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Abstract: We report a concise synthesis of the enantiomerically
pure 1,2-trans-1,5-cis-methyl esters of rosaprostol, a prostaglandin
derivative used for the treatment of gastric and duodenal ulcers,
using as key step the chemo- and stereoselective Michael addition
of a Grignard reagent to an unprotected hydroxycyclopentenone.

Key words: cyclopentenones, Grignard reactions, Michael addi-
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Rosaprostol, a trade name for 7-(2-hexyl-5-hydroxy-
cyclopentyl)heptanoic acid, is a prostaglandin derivative
used for the treatment of gastric and duodenal ulcers
which is devoid of many undesirable side effects common
to other prostanoids such as diarrhoea, hypotension, and
uterine contraction.1 Rosaprostol has been commercial-
ized as Rosal, the sodium salt of a racemic mixture of the
1,2-trans-1,5-cis and 1,2-trans-1,5-trans diastereoiso-
mers of 7-(2-hexyl-5-hydroxycyclopentyl)heptanoic acid
(Figure 1). Various syntheses of this racemic mixture of
epimers have been reported by several groups.2

Figure 1

The introduction of enantiopure active pharmaceutical in-
gredients in the market has been enforced since 1992 by
the US Food and Drug Administration (FDA) and the
European Committee for Proprietary Medicinal Products,
which demand that the physiological action of each enan-
tiomer of a pharmaceutical product must be individually
characterized. This may allow for lower dosages and
improved efficacy of pharmaceuticals.3

We report herein the first synthesis of enantiomerically
pure (1R,2S,5S)-1 and (1S,2R,5R)-1 (Scheme 1). It was
our goal to develop a concise synthesis using readily

available chemicals and simple transformations, avoiding
the use of protection–deprotection steps, which may be
useful for the large-scale preparation of these compounds.
The key steps of our synthetic approach consisted in: i) the
chemo- and stereoselective hydroxyl-directed 1,4-addi-
tion of an organomagnesium reagent to the a,b-unsaturat-
ed moiety of the 2-alkyl-4-hydroxycyclopent-2-enones 2,
which will determine the absolute stereochemistry of the
stereogenic centers in the target molecules; and ii) the
stereoselective reduction of an a,b-unsaturated ketone to
saturated alcohol.

Scheme 1

2-Alkyl-4-hydroxycyclopent-2-enones have been widely
used as intermediates for the two-component synthesis of
prostaglandins4 and other types of natural or bioactive
compounds.5 It is well known that the addition of organo-
cuprates to their TBS-protected derivatives takes place
anti with respect to the bulky OTBS group (Scheme 2).
On the other hand, the conjugate addition of Grignard re-
agents to unprotected 4-hydroxycyclopent-2-enones takes
place under chelation control and is cis with respect to the
OH group. This second alternative has the advantage of
not requiring protection of the OH group, and the use of
simple organomagnesium reagents instead of organo-
cuprates in the conjugate-addition step.6 However, to date
this strategy had only been applied to the functionalization
of simple a-alkyl or a-aryl-substituted derivatives, and the
compatibility with labile functional groups, such as esters,
had not been validated.

The synthesis of optically pure compounds 1 started with
the preparation of racemic 2-alkyl-4-hydroxy-2-cyclo-
pent-2-enone 2 as a common precursor for both optically
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pure targets by slight modifications of previously reported
procedures.7,8 Kinetic resolution9 of rac-1 with PPL, using
vinyl acetate as solvent and reagent, afforded (–)-(S)-2
(41% yield, 98% ee) and the acetate of (+)-(R)-2 (46%
yield, 98% ee), which is converted into (+)-(R)-2 (98%
ee) by deprotection with guanidine.10 It is worth mention-
ing that compounds (–)-(S)-2 and (+)-(R)-2 can be inter-
converted by inversion of the stereogenic center with the
aid of a Mitsunobu reaction.7 This operation allows for a
maximum yield of either of the optically pure enantiomers
of 2.11

For the synthesis of (1R,2S,5S)-1, compound (–)-(S)-2
was treated with hexylmagnesium bromide (2 equiv,
THF, 0–25 °C, 18 h, Scheme 3). Under these reaction con-
ditions we observed the formation of hydroxycyclopen-
tanone (–)-312 together with cyclopentenone (+)-413 in 1:1
ratio and 80% overall yield. The reaction was completely
chemoselective, as the presence of an ester group in the
Ra-chain was found to be compatible with the 1,4-con-
jugate-addition reaction of the organomagnesium reagent
to the a,b-unsaturated ketone moiety of (–)-(S)-2.

Scheme 3

The formation of compound (+)-4 prior to the hydrolytic
workup of the reaction mixture may be understood by
enolate equilibration followed by b-elimination.14 This
was prevented when the conjugate-addition reaction of

the organomagnesium reagent was carried out at lower
temperature (0–10 °C, 18 h) in the presence of LiCl (2
equiv).15 Under these reaction conditions, 3 was obtained
in 75% yield.

Independent dehydration (Scheme 3) of (–)-3 (PTSA,
Et2O) gave rise to (+)-4 in 90% yield.16 Once it had been
confirmed that the enantiomeric purity of (+)-4 obtained
by this two-step procedure was the same as that of (+)-4
directly isolated from the initial reaction of hexylmagne-
sium bromide with (–)-(S)-2 in the absence of LiCl, we
optimized (Scheme 4) the single-step transformation from
(–)-2 to (+)-4 (2 equiv hexylmagnesium bromide, THF,
0–30 °C, 36 h), which was obtained in 80% yield.17 This
saves one reaction step in the overall synthesis of the
target molecules.

In order to make the reaction sequence as short as
possible, the reduction of the C=C double bond and the
C=O bond in (+)-4 was optimized as a one-step stereo-
selective transformation. Thus, treatment of (+)-4 with
L-Selectride (THF–t-BuOH, –78 °C, 1 h)18,19 gave rise to
ester (+)-120,21 in 75% yield.

Scheme 4

The synthesis of the (1S,2R,5R)-1 was carried out starting
from (+)-(R)-2 following the same reaction sequence
(Scheme 4).

In conclusion, we have developed the first synthesis of
enantiomerically pure (1R,2S,5S)- and (1S,2R,5R)-
Rosaprostol methyl esters 1. All the transformations are
relatively simple, and make use of readily available chem-
icals, do not require protection–deprotection steps, and
are compatible with the presence of an ester group. This
may be of use for the large-scale preparation of these and
related prostanoids.
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