Einengen an Kieselgel (eisgekühlte Säule 1,5 × 10 cm) mit CH₂Cl₂/Et₂O 6:1 chromatographiert: 32,2 mg (42%) (E/Z)-35, ((E/Z) = 5:1 laut ¹H-NMR), gefolgt von 20,7 mg (21%) (E)-44, gemäss ¹H-NMR verunreinigt mit ca. 8% (E/Z)-35.

8.14. 4-Cyanmethyl-3-pyrrolpropiononitril (30). Verteilt auf 7 Schiffchen wurden 230 mg (1,24 mmol) (E/Z)-35 ((E/Z) = 4) bei 600° Ofentemp. und 0,5 Torr im schwachen N₂-Strom durch Einschieben jeweils eines Schiffchens in den Pyrolyse-Ofen verdampft, pyrolysiert und an einer mit flüssigem N2 gekühlten Kühlfalle kondensiert (Apparatur vgl. Allgemeines, Quarz-Rohr 10 × 1,5 cm mit Quarz-Ring-Füllung). Bei Schiffchen-Wechsel wurde mit N₂ begast; jeweils nach Pyrolyse von 2 Chargen spülte man die Kühlfalle mit wenig CH₂Cl₂ aus. Die vereinigten CH_2Cl_2 -Lsg. ergaben total 99 mg Kondensat, das laut ¹H-NMR neben 30 u. a. noch ca. 10% (bzgl. 30) (E/Z)-35 enthielt; in den 7 Schiffchen verblieben gesamthaft 81 mg verkohlte Rückstände. Chromatographie des Kondensates an einer auf 0° gekühlten Kieselgel-Säule (3 × 10 cm) mit Hexan/AcOEt 1:1 gab 29,0 mg (15% bzgl. (E/Z)-35; 23% bzgl. verdampftem Material) 30 als braunes Öl, das laut ¹H-NMR weniger als 5% Verunreinigungen (Fremdsignale bei hohem Feld) aufwies, gefolgt von 15 mg Nebenfraktion (lila Färbung mit Ehrlich-Reagenz; nach 300-MHz-¹H-NMR komplexes Gemisch). Das braune Öl wurde mit 2 ml Hexan überschichtet, mit einem Impfkristall versetzt und über Nacht bei RT. stehen gelassen: bräunliche Kristalle, die nach Waschen mit Pentan und Trocknen gemäss ¹H-NMR rein waren (27,6 mg). Eine Lsg. dieses Materials in Et₂O dampfte man ein, überschichtete das wiederum 'ausölende' Produkt mit 2 ml Pentan/5 Tropfen Et₂O und impfte an: 26 mg immer noch bräunliche Kristalle mit Schmp. 48-51°. Eine Lsg. von 18 mg dieser Probe in wenig Et₂O/CH₂Cl₂ 1:1 wurde über Nacht in ein abgeschlossenes, Pentan enthaltendes Gefäss gestellt: 11,5 mg 30 als durchsichtige, sehr dünne, farblose Plättchen (laut Schmp., IR, ¹H- und ¹³C-NMR und MS mit authentischem 4-(Cyanmethyl)-3-pyrrolpropiononitril [5] [55] identisch). Schmp. 57-58°. DC (Hexan/AcOEt 1:1): R_f 0,32. IR: 3675w, 3482s, 3390m, 3130w, 3010m, 2935m, 2865w, 2252m, 1605w, 1570w, 1528w, 1450m, 1440m, 1423m, 1416m, 1347w, 1322w, 1077m, 912w; zusätzliche Bande bei 1705m (br.), vermutlich AcOEt aus Chromatographie, vgl. Abb. des IR-Spektrums von authentischen 30 in [5], S. 109. ¹H-NMR (300 MHz; vgl. Fig. 8): 1,55 (s, H₂O); 2,60, 2,84 (2t, J = 7, 2 CH₂); 3,55 (d, J = 1, CH₂); 6,72–6,73, 6,76–6,77 (2m, 2 Ring-CH); 8,2 (br. s, NH). ¹³C-NMR (75,47 MHz): 14,34, 18,90, 21,21 (3t); 110,45 (s); 117,12, 117,39 (2d); 118,35, 118,54, 119,63 (3s). MS: 160 $(3, M^{++} + 1)$, 159 $(27, M^{++})$, 119 (100). Anal. ber. für C₉H₉N₃: C 67,90, H 5,70, N 26,40; gef.: C 67,80, H 5,75, N 26,48.

8.15. 30 aus 41a/b. Verteilt auf 2 Schiffchen wurden 79,6 mg (0,26 mmol) 41a/b (ca. 1:1) pyrolysiert ($600^{\circ}/0,2$ Torr, N₂-Strom; Quarz-Rohr 15 × 2,0 cm mit Quarz-Ring-Füllung, Kühlfalle mit H₂O-gekühltem Finger). Man verteilte das Pyrolysat zwischen 50 ml H₂O und 2 × 50 ml CH₂Cl₂, wusch die org. Phasen mit H₂O und ges. NaCl-Lsg., trocknete (Na₂SO₄) und engte ein. Chromatographie des Extrakts an Kieselgel (eisgekühlte Säule,

Fig. 8. 300-MHz-¹H-NMR-Spektrum (CDCl₃) von 4-(Cyanmethyl)-4-pyrrolpropiononitril (30)

 1×10 cm) mit AcOEt/Hexan 1:3 gab 17,8 mg einer Fraktion, die laut ¹H-NMR noch 45% Succinodinitril enthielt und deshalb zwischen 100 ml H₂O/Et₂O 1:1 verteilt wurde (Succinodinitril ist sehr gut wasserlöslich). Die H₂O-Phase wurde mit 2 × 50 ml Et₂O extrahiert, und die Et₂O-Lsg. wurden je 1mal mit je 30 ml H₂O und ges. NaCl-Lsg. gewaschen: 10,5 mg (24%) Öl, gemäss ¹H-NMR > 95% 30 enthaltend.

9. Exper. zu Schema 17. – 9.1. $N^{2}-[(E)-2-Propenyliden]glycinnitril (45). Eine Lsg. von 4,8 g (85,7 mmol) Acrylaldehyd (Fluka, pract.; frisch dest.) in 40 ml abs. CH₂Cl₂ (über Sikkon, dann über CaH₂ dest.) wurde zusammen mit 6 g Molekularsieb 4 Å (<math>V_8$ " Stäbchen, Fluka) auf –15° abgekühlt, dann unter Ar mit einer Lsg. von 2,4 g (43 mmol) Glycinnitril³⁸) in 10 ml abs. CH₂Cl₂ tropfenweise versetzt, 1 h bei –15° gerührt, in 1 h auf RT. aufgewärmt und noch 1 h bei RT. gerührt. Nach Filtrieren durch 2 cm Celite wurde auf 15 ml eingeengt und durch eine kurze, mit Eiswasser gekühlte Alox-Säule (neutral, Akt. III, 6 × 3 cm) mit Et₂O/CH₂Cl₂ 1:1 rasch filtriert. Destillation des Produkts im Kugelrohr bei 70°/0,05 Torr gab 860 mg (21%) 45 als farbloses öl, das bei –196° kristallisierte. Daten von (nicht kristallinem) 45. DC (Alox, Et₂O/CH₂Cl₂ 1:1): R_f 0,53. GC (*OV 1701* immobilisiert, Filmdicke 0,5 μ , 19 m; 50°, 5°/min –200°): t_R 10,68. UV: 211 (4,297). IR: 2250w, 2240w, 1651s, 1610s, 1415s. ¹H-NMR (300 MHz; Abb. in [2], S. 184): 4,52 (dd, $J = 1,2,0,5, CH_2(2)$); 5,83 (ddd, J = 1,7,3, 1,4, 0,6, CH(2')); 5,94 (ddd, J = 9,6, 1,5, 0,6, H-CH(3')); 6,53 (ddd, J = 17,3, 9,7, 8,7, H-CH(3')); 8,12 (dt, $J_d = 8,7, J_t = 1,5, CH(1')$). ¹³C-NMR (25,2 MHz): 45,4 (t, C(2)); 115,5 (s, C(1)); 129,8 (t, C(3')); 135,8 (d, C(2')); 166,6 (d, C(1')). MS: 95 (4), 94 (50, M^{+*}), 93 (71), 68 (9), 67 (100).

Das Rohprodukt nach Filtration durch Alox war gemäss GC schon zu mehr als 90% rein; bei der folgenden Destillation verblieben als Rückstand erhebliche Mengen gelbes, zähflüssiges Polymerisat.

9.2. 'Flash'-Vakuum-Pyrolyse von 45 an Quarz-Füllkörpern. Im seitlich angesetzten Kölbchen der Pyrolyse-Apparatur (vgl. Allgemeines; Ofentemp. 650°, Quarz-Rohr 15 × 2,0 cm mit Quarz-Ring-Füllung) wurden bei -196° (fl. N₂) 85,2 mg (0,91 mmol) frisch dest. 45 vorgelegt. Sobald beim Evakuieren der Apparatur ein Druck von 0,2 Torr erreicht war, entfernte man das Kühlbad, liess das Kölbchen auf RT. erwärmen und heizte schliesslich langsam auf 80° (Ölbad), wodurch 45 wegsublimierte und vom schwachen N₂-Strom durchs Pyrolyse-Rohr getragen wurde (2,5 mg 45 blieben im Kölbchen zurück). Das Pyrolysat wurde in ein im N2-Gegenstrom über eine Brücke an die Kühlfalle angeschlossenes, in fl. N2 gekühltes Zweihals-Kölbchen bei RT. i. HV. umkondensiert: 3,0 mg Rückstand in der Kühlfalle, gemäss ¹H-NMR (s bei 2,7 ppm) und GC hauptsächlich Succinodinitril; im Kölbchen 37,6 mg farbloses Öl. GC (OV 1701 immobilisiert, 19 m; 5 min 70°, 5°/min→200°, 5 min; % Pikfläche): Isocrotononitril (Z) t_R 3,78 (7%), 3-Butennitril t_R 4,16 (0,7%), Crotononitril (E) t_R 4,55 min (8%), Pyrrol t_R 6,98 min (74%), Komponenten durch Coinjektion mit authentischem Material identifiziert. ¹H-NMR (300 MHz): Signale von Pyrrol (82%): 6,25, 6,81 (2dd, J = 4,3, 2,3, 4 CH); 8,2 (br. s, NH); Crotononitril (10%): 1,91 (dd, $J = 6,9, 1,9, CH_3$; 5,33 ($dq, J_d = 16,3, J_q = 1,9, CH$); 6,71 ($dq, J_d = 16,2, J_q = 6,9, CH$); Isocrotononitril (7%): 2,04 (dd, $J = 7,0, 1,7, CH_3$); 5,33 (dq, $J_d = 10,8, J_q = 1,7, CH$); 6,54 (dq, $J_d = 10,9, J_q = 7,0, CH$); 3-Butennitril (0,7%): 3,11 (dt, $J_d \approx 5,4$, $J_t \approx 2,4$, CH₂(2)), Signale der olef. H nicht erkennbar. Präp. Gesamtausbeute 62%, davon laut ¹H-NMR 51 % Pyrrol, 6% Crotononitril, 4% Isocrotononitril, ca. 0,5% 3-Butennitril.

9.3. 'Flash'-Vakuum-Pyrolyse von **40** auf Zeolith. In die Pyrolyse-Apparatur (Quarz-Rohr 15 × 2,0 cm, gefüllt mit einer homogenen Mischung aus 25 g Quarz-Ringen und 5 g Molekularsieb 3 Å ($\frac{1}{16}$ " Stäbchen, Fluka), an den Rohrenden jeweils 1 cm lang Quarz-Ringe) wurden in einem Schiffchen 58 mg (0,48 mmol) frisch dest. **40** vorgelegt, nach Evakuieren durch Verschieben des Schiffchens in die Ofenöffnung verdampft und im N₂-Strom bei 500°/0,2 Torr pyrolysiert. Das Pyrolysat kondensierte am H₂O-gekühlten Finger der Kühlfalle und tropfte dann in zuvor vorgelegte, mit fl. N₂ gekühlte 2 ml CDCl₃. Nach Aufwärmen des Kondensats auf RT. wurden zur Kalibrierung in der spektroskopischen Gehaltsbestimmung 10,0 µl CH₂Cl₂ in 190 µl CDCl₃ zugegeben und das Gemisch analysiert.

GC (*OV 1701* immobilisiert; 5 min 50°, 5°/min \rightarrow 200°, 5 min): $t_{\rm R}$ 9,7 (81% der ges. Pikflächen), laut $t_{\rm R}$ -Vergleich Pyrrol; Piks von Crotono- und Isocrotononitrilen vom Lsgm.-Pik überdeckt. ¹H-NMR des Gemischs (300 MHz; Abb. in [1], S. 210): CH₂Cl₂: 5,28 (*s*); Pyrrol: 6,24, 6,81 (2*m*, 4 CH); 8,3 (br. *m*, NH); 0,281 mmol (59%) laut Integral bezogen auf CH₂Cl₂; Crotono- und Isocrotononitril (3%): u. a. 1,91, 2,04 (*dd*, 3 CH); Acrylonitril (6%): 5,64, 6,05, 6,22 (3*dd*, 3 CH); HCN (0,3 mmol): 3,60 (br. *s*); CH₃CN (5%): 1,98 (*s*). Für Pyrrol-Ausbeuten in orientierenden Versuchen vgl. [1], S. 58.

Die entsprechende 'flash'-Pyrolyse von **40** auf *Quarz-Füllkörpern allein* (zweites *Exper.* in *Schema 17*) ist in [1] auf S. 204–208 beschrieben.

10. Exper. zu Schema 19. - 10.1. N,N,N',N'-Tetramethyl-1H-pyrrol-3,4-bis(methylamin) (47). Eine Lsg. von 23,5 g (105,3 mmol) N-(Triisopropylsilyl)pyrrol (46) ([65]; vgl. [4], S. 153) in 320 ml abs. MeCN³⁵)⁴⁰) wurde mit 48 g (259,6 mmol) Dimethyl(methyliden)ammonium-iodid [64] versetzt und unter N₂ 2,5 h unter Rückfluss gekocht. Das auf RT. abgekühlte braune Gemisch wurde eingedampft, der Rückstand mit 300 ml CH₂Cl₂/3 × 300 ml eisgekühlter 1M NaOH aufgearbeitet, die wässr. Phasen wurden 2mal mit 300 ml CH2Cl2 rückextrahiert, die vereinigten org. Phasen getrocknet (K2CO3) und eingeengt. Filtration des heterogenen Rohproduktes mit AcOEt⁴⁰) über Alox (neutral, Akt. III 3 × 8 cm) gab 26,1 g dialkyliertes Pyrrol als leicht braune Flüssigkeit, das man zur Desilylierung in 80 ml MeOH³⁵) mit 17 g (112 mmol) CsF (Fluka, purum) 16 h bei RT. rührte. Das Gemisch wurde in 250 ml AcOEt aufgenommen, mit 3 × 200 ml H₂O gewaschen, die wässr. Phasen wurden noch 2mal mit je 300 ml AcOEt geschüttelt, unter Eiskühlung mit KOH stark basisch gemacht und schliesslich 5mal mit je 250 ml CH₂Cl₂ extrahiert (Abtrennung des wasserlöslich bleibenden Monosubstitutionsprodukts). Nach Trocknen (K₂CO₃) der CH₂Cl₂-Extrakte und Entfernen des Lsgm.: 9,6 g (51%) 47 als leicht gelbliche Kristalle, Schmp. 68°. Zur Analyse gelangte eine aus Et₂O⁴¹)/Hexan⁴¹) kristallisierte und i. HV. bei RT. getrocknete Probe: Schmp. 85°. DC (Aluminiumoxid Typ E Merck 0,25 mm, MeOH (NH3-ges.)): R_f 0,48. pKa (H₂O): 10,73, 7,53. IR (Abb. in [4], S. 156): 3490m, 3150w, 2980m, 2940s, 2860m, 2820s, 2770s, 2710w, 1525w, 1470m, 1457m. ¹H-NMR (80 MHz; Abb. in [4], S. 156): 2,25 (s, 4 CH₃); 3,35 (s, 2 CH₂); 6,65 (d, J = 2, CH(2), CH(5)); 8,4 (br. s, NH). ¹³C-NMR (25 MHz): 45,0 (q, 4 CH₃); 54,7 (t, 2 CH₂); 117,5 (s, C(3), C(4)); 119,0 (d, C(2), C(5)). MS: 181 (1, M⁺⁺), 136 (100, $M^{++} - HN(CH_3)_2).$

10.2. 4-(Dimethylaminomethyl)-3-pyrrolacetonitril (49). Eine Lsg. von 9,5 g (52,3 mmol) 47 in 80 ml $CH_2Cl_2^{40}$) wurde mit 80 ml $Et_2O^{(1)}$ versetzt (leichte Trübung) und auf -15° abgekühlt. Dann tropfte man unter starkem Rühren 3,1 ml (49,7 mmol) CH₃I in 150 ml Et₂O während 90 min zu, rührte 6 h bei -15° und liess über Nacht bei -18° stehen. Der gebildete Niederschlag wurde abfiltriert, mit 200 ml Et₂O gewaschen und i. HV. bei RT. getrocknet: 14,7 g Ammonium-Salz 48 als weisses Pulver, das im N₂-Gegenstrom portionsweise zur Suspension von 5,9 g (90,6 mmol) KCN in 60 ml DMSO³⁵) bei 10° gegeben wurde (Abblasen des entstehenden Et₃N). Nach je 24 h Rühren bei 10° bzw. RT. wurde die braune Lsg. mit 300 ml AcOEt⁴⁰)/3 × 200 ml ges. Na₂CO₃-Lsg., 2 × 300 ml AcOEt aufgearbeitet. Die drei AcOEt-Phasen wurden 4mal mit je 300 ml H₂O geschüttelt, die vereinigten wässr. Extrakte unter Eiskühlung mit KOH stark basisch gemacht und dann 3mal mit 250 ml CH₂Cl₂ extrahiert; nach Trocknen (K₂CO₃) der CH₂Cl₂-Extrakte und Entfernen des Lsgm. erhielt man 1,55 g (16%) kristallines 47 zurück. Die obigen AcOEt-Phasen wurden dann 3mal mit je 200 ml 1M HCl ausgeschüttelt, die vereinigten sauren Lsg. mit KOH unter Eiskühlung stark basisch gemacht und mit 4×250 ml CH₂Cl₂ extrahiert. Nach Trocknen (K₂CO₃) der org. Phasen isolierte man daraus 4,25 g (50%) kristallines 49 vom Schmp. 54°. Die anal. Daten stammen von einer Probe, die bei 60°/0,06 Torr im Kugelrohr destilliert worden war. Aus den verbliebenen, vereinigten AcOEt-Phasen wurden nach Entfernen des Lsgm. und 2mal Umkristallisieren aus AcOEt⁴⁰) 1,17 g (15%) 3,4-Pyrrolbis(acetonitril) (54) als farblose Kristalle vom Schmp. 127° isoliert.

Daten von **49**: Schmp. 60–61°. DC (Aluminiumoxid Typ *E*, *Merck* 0,25 mm; AcOEt): R_f 0,41. pK (H₂O): 9,54. IR (Abb. in [4], S. 159): 3485*s*, 2980*m*, 2940*m*, 2860*m*, 2820*m*, 2770*m*, 2710*m*, 2250*w*, 1525*w*. ¹H-NMR (80 MHz; Abb. in [4], S. 159): 2,18 (*s*, 2 CH₃); 3,28 (*s*, CH₂N); 3,57 (*s*, CH₂CN); 6,65 (*m*, CH(2), CH(5)); 9,2 (br. *s*, NH). ¹³C-NMR (25 MHz): 14,3 (*t*, CH₂CN); 44,9 (*q*, 2 CH₃); 54,6 (*t*, CH₂N); 111,1, 118,5 (2*s*, C(3), C(4)); 117,2, 118,5 (2*d*, C(2), C(5)); 119,3 (*s*, CN). MS: 164 (4), 163 (36, M^{++}), 119 (100, $M^{++} - N(CH_{3})_2$).

10.3. 4-(Cyanmethyl)-3-pyrrolpropiononitril (30). Eine Lsg. von 4,01 g (24,6 mmol) 49 in 80 ml CH₂Cl₂⁴⁰) wurde bei 0° unter N₂ mit 6,1 ml (98 mmol) CH₃I in 60 ml Et₂O⁴⁰) versetzt und 16 h bei RT. gerührt. Der gebildete Niederschlag wurde abfiltriert, mit 100 ml Et₂O⁴⁰) gewaschen und i. HV. bei RT. getrocknet: 6,32 g Ammonium-Salz 50 als weisses Pulver. Unter Feuchtigkeitsausschluss wurde eine Lsg. von 15,3 ml (107 mmol) (i-Pr)₂NH³⁵)⁴⁰) in 1,8 l THF nach Abkühlen auf -30° mit 67 ml (107 mmol) 1,6M BuLi-Lsg. in Hexan (*Fluka, pract.*) versetzt, 30

⁴⁰) Über CaH₂ destilliert.

⁴¹) Über NaH destilliert.

min bei -30° gerührt und auf -70° gekühlt. Man gab 5,6 ml (107 mmol) abs. MeCN³⁵)⁴⁰) zu, rührte 1 h bei -70° , spritzte dann 90 ml *N*,*N'*-Dimethylethylenharnstoff [70] (*Fluka, purum*⁴⁰)) ein und gab das Salz **50** rasch zu. Nach 8 h Rühren bei -70° wurde die braune Lsg. mit 60 ml 2M NH₄Cl versetzt, i. RV. eingeengt, mit 300 ml AcOEt⁴⁰) verdünnt und 5mal mit je 300 ml H₂O geschüttelt. Die wässr. Auszüge wurden noch 2mal mit je 300 ml AcOEt gewaschen, die vereinigten org. Phasen über Watte filtriert und die Lsgm. entfernt: 3,2 g bräunliches Öl, das über Kieselgel 60 (4 × 10 cm) mit Hexan⁴¹)/AcOEt 2:1 chromatographiert wurde. Nach Kristallisation aus Et₂O⁴¹)/Hexan und Trocknen i. HV. bei RT. resultierten 2,01 g (51 %) **30**, Schmp. 57–58°. DC (AcOEt/Hexan 1:1): $R_{\rm f}$ 0,28. Weiter charakterisiert durch IR, ¹H-NMR (80 MHz), ¹³C-NMR (25 MHz), MS und C,H,N-Analyse, vgl. [4], S. 161–162; die Daten stimmen mit jenen von **30** *ex* **35** (vgl. *Exper. 8.14*) sowie mit jenen in [55] überein.

10.4. 3,4-Pyrrolbis(acetonitril) (54). Eine Lsg. von 1,0 g (5,5 mmol) 47 in 20 ml CH₂Cl₂⁴⁰) wurde bei 0° mit 1,1 ml (17,6 mmol) CH₃I in 20 ml Et₂O⁴¹) versetzt. Man rührte 8 h bei RT., filtrierte den entstandenen Niederschlag ab, wusch ihn mit 100 ml Et₂O und erhielt nach Trocknen i. HV. bei RT. 2,4 g Bis(ammonium)-Salz 51, das im N₂-Gegenstrom bei RT. portionsweise zu einer Suspension von 0,84 g (12,9 mmol) KCN in 10 ml DMSO³⁵) gegeben wurde. Nach 36 h Rühren bei RT. wurde die braune Lsg. mit 100 ml AcOEt⁴⁰)/30 ml ges. Na₂CO₃-Lsg., 30 ml 1 μ HCl und 2 × 30 ml H₂O aufgearbeitet. Die wässr. Auszüge wurden mit 2 × 50 ml AcOEt rückextrahiert und die vereinigten org. Phasen über Watte filtriert. Das Rohprodukt wurde 3mal aus AcOEt umkristallisiert und i. HV. bei RT. getrocknet: 520 mg (65%) 54, Schmp. 127°. DC (AcOEt/Hexan 1:1): $R_{\rm f}$ 0.43. IR (KBr): 2250m, 2240m; weitere Daten und Abb. in [4], S. 163–164. ¹H-NMR (CD₃CN, 300 MHz; Abb. in [4], S. 164): 3,59 (s, 2 CH₂CN); 6,76 (d, J = 3, CH(2), CH(5)); 9,2 (br. s, NH). ¹³C-NMR ((D₆)DMSO, 25 MHz): 13,2 (t, 2 CH₂CN); 110,2 (s, C(3), C(4)); 117,8 (d, C(2), C(5)); 119,2 (s, 2 CN). MS: 146 (5), 145 (48, M^{++}), 118 (100, M^{++} – HCN), 105 (38, M^{++} – CH₂CN). Anal. ber. für C₈H₇N₃: C 66,19, H 4,86, N 28,95; gef.: C 66,12, H 4,80, N 28,92.

10.5. α, α' -Dicyan-3,4-pyrrolbis(propionsäure-dimethylester) (52). Im leichten N₂-Gegenstrom wurden 40 ml (455 mmol) Cyanessigsäure-methylester³⁵) bei 0° portionsweise mit 500 mg (20,8 mmol) NaH (*Fluka, pract.* in Öl, mit Hexan⁴¹) gewaschen) versetzt, die Suspension wurde 30 min bei RT. gerührt, mit 3,0 g (6,5 mmol) Salz **51** (vgl. *l0.4*) versetzt und unter intensivem Rühren 8 h auf 50° erwärmt. Man nahm in 200 ml AcOEt⁴⁰) auf, wusch 3mal mit je 100 ml H₂O und schüttelte die wässr. Auszüge 2mal mit je 200 ml AcOEt. Nach Eindampfen der org. Phasen wurde bei 45°/0,01 Torr im Kugelrohr überschüssiger Cyanessigsäure-methylester entfernt, der Rückstand an Kieselgel (4 × 10 cm) mit Hexan/AcOEt 3 :2 chromatographiert und i. HV. bei RT. getrocknet: 1,45 g (77%) **52** als farbloses Öl. Eine bei 180°/0,01 Torr destillierte Probe war gemäss ¹H-NMR ein (1:1)-Gemisch zweier Diastereoisomern (*meso*-Form und Enantiomerenpaar). DC (Hexan/AcOEt 3:2): *R*_f 0,20. IR (Abb. in [4], S. 166): 3475*m*, 3000*w*, 2955*w*, 2250*w*, 1750*s*, 1600*w*. ¹H-NMR (300 MHz; Abb. in [4], S. 167): 3,12, 3,16 und 3,11, 3,15 (je *AB* von *ABX*, *J_{AX}* = 6, *J_{BX}* = 7,5, *J_{AB}* = 14,5, CH₂-C(3), CH₂-C(4)); 3,71, 3,72 (je *X* von *ABX*, *J_{AX}* = 6, *J_{BX}* = 7,5, 2 *A*, *B* = 6,5, je CH(2), je CH(5)). ¹³C-NMR (25 MHz): 25,4 (*t*, CH₂-C(3), CH₂-C(4)); 3,9,5 (*d*, 2 CHCN); 53,5 (*g*, 2 CH₃O); 115,8, 117,0 (2*s*, C(3), C(4), 2 CN); 117,3 (*d*, C(2), C(5)); 166,5 (*s*, 2 COO). MS: 290 (2), 289 (15, *M*⁺¹), 191 (100, *M*⁺⁺ - HC(CN)CO₂CH₃).

10.6. 3,4-Pyrrolbis(propiononitril) (53). Eine Lsg. von 1,23 g (4,26 mmol) 52 in 50 ml DMF³⁵) wurde bei RT. unter N₂ mit 1,2 g (8,96 mmol) LiI (*Fluka, purum*, bei 200° i. HV. getrocknet) und 0,51 ml (8,93 mmol) AcOH (*Merck, p.a.*) versetzt, 5 h bei 150° gerührt, mit 200 ml AcOEt⁴⁰)/4 × 150 ml H₂O und 2 × 200 ml AcOEt aufgearbeitet und die vereinigten org. Phasen über Watte filtriert und eingeengt. Nach Säulenchromatographie (Kieselgel 4 × 10 cm, Hexan⁴¹)/AcOEt 3:2) und Trocknen i. HV. bei RT. erhielt man 550 mg (75%) 53 als weisses Pulver, Schmp. 71°. Nach 2mal Umkristallisieren aus AcOEt Schmp. 85°. DC (Hexan/AcOEt 1:1): R_1 0,39. IR (Abb. in [41], S. 169): 3480s, 2250m, zusätzliche Bande von AcOEt bei 1735m. ¹H-NMR (300 MHz; Abb. in [4], S. 169): 2,57 (dubl. t, J = 7, 4 H, 2 CH₂CH₂CN); 2,81 (t, J = 7, 4 H, 2 CH₂CH₂CN); 6,67 (d, J = 2,5, CH(2), CH(5)); 8,2 (s, NH); dazu Signale bei 1,26 (t), 2,04 (s), 4,13 (q) (0,015 Äquiv. AcOEt). ¹³C-NMR ((D₆)DMSO, 25 MHz): 16,9, 19,6 (2t, 2 CH₂CH₂CN); 114,6 (d, C(2), C(5)); 116,9 (s, C(3), C(4)); 119,7 (s, 2 CN). MS: 174 (3), 173 (25, M^{+1}), 133 (100, M^{+-} - CH₂CN). Anal. ber. für C₁₀H₁₁N₃ + 0,015 Äquiv. AcOEt: C 69,20, H 6,38, N 24,14; gef.: C 68,92, H 6,33, N 24,05.

11. Exper. zu Schema 21. – 11.1. Tetrameroidisierung von 30 zu den Uroporphyrinogen-octanitrilen 57–60 vom Typ I–IV. Eine Lsg. von 257 mg (1,61 mmol) 30 in 4 ml DMF⁴²) wurde durch 3maliges kurzes Evakuieren auf ca. 50 Torr und Begasen unter N₂ gesetzt, im N₂-Gegenstrom mit 0,70 ml (7,9 mmol) Dimethoxymethan und 0,20 ml (3,7 mmol) konz. H₂SO₄ versetzt und 1 h bei 70° gerührt, wobei die Lsg. eine tiefrote Farbe annahm. Man verdünnte

⁴²) Fluka puriss., p.a., über Molekularsieb 4 Å gelagert.

1165

mit 100 ml AcOEt⁴⁰) und schüttelte 3mal mit je 100 ml ges. NaHCO₁-Lsg. aus (Farbwechsel der org. Phase von rot nach hellgrün), extrahierte die farblosen wässr. Phasen 2mal mit je 100 ml AcOEt und zog die vereinigten org. Phasen (für HPLC vgl. Schema 21) auf 3 g Kieselgel auf (RV., dann 2 h HV.). Das Kieselgel-Adsorbat wurde im Handschuhkasten als Suspension in H₂O-ges. CH₂Cl₂⁴⁰) auf eine Säule mit 35 g Kieselgel G (aufgeschlämmt in 150 ml H₂O-ges. CH₂Cl₂) aufgetragen, unter 0,7 bar N₂-Druck zuerst mit 50 ml H₂O-ges. CH₂Cl₂ (verworfen), dann mit CH₂Cl₂⁴⁰)/THF/H₂O 230:20:1 in Fraktionen zu ca. 20 ml eluiert, bis nach Verbrauch von ca. 500 ml die beiden schnell laufenden Produktzonen aufgefangen waren (DC-Kontrolle). Nun eluierte man mit ca. 200 ml CH₂Cl₂/ THF/H2O 80:20:1 die langsam laufende Produktzone. Die schwach gelben, nach DC (THF/CH2Cl2 (H2O-ges.) 1:4) und HPLC (Partisil 5, 50 × 1,2 cm; Et₂O⁴¹)/CH₂Cl₂/THF/H₂O 100:90:10:1, 3 ml/min; Det. 237 nm) einheitlichen Fraktionen 6-10 wurden im Handschuhkasten eingedampft und i. HV. bei RT. getrocknet: 28 mg (10%) 57 (Typ I). Die anal. Daten (vgl. unten) stammen von einer Probe, die aus THF/H₂O kristallisiert wurde. Die schwach gelben, nach DC (vgl. oben) einheitlichen Fraktionen 15-25 enthielten insgesamt 116 mg (42%) 58 (Typ II)/59 (Typ III). Zur Isolierung von isomerenreinem 58 löste man das gemäss HPLC (vgl. oben) bereits an 58 (Typ II) angereicherte Material der Fraktionen 15-17 in wenig DMF⁴²) und injizierte Portionen von 30 µl in die HPLC-Säule. Im N2-Strom wurde das Lsgm. der Produktfraktionen abgeblasen, der Rückstand im Handschuhkasten mit wenig DMF angelöst und aus THF/H₂O kristallisiert: ca. 2 mg 58 (Typ II) als braune, aber nach HPLC einheitliche Kristalle, die spektroskopisch charakterisiert wurden. Zur Isolierung von isomerenreinem 59 (Typ III) wurde eine ges. Lsg. des Materials aus den Fraktionen 20-25 in THF in Portionen von 50 µl im Abstand von 8 min in die HPLC-Säule (vgl. oben) eingespritzt und das Eluat unter Lichtausschluss auf 24 Fraktionen verteilt (automatische, durch den Fraktionensammler gesteuerte Einspritzung). Die isomerenreinen Fraktionen wurden vereinigt, im Handschuhkasten eingedampft, aus THF/H2O kristallisiert und i. HV. bei RT. getrocknet: 7,5 mg 59 (Typ III) als gelbliche, gemäss HPLC einheitliche Kristalle, die spektroskopisch charakterisiert wurden (vgl. unten). Durch fraktionierte Kristallisation von 58/59 aus MeCN (Fluka, purum; dest. über 0,5 % H₂SO₄)/CH₂Cl₂ (Fluka, pract.; über basisches Alox filtriert) liess sich 59 (Typ III) in grösseren Mengen mit hoher Isomerenreinheit

Fig. 9. IR-Spektren (KBr) der Uroporphyrinogen-octanitrile a) 57 (Typ I), b) 59 (Typ III) und c) 60 (Typ IV)

gewinnen: Aus 181 mg eines statistischen Typ-II/III-Gemisches (**58/59** 20:80) erhielt man nach der 3. Kristallisation aus der Mutterlauge 111 mg **59** (Typ III mit einer Isomerenreinheit von 96%). Die schwach gelben, nach DC und HPLC einheitlichen *Fraktionen 27–35* wurden im Handschuhkasten eingedampft und i. HV. bei RT. getrocknet: 57 mg (21%) **60** (Typ IV). Die anal. Daten stammen von einer Probe, die aus THF/H₂O kristallisiert wurde. Gesamtausbeute an isolierten **57–60** 73%.

Daten von 2,7,12,17-Tetrakis(cyanmethyl)porphyrinogen-3,8,13,18-tetrakis(propiononitril) (57; Typ I): Schmp. 240–242°. DC (THF/CH₂Cl₂ 1:4): R_f 0,8. UV: 227 (4,412), 314 (br., 2,70; Teiloxidation); Probe im Dunkeln an der Luft stabil, nach 2 h im Tageslicht Abnahme der Bande bei 227 nm, neue Bande bei 440 nm (Pyrromethen): IR (KBr; vgl. Fig.9a): 3075w, 2930m, 2880w, 2250s, 1609m. ¹H-NMR (CD₃CN; Abb. in [5], S. 116): 2,56, 2,80 (2t, J = 7, je 8 H, 4 CH₂CH₂CN); 3,53 (s, 4 CH₂CN); 3,78 (s, 4 CH₂); 8,3–8,5 (4 NH). MS: Kein M^{++} -Pik.

Daten von 2,8,12,18-Tetrakis(cyanmethyl)porphyrinogen-3,7,13,17-tetrakis(propiononitril) (58; Typ II): Schmp. 290–293°. DC (THF/CH₂Cl₂ 1:4): $R_{\rm f}$ 0,4. ¹H-NMR (CD₃CN; Abb. in [5], S.117): 2,50, 2,79 (2t, J = 7, je 8 H, 4CH₂CH₂CN); 3,55 (s, 4CH₂CN); 3,78 (br. s, 4CH₂); 9–10 (Integration unsicher, 4NH). MS: höchster beobachteter Pik bei m/z 381.

Daten von 2,7,12,18-Tetrakis(cyanmethyl)porphyrinogen-3,8,13,17-tetrakis(propiononitril) (59; Typ III): Schmp. 189–191°. DC (THF/CH₂Cl₂ 1:4): R_{f} 0,40. UV: 228 (4,418), 320 (br., 3,20; Teiloxidation). IR (KBr; vgl. Fig. 9b): 3075w, 2935m, 2880w, 2250s, 1610m. ¹H-NMR ((D₈)THF; Abb. in [5], S. 119–120, vgl. auch Fig. 1 im Allg. Teil): 2,5–2,65, 2,8–2,95 (2m, je 8 H, 4 CH₂CH₂CN); 3,63, 3,64, 3,65, 3,66 (4s, je 2 H, 4 CH₂CN); 3,85 (s, 2 CH₂); 3,90, 3,91 (2s, je 2 H, 2 CH₂); 8,91, 8,95 (2 br. s, je 2 H, 4 NH). ¹H-NMR ((D₅) Pyridin): 2,55–2,75, 2,75–3,0 (2m, je 8 H, 4 CH₂CH₂CN); 3,67, 3,77, 3,82, 3,83 (4s, je 2 H, 4 CH₂CN); 3,99, 4,09 (2s, CH₂(5), CH₂(10)); 4,035 (s, CH₂(20)); 4,043 (s, CH₂(15)); 9,79 (s, 2 NH); 9,93, 9,97 (2s, je 1 NH). Differenz-NOE-Experimente ((D₅)Pyridin): Einstrahlen bei 3,67 (s, CH₂CN)→NOE bei 3,99 (CH₂ (5 oder 10)); Einstrahlen bei 3,82 (s, CH₂CN)→NOE bei 4,09 (CH₂ (5 oder 10)); Einstrahlen bei 3,77 (s) und bei 3,83 (s, CH₂CN)→je NOE bei 4,035 (CH₂(20)); vgl. Kap.6. FAB-MS: 687 (18), 686 (50), 685 (100, HM⁺), 684 (64), 683 (64).

Daten von 2,7,13,18-Tetrakis(cyanmethyl)porphyrinogen-3,8,12,17-tetrakis(propiononitril) (**60**; Typ IV): Schmp. 172-174°. DC (THF/CH₂Cl₂ 1:4): R_f 0,25. UV: 229 (4,420), 315 (br., 3,30; Teiloxidation). IR (KBr; vgl. Fig. 9c): 3070w, 2935m, 2250s, 2208w, 1610m. ¹H-NMR ((D₈)THF; Abb. in [5], S. 121-122): 2,55, 2,55, 2,86, 2,88 (4*t*, J = 7, je 4 H, 4 CH₂CH₂CN); 3,65 (bei Spreizung 2s, je 4 H, 4 CH₂CN); 3,88 (s, 3 CH₂); 3,91 (s, 1 CH₂); 8,95 (br. s, 4 NH). MS: höchster beobachteter Pik bei m/z 358.

Für weitere Daten zu 57-60 vgl. Exper. 12 und 13.

11.2. Anmerkung zur Chromatographie und zur Löslichkeit von 57-60. In Vorversuchen bemerkte man, dass nach dem vollständigen Eindampfen des Gemisches ein Lösen des Porphyrinogen-Gemisches im Laufmittelsystem nicht mehr möglich war. Das Eindampfen in Gegenwart von Kieselgel brachte das Produktgemisch in einer genügend feinen Verteilung auf das Kieselgel, dass es sich im Elutionsmittel ohne Verzögerung löste. DC des Gemisches gelang zuerst ausserhalb des Handschuhkastens besser als darin, was den trockenen DC-Platten im Handschuhkasten zugeschrieben wurde. Bei Zugabe von H2O zum Laufmittelsystem erhielt man auch im Handschuhkasten sauber getrennte, nicht schleppende Zonen auf der Platte. Dieser H₂O-Zusatz erwies sich in der Folge auch bei der Säulenchromatographie und HPLC als vorteilhaft. Das Laufmittelgemisch für die HPLC ergab auch ohne Zusatz von CH₂Cl₂ eine Trennung in die vier Isomeren, zur Verhinderung des 'tailings' musste jedoch CH₂Cl₂ zugegeben werden, obwohl dies den für die UV-Detektion brauchbaren Bereich verschmälerte. Die 4 Isomeren zeigten ein unterschiedliches Lösungsverhalten. Konnten von 59 (Typ III) noch ca. 2-3 mg in 0,5 ml (D₈)THF gelöst werden, so nahm diese Löslichkeit in der Reihenfolge 60 (Typ IV), 57 (Typ I), 58 (Typ II) stark ab. Eine gesättigte Lsg. von 58 in (D₈)THF zeigte nach einer Aufnahmezeit von 2 h kein erkennbares ¹H-NMR-Signal des Porphyrinogens, weshalb das Spektrum von 58 wie von 57 in CD₃CN aufgenommen werden musste. Bei einem Versuch, die UV-Spektren in EtOH aufzunehmen, zeigte es sich, dass die Löslichkeit von 57, 59 und 60 in EtOH bei ca. 2-5 µg/ml liegt. Das beste Lösungsvermögen für 57-60 zeigten bis anhin substituierte Aromaten wie Benzonitril, Nitrobenzol und Pyridin. Pyridin löst von 59 ca. 10 mg/ml.

12. Exper. zu Schema 22. – 12.1. Tetrameroidisierung von 2-Des(aminomethyl)-2-(hydroxymethyl)porphobilinogen-dinitril (= 2-(Hydroxymethyl)-4-(cyanmethyl)-1H-pyrrol-3-propiononitril; 61) zum Uroporphyrinogen-octanitril 57 (Typ I). Im Handschuhkasten versetzte man eine Lsg. von 31,6 mg (0,167 mmol) 61 (hergestellt nach [55], durch 2malige Chromatographie über basisches Alox (Akt. III) mit AcOEt⁴⁰)/MeOH³⁵) 10:3 bzw. AcOEt/MeOH 20:1 gereinigt, nach Abziehen des Lsgm. kristallisierend) in 5,0 ml MeOH³⁵) tropfenweise unter Rühren mit 2,0 ml HCOOH³⁵): farblose Lsg. nach wenigen min leicht gelblich, nach 15 min schwach rötlich, weisser Niederschlag. Nach 1 h Rühren bei RT. wurde (ohne die Temp. zu erhöhen) i. HV. eingedampft, der

Rückstand in MeCN35) gelöst und im HPLC geprüft43): Gemäss Integration der Pikflächen des eluierbaren Produktanteils 95% 57 (Typ I; t_R 30,8) und 5% 59 (Typ III; t_R 49,4); die Typen II und IV waren zu weniger als 0,1 % vorhanden (vgl. Schema 22). Chromatographic an Kieselgel $G(2 \times 10 \text{ cm}, \text{CH}_2\text{Cl}_2^{40})/\text{THF}/\text{H}_2\text{O} 230:20:1^{44}))$ lieferte nach Trocknen i. HV (20 h) 14,3 mg (50%) 57 (Typ I) als schneeweissen Festkörper (rein laut 300-MHz-1H-NMR). Eine Probe (für UV) wurde durch isotherme Lsgm.-Destillation quantitativ aus MeCN/Et₂O⁴¹) kristallisiert. Die übrigen Daten stammen von kristallinem Material aus einem analogen, grösseren Ansatz. Schmp. 224-245°. DC (CH₂Cl₂/THF(H₂O-ges.) 4:1): R_f0,73 (lachsrote Färbung durch Luftoxidation, I₂ oder Ehrlich-Reagenz). UV (Abb. in [3], S. 139): 228 (4,408). IR (KBr; abgebildet in [3], S. 139): 3500 (sh), 3430m, 3380s, 3340s, 3075w, 2925m, 2910m, 2880w, 2245s, 1608m, 1532w, 1468m, 1453m, 1425s, 1418s, 1405m, 1325w, 1309m, 1250 (sh), 1240m, 1218m, 1197m, 1157w, 1082w, 1017w, 915m, 910m, 810w, 730w, 677m, 650m, 600m, 588m. ¹H-NMR $(CD_3CN, 300 \text{ MHz}; \text{Abb. in [3]}, S. 140): 2,55 (t, J = 7, 8 \text{ H}, 4 \text{ CH}_2\text{CH}_2\text{CN}); 2,80 (t, J = 7, 8 \text{ H}, 4 \text{ CH}_2\text{CH}_2\text{CN});$ 3,53 (s, 4 CH₂CN); 3,77 (s, 4 meso-CH₂); 8,55 (br. s, 4 NH). ¹³C-NMR ((D₆)DMSO, 75, 47 MHz; Abb. in [3], S. 140): 12,12 (t); 18,42 (t); 19,70 (t); 20,90 (t); 105,87 (s); 113,87 (s); 119,69 (s); 120,47 (s); 125,44 (2s). MS (Direkteinlass): 685 (0,3), 684 (0,6, M^{+}), 660 (1,2), 659 (2,6, $HM^{+} - CN$); 644 (0,5, $M^{+} - CH_2CN$); 634 (2,6, $H_2M^+ - 2$ CN); 619 (0,9, $HM^+ - CN - CH_2CN$), 609 (0,6, $H_3M^+ - 3$ CN), 605 (0,4, $HM^+ - 2$ CH₂ CN), 594 $(0,5, H_2M^+ - 2 CN - CH_2CN); 580 (0,3, H_2M^+ - CN - 2 CH_2CN); 41 (61, CH_3CN^+), 40 (6, CH_2CN^+), 28 (60, CH_2CN^+), 28$ HCNH⁺), 27 (56, HCN⁺), 26 (10, CN⁺), 18 (100).

12.2. Isolierung linearer Oligomerisationsnebenprodukte **62**. Nach Isolierung von **57** eluierte man in verschiedenen Ansätzen polares Material vom Säulenkopf mit THF/MeCN³⁵) 2:1, bis die Säule völlig farblos war. Das DC (CH₂Cl₂/THF(H₂O-ges.) 4:1) des Eluats zeigte neben wenig apolarem Material (cyclische Tetrapyrrole, apolare Mono-, Di- oder Tripyrrole) den Hauptanteil am oder nahe beim Start. Das nach Eindampfen und Trocknen in *ca.* 45% Ausbeute bzgl. **61** erhaltene ockerfarbene, oxidationsempfindliche Material **62** zeigte nach Ausfällen aus MeCN/Et₂O und 16 h i. HV. (Lsgm.-Gehalt laut ¹H-NMR noch 0,08 mol Et₂O und 0,02 mol MeCN pro mol Pyrrol) folgendes ¹H-NMR (CD₃CN, 300 MHz; relative Pik-Flächen; Abb. in [3], S. 60): 2,2-2,6 (*m*, 88,58, CH₂CH₂CN); 2,6-2,9 (*m*, 88,65, CH₂CH₂CN); 3,3-3,7 (*m*, 89,19 (korrigiert für Et₂O-Gehalt), CH₂CN); 3,7-3,9 (*m*, 83,86, *meso*-CH₂); *ca.* 4,2 (schwach, vermutlich CH₂X-Endgruppe); 6,62 (*m. ca.* 2, H-C(α) von Pyrrol). Verhältnis H-C(α)/NH = 1:18 bzw. H-C(α)/CH₂ (Seitenkette) = 1:44, hieraus abgeschätzter Oligomerisationsgrad 18-20 Pyrrol-Einheiten (cyclische Oligomere würden einen höheren Wert vortäuschen).

12.3. Umwandlung des Pyrroldinitril-Oligomers 62 in das statistische Gemisch der Uroporphyrinogen-octanitrile 57-60. Im Handschuhkasten versetzte man eine Lsg. von 50,0 mg 62 in 25,0 ml HCOOH³⁵) mit 10 µl frisch zubereiteter 10% Lsg. von Dimethoxymethan (0,04 Äquiv. pro Pyrrol-Äquiv.) in HCOOH. Nach 18 h Rühren wurde eine 100-µl-Probe entnommen, innert 5 min bei RT. i. HV. vom Lsgm. befreit und in 100 µl MeCN³⁵) gelöst. Von dieser Lsg. wurden 20 µl über eine *Rheodyne*-Probenschlaufe in eine gut konditionierte HPLC-Säule eingespritzt⁴³): Pikflächen-Verhältnis (%) 57/58/59/60 16,0:12,4:49,7:21,9 (vgl. Schema 22). Aus der Summe aller Flächenintegrale wurde durch Vergleich mit einem unter gleichen Bedingungen aufgenommenen Referenzchromatogramm (10,0 µg Uroporphyrinogen-octanitril 57 (Typ I) in 20 µl) eine spektroskopische Ausbeute von 61 % bestimmt. Die gesamte Reaktionslsg. wurde i. HV. bei RT. eingedampft und der Rückstand an 2 × 10 cm Kieselgel G (CH₂Cl₂⁴⁰)/THF/H₂O 230:20:1⁴⁴) chromatographiert: 5,2 mg (10%) 57 (Typ I) 18,5 mg (37%) 58/59 (Typ II/III) sowie 7,8 mg (16%) 60 (Typ IV) als praktisch farblose Festkörper; Gesamt-Ausbeute 63% bzgl. 62. Alle 3 Fraktionen zeigten im FAB-MS Piks bei 684 (M^{++}) und 685 (H M^{++}).

12.4. Versuche zur Isomerisierung von 57 (Typ I) zum statistischen Gemisch von 57–60. 12.4.1. In reiner HCOOH bei RT. Eine Lsg. von 1,29 mg (1,88 \cdot 10⁻⁶ mol) 57 (Typ I) in 2,58 ml HCOOH³⁵) ($c = 7,3 \cdot 10^{-4}$ M) wurde 3 Tage in einem dicht verschlossenen Kolben im Handschuhkasten bei RT. gerührt. Man entnahm je 100-µl-Proben zu Beginn sowie nach 30 und 75 h, entfernte HCOOH i. HV. bei RT. innert 5 min, löste den Rückstand in 100 µl MeCN³⁵) und führte 20 µl der HPLC-Analyse zu⁴³). Nach 30 h (vgl. Schema 22) hatten sich lediglich 10,7% 59 (Typ III) gebildet, und nach 75 h 25,1%, wobei die Summe der Pikflächenintegrale der Porphyrinogen-Signale auf 86% des Anfangswertes (gegenüber 96% nach 30 h) gesunken war.

⁴³) HPLC-Säule mit Techsil 5µ, 48 × 1,2 cm; Et₂O/CH₂Cl₂/THF/H₂O 90:90:10:1, Druck ca. 50 bar, Durchfluss 1,5–2,0 ml/min; Detektion bei 236 nm mit Kratos 757 und Integrator HP3390A bzw. Perkin-Elmer LC-55 und HP3380A; Lsgm.: Et₂O und CH₂Cl₂ über NaH bzw. CaH₂ dest., THF (Fluka, puriss.), über LiAlH₄ dest.

⁴⁴) Das Rohprodukt wurde aus MeCN-Lsg. an 1 g Kieselgel 60 (230-400 mesh) adsorbiert und nach Trocknen i. HV. als Suspension in H₂O-ges. CH₂Cl₂ auf die zuvor mit H₂O-ges. CH₂Cl₂ konditionierte Säule aufgetragen; vgl. [5], S. 114.

12.4.2. In HCOOH in Gegenwart einer katalytischen Menge Dimethoxymethan. Zu einer Lsg. von 1,29 mg $(1,88 \cdot 10^{-6} \text{ mol})$ 57 (Typ I) in 2,58 ml HCOOH³⁵) ($c = 7,3 \cdot 10^{-4}$ M) spritzte man 10,0 µl einer frisch hergestellten 0,2% Lsg. von Dimethoxymethan $(2,26 \cdot 10^{-7} \text{ mol})$, 0,12 Äquiv.) in HCOOH. Analog zu 12.4.1 untersuchte man das Gemisch im HPLC zu den Zeitpunkten t = 0 (vor Dimethoxymethan-Zugabe), t = 30, 90, 200 min, 10 h, 24 h und 100 h. Nach 24 h war die Isomerisierung fast vollständig abgelaufen: 20,4% 57 (Typ I): 11,9% 58 (Typ II): 47,5% 59 (Typ III): 20,2% 60 (Typ IV) (Identifikation der Piks durch Misch-HPLC mit authentischem Referenzgemisch); Summe der Pikflächenintegrale 70% des Anfangswertes (vgl. Schema 22). Nach 100 h betrug das Verhältnis der Pikflächen 15,0:12,0:48,7:24,3, Σ(Pikflächenintegrale) = 66%.

13. Exper. zu Schema 23. – 13.1. Tetrameroidisierung von 30 mit N-Methylidenglycinnitril-Trimer (63) zum statistischen Gemisch von 57-60 an Montmorillonit. Im Handschuhkasten löste man 30,0 mg (0,188 mmol) 30 (krist. aus Et₂O⁴¹)/Hexan⁴¹)) und 15,4 mg (0,075 mmol) N-Methylidenglycinnitril-Trimer (63; Fluka; krist. aus AcOEt⁴⁰); vgl.²⁸)) in 18,8 ml i. HV. entgastem MeCN³⁵). Dazu gab man 430 mg (14,3 Gew.-Äquiv.) Montmorillonit K10²⁹) (ohne O₂-Zutritt in den Handschuhkasten verbracht) und füllte die Suspension in eine 20-ml-Ampulle mit Magnetrührer. Die mit Hahn und Vakuumschlauch gas-dicht verschlossene Ampulle wurde ausserhalb des Handschuhkastens nach Ausfrieren des Reaktionsgemisches in flüssigem N2 bei 0,01 Torr abgeschmolzen. Nach Auftauen erhitzte man unter effizientem Rühren in einem Autoklaven mit einigen ml MeCN (für Druckausgleich und Wärmeübertragung) auf 180° (Ölbad). Nach 25 min wurde der Autoklav abgekühlt (Eisbad) und die Ampulle in den Handschuhkasten transferiert. Ein DC (CH₂Cl₂/THF(H₂O-ges.) 4:1) zeigte das Verschwinden von 30 (R_f 0,77, tiefblaue Färbung im Ehrlich-Test) sowie des grössten Teils von 63 (R_f 0,57, gelbe Färbung mit Ehrlich-Reagenz) zugunsten von 57-60 (57 (Typ I) Rf 0,73, 58/59 (Typ II/III) Rf 0,47, 60 (Typ IV) Rf 0,37; lachsrote Färbung im Ehrlich-Test). Der Ton, der sich von grau-beige nach braun verfärbt hatte, wurde durch Celite-Filtration unter 1 bar von der überstehenden, schwächer gefärbten, braunroten Lsg. abgetrennt und mit 3×10 ml MeCN gewaschen⁴⁵), die vereinigten Filtrate eingedampft und 16 h i. HV. getrocknet: 35,0 mg Rohprodukt. Dieses löste man unter O2-Ausschluss in 10,0 ml MeCN³⁵); 1,00 ml dieser Lsg. wurden auf 6,45 ml verdünnt und über eine 20-µl-Probenschlaufe auf die HPLC-Kolonne aufgetragen⁴³) (Detektion 234 nm; vgl. Schema 23): 57 (Typ I) 12,3%, 58 (Typ II) 11,8%, 59 (Typ III) 50,3%, 60 (Typ IV) 25,5%; durch Pikflächen-Vergleich mit einer frisch im Handschuhkasten hergestellten Referenzlsg. (chromatographisch isoliertes (1:1:4:2)-Gemisch von 57-60) wurde für 57–60 eine spektroskopische Ausbeute von $79 \pm 2\%$ bestimmt. Im MS des Rohprodukts wurde das Nebenprodukt 2,2'-Iminobis(acetonitril) (M⁺95) beobachtet; diese Verbindung wurde als cm-lange, feine Nadeln aus dem Rohprodukt heraussublimiert (RT./0,01 Torr) und durch DC-Vergleich mit einer authentischen Probe identifiziert $(CH_2Cl_2/THF(H_2O-ges.) 4:1; R_f 0,57).$

13.2. Präparative Auftrennung des Rohprodukts aus 13.1. Die nach HPLC-Analyse verbleibenden 31,5 mg Tetrameroidisierungsrohprodukt wurden aus der obigen MeCN-Lsg. unter O₂-Ausschluss an *ca.* 1 g Kieselgel *G* adsorbiert, 2 h i. HV. getrocknet und auf eine mit H₂O-ges. CH₂Cl₂⁴⁰) konditionierte Kieselgel-*G*-Säule (2 × 10 cm) aufgetragen (vgl.⁴⁴)). Man eluierte mit CH₂Cl₂/THF/H₂O 230:20:1 Fraktionen à 10 ml (für Einzelheiten vgl. [3]): Das Material der *Fraktionen* 3–6 (6,6 mg nach 16 h i. HV.) enthielt **57** (Typ I), 2,2'-Iminobis(acetonitril) sowie **63**. Nach Kristallisation aus MeCN³⁵)/Et₂O⁴¹) (isotherme Lsgm.-Destillation bei RT.) fiel **57** als winzige rhomboedrische Kristalle an: 2,4 mg (84% des mittels HPLC ermittelten Gehalts) nach Waschen mit wenig Et₂O und 24 h i. HV. ¹H-NMR (CD₃CN, 300 MHz; Abb. in [3], S. 167): 2,55 (*t*, *J* = 7, 4 CH₂CH₂CN); 2,80 (*t*, *J* = 7, 8 H, 4CH₂CH₂CN); 3,53 (*s*, 4CH₂CN); 3,77 (*s*, 4 meso-CH₂); 8,41 (br. *s*, 4 NH). FAB-MS⁴⁶): 688 (3), 687 (12), 686 (45), 685 (100, HM⁺), 684 (90), 683 (55), 682 (19), 681 (9), 680 (3), 660 (5), 659 (10), 658 (19, M⁺ - CN), 657 (11), 656 (7), 646 (3), 645 (9), 644 (16, M⁺ - CH₂CN), 643 (7), 642 (4).

Das (1:4)-Gemisch **58** (Typ I)/**59** (Typ III) aus den *Fraktionen 8–13* (14,6 mg, 80% des mittels HPLC ermittelten Gehalts) zeigte folgende Daten: ¹H-NMR (CD₃CN, 300 MHz; Abb. in [3], S. 168): 2,50–2,55 (t, J = 7, 8 H, 4 CH₂CH₂CN); 2,78–2,83 (t, J = 7, 8 H, 4 CH₂CH₂CN); 3,55–3,57 (überlagernde s, 4 CH₂CN); 3,78–3,80 (mindestens 5 überlagernde s, 4 *meso* -CH₂); 8,10–8,50 (br., 4 NH). FAB-MS⁴⁶): 688 (3), 687 (10), 686 (42), 685 (97), 684 (100, M^+), 683 (74), 682 (24), 681 (10), 680 (3), 660 (5), 659 (11), 658 (24, M^+ – CN), 657 (15), 656 (11), 646 (5), 645 (13), 644 (29, M^+ – CH₂CN), 643 (10), 642 (8).

⁴⁵) Auskochen des Tones mit 15 ml MeCN³⁵) (30 min, 100°, in Ampulle) lieferte weniger als 1 mg weiteres Material (gemäss UV/VIS Porphyrinoide sowie vermutlich Polymere). Behandlung des Tons mit 15 ml MeCN/Et₃N 9:1 auf die gleiche Weise gab ebenfalls weniger als 1 mg zusätzliches Material mit sehr schwacher und breiter *Soret*-Bande bei 405-410 nm.

⁴⁶) FAB-MS aufgenommen aus MeCN-Lsg. in einer m-Nitrobenzylalkohol-Matrix im Bereich 0–1500 Masseneinheiten.

Das aus den *Fraktionen 14–20* erhaltene **60** kristallisierte aus MeCN/CH₂Cl₂⁴⁰) (isotherme Lsgm.-Destillation bei RT.) in Büscheln feiner Nädelchen, die mit wenig CH₂Cl₂ gewaschen und 24 h i. HV. getrocknet wurden: 5,1 mg (89% des laut HPLC festgestellten Gehalts). ¹H-NMR (CD₃CN, 300 MHz; Abb. in [3], S. 169): 2,49–2,54 (2 überlagernde t, J = 7, 8 H, 4 CH₂CH₂CN); 2,78–2,83 (2 überlagernde t, J = 7, 8 H, 4 CH₂CH₂CN); 3,57 (*s*, 4 CH₂CN); 3,80–3,81 (2 *s* im Verhältnis *ca*. 1:3, 4 *meso*-CH₂); 8,48, 8,55 (2 br. *s*, 4 NH). FAB-MS⁴⁶): 688 (3), 687 (13), 686 (43), 685 (100, HM⁺) 684 (99), 683 (78), 682 (22), 681 (9), 680 (3), 660 (6), 659 (13), 658 (23, M⁺ - CN), 657 (15), 656 (10), 646 (4), 645 (11), 644 (23, M⁺ - CH₂CN), 643 (8), 642 (7).

In einem analogen Ansatz wurde nach der Elution der Porphyrinogen-Fraktionen die Säule mit 100 ml THF bis auf die graubraune Startzone völlige farblos gewaschen: 5 mg (16 Gew.-% bzgl. Rohprodukt) gemäss UV porphinoides Material sowie Polymere; nach Verdünnen der Mess-Lsg. an der Luft veränderte sich die Lage der Absorptionsbanden nicht.

14. Exper. zu Schema 24. – 14.1. Porphyrinogen-2,3,7,8,12,13,17,18-octakis(propiononitril) (65). Eine Lsg. von 150 mg (0,86 mmol) 53 in 7,5 ml DMF³⁵) wurde 3mal kurz auf ca. 50 Torr evakuiert und mit N₂ begast, im N₂-Gegenstrom mit 0,34 ml (3,85 mmol) Dimethoxymethan und 0,02 ml (0,37 mmol) konz. H₂SO₄ versetzt und 90 min bei 80° gerührt, wobei die Lsg. dunkelrot wurde. Man verdünnte mit 150 ml AcOEt⁴⁰), schüttelte 3mal mit je 100 ml ges. NaHCO₃-Lsg. (Farbwechsel von rot nach hellgrün), wusch die farblosen wässr. Phasen mit 2 × 150 ml AcOEt, engte die vereinigten org. Phasen nach Zugabe von 2 g Kieselgel i. RV. ein und brachte den Kolben nach 2 h i. HV. in den Handschuhkasten. Das auf dem Kieselgel-G-Säule (2 × 10 cm) aufgetragen und mit CH₂Cl₂⁴⁰) auf eine mit H₂O-ges. CH₂-Cl₂ konditionierte Kieselgel-G-Säule (2 × 10 cm) aufgetragen und mit CH₂Cl₂/THF/H₂O 230:20:1 chromatographiert: 111 mg (70%) 65 als gelbliches Pulver vom Schmp. 251°. Eine Probe wurde aus MeCN³⁵/⁴⁰) kristallisiert. Schmp. 254°. DC (THF/CH₂Cl₂ (H₂O ges.) 1:10): R_1 0,53. IR (KBr; Abb. in [4], S. 174): 2,930s, 2865m, 2825w, 2245s, 1730m, 1625m, 1600m. ¹H-NMR ((D₆)DMSO, 300 MHz; Abb. in [4], S. 174): 2,48 (t, J = 7, 8 CH₂CH₂CN); 2,71 (t, J = 7, 8 CH₂CH₂CN); 3,73 (s, 4 meso-CH₂); 8,04 (s, NH). ¹³C-NMR ((D₆)DMSO, 75 MHz): 17,8, 18,7 (2t, 8 CH₂CH₂CN); 2,03 (t, 4 meso-C); 112,6 (s, 8 C(β) von Pyrrol); 119,6 (s, 8 C(α) von Pyrrol); 123,9 (s, 8 CN). MS: 740 (1, M⁺⁺), 55 (84, CH₃CH₂CN), 41 (87, CH₃CN), 18 (100).

14.2. Porphyrinogen-2,3,7,8,12,13,17,18-octakis(acetonitril) (**66**). Eine Lsg. von 200 mg (1,38 mmol) **54** in 3,5 ml DMF³⁵) wurde 3mal kurz auf *ca*. 50 Torr evakuiert und mit N₂ begast, im N₂-Gegenstrom mit 0,6 mi (6,8 mmol) Dimethoxymethan und 0,15 ml (2,8 mmol) konz. H₂SO₄ versetzt und 1 h bei 70° gerührt. Nach dem Abkühlen verdünnte man die dunkelrote Lsg. mit 50 ml CH₂Cl₂⁴⁰), gab 100 ml Hexan⁴¹) zu, schüttelte gut, liess das Gemisch 1 h im Kühlschrank stehen, filtrierte den entstandenen Niederschlag ab und wusch mit je 20 ml CH₂Cl₂, H₂O und eisgekühltem MeCN³⁵⁴⁰) nach. Das in üblichen Lsgm. schwerlösliche braune Pulver wurde im Handschuhkasten in wenig DMSO³⁵ gelöst, aus MeCN/CH₂Cl₂ umgefällt und i. HV. bei RT. getrocknet: 188 mg (86%) **66** als bräunliches Pulver, Schmp. > 350°. DC (THF/CH₂Cl₂(H₂O ges.) 1:2): *R*_f 0,18. IR (KBr; Abb. in [4], S.171): 3070w, 2950m, 2915m, 2250s, 1607m. ¹H-NMR ((D₆)DMSO, 300 MHz; Abb. in [4], S.172): 3,83 (*s*, 8 CH₂CN); 3,84 (*s*, 4 meso-CH₂); 10,31 (*s*, NH). ¹³C-NMR ((D₆)DMSO, 75 MHz): 11,9 (*t*, 8 CH₂CN); 20,8 (*t*, 4 meso-C); 106,3 (*s*, 8 C(β) von Pyrrol}; 118,9 (*s*, 8 C(α) von Pyrrol}; 125,8 (*s*, 8 CN). MS: 628 (1, *M*⁺⁺), 27 (100, HCN).

LITERATURVERZEICHNIS

- G. Bold, 'Zur Chemie des 2-Amino-propennitrils', Diss. ETH Zürich Nr. 7702, ADAG Druck AG, Zürich, 1984.
- [2] Yi-Bin Xiang, 'Beiträge zur Chemie der α-Aminonitrile', Diss. ETH Zürich Nr. 7993, ADAG Druck AG, Zürich, 1986.
- [3] C. Lehmann, 'Untersuchungen über Uroporphyrinogen-octanitril', Diss. ETH Zürich Nr. 8215, ADAG Druck AG, Zürich, 1986.
- [4] T. Früh, 'Zur Chemie der Uroporphyrinogen-octanitrile', Diss. ETH Zürich Nr. 8054, ADAG Druck AG, Zürich, 1986.
- [5] R. Lattmann, 'Synthetische Studien in der Hydroporphyrinreihe', Diss. ETH Zürich Nr. 7383, ADAG Druck AG, Zürich, 1983.
- [6] R. B. Woodward, Pure Appl. Chem. 1968, 17, 519; ibid. 1971, 25, 283; ibid. 1973, 33, 145; R. B. Woodward, 'Synthetic Vitamin B₁₂' in 'Vitamin B₁₂', Eds. B. Zagalak und W. Friedrich, De Gruyter, Berlin, 1979, S. 37.
- [7] A. Eschenmoser, Quart. Rev. 1970, 24, 366; 23rd Int. Congr. Pure Appl. Chem. 1971, 2, 69; Naturwissenschaften 1974, 61, 513; A. Eschenmoser, C. Wintner, Science 1977, 196, 1410.

- [8] a) J. Oro, Biochem. Biophys. Res. Commun. 1960, 2, 407; J. Oro, B. Kimball, Arch. Biochem. Biophys. 1961, 94, 217; ibid. 1962, 96, 293; b) Review: J. P. Ferris, W. J. Hagan, Jr., Tetrahedron 1984, 40, 1093.
- [9] Vgl. z. B. Dagley, D. E. Nicholson, 'An Introduction to Metabolic Pathways', Blackwell, Oxford, 1970, S. 160-164.
- [10] S.L. Miller, L.E. Orgel, 'The Origins of Life on the Earth', Prentice-Hall, Englewood Cliffs, NJ, 1974.
- [11] M. Eigen, P. Schuster, Naturwissenschaften 1977, 64, 541; ibid. 1978, 65, 7; ibid. 1978, 65, 341.
- [12] A. I. Oparin, 'The Origin of Life', engl. Übersetzung von A. I. Oparins Erstabhandlung (1924) in J. D. Bernal, 'The Origin of Life', Weidenfeld and Nicholson, London, 1967, S. 199–234; J. B. S. Haldane, 'The Origin of Life', *Rationalists Annual* 1929, 148, 3, Nachdruck in J. D. Bernal (vgl. oben) S. 242–249.
- [13] A. Eschenmoser, Chem. Soc. Rev. 1976, 5, 377; A. Eschenmoser, 'Über organische Naturstoffsynthese: von der Synthese des Vitamins B₁₂ zur Frage nach dem Ursprung der Corrinstruktur', Nova Acta Leopold. 1982, Band 55, Nr. 247.
- [14] a) A. Pfaltz, B. Hardegger, P. M. Müller, S. Farooq, B. Kräutler, A. Eschenmoser, *Helv. Chim. Acta* 1975, 58, 1444; b) B. Kräutler, A. Pfaltz, R. Nordmann, K. O. Hodgson, J. D. Dunitz, A. Eschenmoser, *ibid.* 1976, 59, 924; c) A. Pfaltz, N. Bühler, R. Neier, K. Hirai, A. Eschenmoser, *ibid.* 1977, 60, 2653; d) V. Rasetti, A. Pfaltz, C. Kratky, A. Eschenmoser, *Proc. Natl. Acad. Sci. USA* 1981, 78, 16; e) V. Rasetti, K. Hilpert, A. Fässler, A. Pfaltz, A. Eschenmoser, *Angew. Chem.* 1981, 93, 1108; *ibid. Int. Ed.* 1981, 20, 1058.
- [15] W. Fuhrer, 'Totalsynthese von Vitamin B₁₂: der photochemische Weg', Diss. ETH Zürich Nr. 5158, Juris Druck + Verlag, Zürich, 1973.
- [16] Y. Yamada, D. Miljkovic, P. Wehrli, B. Golding, P. Löliger, R. Keese, K. Müller, A. Eschenmoser, Angew. Chem. 1969, 81, 301; ibid. Int. Ed. 1969, 8, 343.
- [17] A. Eschenmoser, 'Chemical synthesis of corrinoids: current problems and recent advances' in 'Vitamin B₁₂', Eds. B. Zagalak und W. Friedrich, De Gruyter, Berlin, 1979, S. 89.
- [18] C. Angst, M. Kajiwara, E. Zass, A. Eschenmoser, Angew. Chem. 1980, 92, 139; ibid. Int. Ed. 1980, 19, 140;
 J. E. Johansen, V. Piermattie, C. Angst, E. Diener, C. Kratky, A. Eschenmoser, ibid. 1981, 93, 273; ibid. Int. Ed. 1981, 20, 261; R. Waditschatka, A. Eschenmoser, ibid. 1983, 95, 639; ibid. Int. Ed. 1983, 22, 630.
- [19] R. Waditschatka, E. Diener, A. Eschenmoser, Angew. Chem. 1983, 95, 641; ibid. Int. Ed. 1983, 22, 631; C. Leumann, K. Hilpert, J. Schreiber, A. Eschenmoser, J. Chem. Soc., Chem. Commun. 1983, 1404.
- [20] C. Kratky, R. Waditschatka, C. Angst, J. E. Johansen, J. C. Plaquevent, J. Schreiber, A. Eschenmoser, Helv. Chim. Acta 1985, 68, 1312.
- [21] G. Bartels, R. Nussberger, F. Kreppelt (noch unveröffentlicht), vgl. Chem. Eng. News 1981, 59, 36.
- [22] A. Eschenmoser, 'Organische Naturstoffsynthese und Vitamin B₁₂', Jahrb. Akad. Wiss. Göttingen 1977, 29–43; A. Eschenmoser, 'Vitamin B₁₂ und präbiotische Naturstoffchemie', Jahresber. Schweiz. Nationalfonds Förd. wiss. Forsch. 1985, 198–207.
- ¹ [23] R. Scheffold, Chimia 1985, 39, 203.
 - [24] A. Fischli, Helv. Chim. Acta 1978, 61, 2560 und nachfolgende Arbeiten.
 - [25] N.H. Horowitz, Proc. Natl. Acad. Sci. USA 1945, 31, 153.
 - [26] R. E. Eakin, Proc. Natl. Acad. Sci. USA 1963, 49, 360; H. B. White, J. Mol. Evol. 1976, 7, 101; H. B. White, in 'The Pyridine Nucleotide Coenzymes', Ed. J. Everse, B. Anderson und K.-S. You, Academic Press, New York, 1982, S. 1–17; G. A. M. King, Biosystems 1980, 13, 23; C. M. Visser, Origins Life 1982, 12, 165; J. P. Ferris, D. H. Usher, 'Origins of Life', in 'Biochemistry', Ed. G. Zubay, Addison-Wesley, Reading, MA, 1983, S. 1192.
 - [27] A. Strecker, Liebigs Ann. Chem. 1850, 75, 27.
 - [28] S. L. Miller, Science 1953, 117, 528; J. Am. Chem. Soc. 1955, 77, 2351; Biochim. Biophys. Acta 1957, 23, 480.
 - [29] C. Ponnamperuma, F. Woeller, Curr. Mod. Biol. 1967, 1, 156.
 - [30] L. Orgel, R. Lohrmann, Acc. Chem. Res. 1974, 7, 368.
 - [31] M. Calvin, 'Chemical Evolution', Clarendon Press, Oxford, 1969.
 - [32] H. G. Viehe, R. Merényi, L. Stella, Z. Janousek, Angew. Chem. 1979, 91, 982; ibid. Int. Ed. 1979, 18, 917; S. Mignani, M. Beaujean, Z. Janousek, R. Merényi, H. G. Viehe, Tetrahedron Suppl. 1981, 37, 111.
 - [33] A. Eschenmoser, Inaugural A.J. Birch Lecture, Australian National University, Canberra, Australia, 16.2.1981.
 - [34] S. Saebo, L. Radom, J. Mol. Struct. 1983, 105, 119.
 - [35] A. Bauder, T. K. Ha, Chem. Phys. Lett. 1983, 97, 135.
 - [36] P. Seiler, J. D. Dunitz, Helv. Chim. Acta 1985, 68, 2093.
 - [37] P. B. Shevlin, D. W. McPherson, P. Melius, J. Am. Chem. Soc. 1983, 104, 488.

- [38] R. Gauthier, M. Chastrette, J. Organomet. Chem. 1979, 165, 139.
- [39] S. C. Temin, J. Org. Chem. 1957, 22, 1714; H. Ahlbrecht, C. Vonderheid, Synthesis 1975, 512; H. Ahlbrecht, D. Liesching, *ibid.* 1977, 495; N. De Kimpe, R. Verhé, L. De Buyck, N. Schamp, *ibid.* 1979, 741; Chem. Ber. 1983, 116, 3846; J. Toye, L. Ghosez, J. Am. Chem. Soc. 1975, 97, 2276; H. Plieninger, R. El-Berius, H. Mah, Chem. Ber. 1971, 104, 3983, L.A. Yanovskaya, C. Shachidayatov, E. P. Prokofiev, F. M. Andrinova, V. F. Kucherov, Tetrahedron 1968, 24, 4677; B. Costisella, H. Gross, *ibid.* 1982, 38, 139.
- [40] J. H. Boyer, J. Kooi, J. Am. Chem. Soc. 1976, 98, 1099.
- [41] M. Schröder, ETH Zürich, 1979, unveröffentlichte Arbeiten.
- [42] P. Kurtz, 'Nitrile und Isonitrile', in 'Houben-Weyl, Methoden der Organischen Chemie', 4. Aufl., Ed. G. Müller, Thieme Verlag, Stuttgart, 1952, Bd. 8, S. 279; P. Kurtz, H. Disselnkötter, *Liebigs Ann. Chem.* 1972, 764, 69.
- [43] A. v. Planta, Diss. ETH, in Vorbereitung.
- [44] a) R. Gunde, A. Bauder, unpubliziert; b) P. Groner, T. K. Ha, A. Bauder, in Vorbereitung.
- [45] W. Rüger, Arbeitsbericht ETH Zürich, 1983.
- [46] P. Chinnasamy, Arbeitsbericht ETH Zürich, 1980.
- [47] U. Goldener, Diplomarbeit ETH Zürich, 1981.
- [48] H. Ahlbrecht, K. Pfaff, Synthesis 1980, 413; H. Ahlbrecht, M. Dietz, ibid. 1985, 417; H. Ahlbrecht, M. Ibe, ibid. 1985, 421.
- [49] K.D. Gundermann, R. Huchting, Chem. Ber. 1962, 95, 632; K.D. Gundermann, E. Röhrl, Liebigs Ann. Chem. 1974, 1661.
- [50] S. Hosaka, S. Wakanatsu, Tetrahedron Lett. 1968, 219.
- [51] D. Bellus, Helv. Chim. Acta 1977, 60, 2379.
- [52] G. A. Kurhajec, R. J. Windgassen, G. W. Hearne (Shell Int. Res. Maatschappij N. V.), Franz. Patent 1 360 750 vom 6.4.1964 (Demandé 15.3.1963).
- [53] J. J. Scott, Biochem. J. 1956, 62, 6p; C. A. Townsend, A. I. Scott, published in C. A. Townsend, 'Intermediate Stages of Corrin Biosynthesis', Ph. D. Thesis Yale University, USA, 1974.
- [54] M. Ono, ETH Zürich, 1979–1981, unveröffentlichte Arbeiten.
- [55] M. Ono, R. Lattmann, K. Inomata, C. Lehmann, T. Früh, A. Eschenmoser, Croat. Chim. Acta 1985, 58, 627.
- [56] H.-P. Buser, 'Zur Chemie der α-Aminonitrile: γ,δ-Dehydroleucin-nitril', Diss. ETH Zürich Nr. 7867, ADAG Druck AG, Zürich, 1985, S.83–88.
- [57] M.M. Delépine, Bull. Soc. Chim. Fr. 1903, 29, 1178; P. Kurtz, H. Disselnkötter, Liebigs Ann. Chem. 1972, 764, 69.
- [58] G.I. Karabatsos, S.S. Lande, Tetrahedron 1968, 24, 3907; G.I. Karabatsos, R.A. Taller, ibid. 1968, 24, 3923 und daselbst zitierte Literatur.
- [59] P. Hess, 'Versuche zum Aufbau von Lipiden aus α-Aminonitrilen', Diss. ETH Zürich Nr. 8218, ADAG Druck AG, Zürich, 1986.
- [60] W. v. Miller, J. Plöchl, Ber. Dtsch. Chem. Ges. 1898, 31, 2718; A. Treibs, R. Derra, Liebigs Ann. Chem. 1954, 589, 176.
- [61] P. Gilgen, H. Heimgartner, H. Schmid, Heterocycles 1977, 6, 143.
- [62] A. Padwa, Angew. Chem. 1976, 88, 131; ibid. Int. Ed. 1976, 15, 123.
- [63] R. Grigg, J. Kemp, J. Chem. Soc., Chem. Commun. 1977, 125; ibid. 1978, 109; Tetrahedron Lett. 1978, 2823;
 R. Grigg, H.Q.N. Gunaratne, ibid. 1983, 1201.
- [64] J. Schreiber, H. Maag, N. Hashimoto, A. Eschenmoser, Angew. Chem. 1971, 83, 355; ibid. Int. Ed. 1971, 10, 330.
- [65] J. M. Muchowski, D. R. Sola, Tetrahedron Lett. 1983, 3455.
- [66] U. Kämpfen, A. Eschenmoser, Tetrahedron Lett. 1985, 26, 5899.
- [67] U. Eisner, R. P. Linstead, J. Chem. Soc. 1955, 3742.
- [68] C. Rochin, O. Babot, J. Dunogués, F. Duboudin, Synthesis 1986, 228.
- [69] A. Gossauer, 'Die Chemie der Pyrrole', Springer-Verlag, Berlin, 1974, S.266, 272; H.J. Anderson, C.E. Loader, Synthesis 1985, 353.
- [70] T. Mukhopadhyay, D. Seebach, Helv. Chim. Acta 1982, 65, 385.
- [71] F. Elsinger, J. Schreiber, A. Eschenmoser, Helv. Chim. Acta 1960, 43, 113.
- [72] C. Leumann, T. Früh, C. Lehmann, W. Iwanowski, J. Schreiber, A. Eschenmoser, Helv. Chim. Acta, in Vorbereitung.
- [73] C. Leumann, 'Biomimetische C-Methylierungsreaktionen an Corphinderivaten', Diss. ETH Zürich Nr. 8064, ADAG Druck AG, Zürich, 1986.

- [74] G.H. Cookson, C. Rimington, Biochem. J. 1954, 57, 476.
- [75] D. Mauzerall, J. Am. Chem. Soc. 1960, 82, 2601, 2605.
- [76] A. R. Battersby, E. McDonald, Acc. Chem. Res. 1979, 12, 14.
- [77] H. von Dobeneck, B. Hansen, E. Vollmann, Z. Naturforsch., B 1972, 27, 922.
- [78] H.W. Whitlock, D.H. Buchanan, Tetrahedron Lett. 1969, 3711.
- [79] C. Angst, 'Neue Hexahydroporphinoide Ligandsysteme', Diss. ETH Zürich Nr. 6783, ADAG Druck AG, Zürich, 1981.
- [80] R. Jay, T. Curtins, Ber. Dtsch. Chem. Ges. 1894, 27, 59.
- [81] T.B. Johnson, H.W. Rinehart, J. Am. Chem. Soc. 1924, 46, 768.
- [82] R. Dammel, H. Bock, Z. Naturforsch., B, im Druck.
- [83] H. H. Whitlock, R. Hanauer, J. Org. Chem. 1968, 33, 2169; U. Eisner, A. Lichtarowicz, R. P. Linstead, J. Chem. Soc. 1957, 733.
- [84] B. Franck, G. Bringmann, C. Wegner, U. Spiegel, Liebigs Ann. Chem. 1980, 263.
- [85] J. C. Bommer, B. F. Burnham, R. E. Carlson, D. Dolphin, Anal. Biochem. 1979, 95, 444; H. Nordlöv, P. M. Jordan, G. Burton, A. I. Scott, J. Chromatogr. 1980, 190, 221; A. H. Jackson, K. R. N. Rao, S. G. Smith, Biochem. J. 1982, 203, 515; I. C. Walker, M. T. Gilbert, K. Stubbs, J. Chromatogr. 1980, 202, 491; A. W. Wayne, R. C. Straight, E. E. Wales, E. Englert, Jr., HRC CC, J. High Resolut. Chromatogr. Chromatogr. Commun. 1979, 2, 621; J. M. Rideout, D. J. Wright, C. K. Lim, J. Liq. Chromatogr. 1983, 6, 383.
- [86] A. R. Battersby, D. G. Buckley, D. W. Johnson, L. N. Mander, E. McDonald, D. C. Williams, J. Chem. Soc., Perkin Trans. 1 1981, 2779; A. R. Battersby, C. J. R. Fookes, K. E. Gustafson-Potter, E. McDonald, G. W. J. Matcham, ibid. 1982, 2413.
- [87] H. Fischer, E. Bartholomäus, Ber. Dtsch. Chem. Ges. 1913, 46, 511.
- [88] D. Mauzerall, 'The Porphyrinogens' in 'The Porphyrins', Ed. D. Dolphin, Academic Press, New York, 1978, Vol. II, Part B, p. 91-101.
- [89] R. B. Woodward, Diskussionsbeitrag in 'Further Perspectives in Organic Chemistry', Ciba Found. Symp. 1978, 53, 43.
- [90] W.C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
- [91] K. Grob, G. Grob, HRC CC, J. High Resolut. Chromatogr. Chromatogr. Commun. 1982, 5, 13; K. Grob, 'Making and Manipulating Capillary Columns for Gas Chromatography', Huethig, Heidelberg, 1986.
- [92] E. Walter, J. Schreiber, E. Zass, A. Eschenmoser, Helv. Chim. Acta 1979, 62, 899.
- [93] M. Karpf, A.S. Dreiding, Helv. Chim. Acta 1977, 60, 345.
- [94] M.J. Mintz, C. Walling, Org. Synth., Coll. Vol. V 1973, 184.
- [95] H. Gerlach, Helv. Chim. Acta 1968, 51, 1587; O. Aschan, Acta. Soc. Sci. Fenn. 1895, 21, 1 (vgl. Chem. Zentralbl. 1895 11, 967).
- [96] H. Meerwein, Org. Synth., Coll. Vol. V 1973, 1080.
- [97] Z. Tanaka, J. Pharm. Soc. Jpn. 1940, 60, 221 (vgl. CA: 1940, 34, 5446); R. H. F. Manske, Can. J. Res. 1931, 5, 592; L.-F. Tietze, T. Eicher, 'Reaktionen und Synthesen', G. Thieme, Stuttgart, 1981, S. 123.
- [98] A.H. Cook, I. Heilbron, A.L. Levy, J. Chem. Soc. 1948, 201.