A Convenient Method for C-Azanucleosides Synthesis

Masataka Yokoyama,* Takahiro Akiba, Yoshie Ochiai, Atsuya Momotake, and Hideo Togo

Department of Chemistry, Faculty of Science, Chiba University, Yayoi-cho 1-33, Inage-ku,

Chiba City, J apan
Received March 18, 1996

Introduction

As a part of our program for synthesis and evaluation of the C-nucleosides as a new type of DNA unit, ${ }^{1}$ we have been interested in the C-azanucleosides in which the endocyclic ribosyl ring oxygen is replaced with a nitrogen atom. To our knowledge, many modified nojirimycins, which function as effective glycosidase inhibitors, have been reported, ${ }^{2}$ and only three C -azanucleosides ${ }^{3}$ have been synthesized as nojirimycin analogs. However, their preparative methods remain limited and their characteristic properties are not widely known: $2 \alpha, 3 \alpha$-dihy-droxy-4 β-(hydroxymethyl)-N-carbomethoxypyrrolidine as a showdomycin analogue starting from teloidinone,, ${ }^{3 \mathrm{a}}$ as well as 1,4-dideoxy-1,4-imino-1(S)-phenyl-d-ribitol and 1,4-dideoxy-1,4-imino-1(S)-(4-imidazolyl)-d-ribitol as a new class of N -glycohydrolase transition state analog inhibitors. ${ }^{3 b}$ Therefore, we wish herein to present a general and useful method for the synthesis of β-Cazanucleosides.

Results

As a model experiment, 2-pyrrolidinylthiophene (4)4 was synthesized starting from 2-hydroxytetrahydrofuran via a sequential procedure of the addition of 2-thienyllithium (2: 80\% yield), the Swern oxidation (3: 60\% yield), and reductive aminocyclization using ammonium formate and $\mathrm{NaBH}_{3} \mathrm{CN}$ (4: 32\% yield). ${ }^{5}$ The reaction procedure is shown in Scheme 1.
(1) (a) Togo, H.; Aoki, M.; Yokoyama, M. Tetrahedron Lett. 1991, 32, 6559. (b) Togo, H.; Ishigami, S.; Y okoyama, M. Chem. Lett. 1992, 1673. (c) Togo, H.; Aoki, M.; Kuramochi, T.; Yokoyama, M. J . Chem. Soc., Perkin Trans. 1 1993, 2417. (d) Yokoyama, M.; Tanabe, T.; Toyoshima, A.; Togo, H. Synthesis 1993, 517. (e) Yokoyama, M.; Toyoshima, A.; Akiba, T.; Togo, H. Chem. Lett. 1994, 265. (f) I shigami, S.; Togo, H.; Yokoyama, M. J. Chem. Soc., Perkin Trans. 1 1994, 2407. (g) Togo, H.; I shigami, S.; Fujii, M.; I kuma, T.; Y okoyama, M. J. Chem. Soc., Perkin Trans. 1 1994, 2931. (h) Yokoyama, M.; Akiba, T.; Togo, H. Synthesis 1995, 638. (i) Yokoyama, M.; Nomura, M.; Tanabe, T.; Togo, H. Heteroatom Chem. 1995, 6, 189.
(2) (a) Hashimoto, H.; Hayakawa, M. Chem. Lett. 1989, 1881. (b) Legler, G. Adv. Chem. Biochem. 1990, 48, 318. (c) Poitout, L.; Merrer, Y. L.; Depezay, J.-C. Tetrahedron lett. 1994, 35, 3293. (d) Fowler, P. A.; Haines, A. H.; Taylor, R. J. K.; Chrystal, E. J. T.; Gravestock, M. B. J. Chem. Soc., Perkin Trans. 1 1994, 2229. (e) Martin, O. R.; Saavedra, O. M. Tetrahedron Lett. 1995, 36, 799. (f) Ichikawa, M.; I garashi, Y.; I chikawa, Y. Tetrahedron Lett. 1995, 36, 1767. (g) Wong, C.-H.; Provencher, L.; Porco, J . A., J r.; J ung, S.-H.; Wang, Y.-F.; Chen, L.; Wang, R.; Steensma, D. H. J. Org. Chem. 1995, 60, 1492. (h) Híranuma, S.; Shimizu, T.; Nakata, T.; Kajimoto, T.; Wong, C.-H. Tetrahedron Leett. 1995, 36, 8247. General synthetic method consists of (1) aldolase reaction to the azido keto sugar and (2) Pd/C-mediated reductive amination: Look, G. C.; F otsch, C. H.; Wong, C.-H. Acc. Chem. Res. 1993, 26, 182 and references cited.
(3) (a) J ust, G.; Donnini, P. Can. J. Chem. 1977, 55, 2998. (b) Horenstein, B. A.; Zabinski, R. F.; Schramm, V. L. Tetrahedron Lett. 1993, 34, 7213.
(4) (a)'Burckhalter, J . H.; Short, J . H. J . Org. Chem. 1958, 23, 1281. (b) McGhie, J. F.; Ross, W. A.; Laney, D. H. J . Chem. Soc. 1962, 2578.
(5) Martin, O. R.; Saavedra, O. M. Tetrahedron Lett. 1995, 36, 799.

Scheme $1^{\text {a }}$

a Reagents and conditions: (a) 2-Thienyllithium, THF, rt, 1.5 h; (b) DMSO, TFAA, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) $\mathrm{HCO}_{2} \mathrm{NH}_{4}$, $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{MeOH}, \mathrm{rt}, 4 \mathrm{~h}$.

Scheme $\mathbf{2 a}^{\text {a }}$

	Yield (\%)			
	6	7	8	9
	94	80	34	94
	87	88	39	75
	71	86	56	98

[^0]
Scheme 3

was prepared by the usual way [(1) small amount of $\mathrm{H}_{2} \mathrm{SO}_{4} /$ acetone; (2) tert-butylchlorodimethylsilane (TBDMSCI), imidazole/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$]. After being stirred for 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was purified by column chromatography to give aryl ribitols $\mathbf{6}[\mathbf{6} \rightarrow \mathbf{7}$; step b]: 6 was oxidized with DMSO, trifluoroacetic anhydride (TFAA), and $E t_{3} \mathrm{~N}$ and then purified by column chromatography to give aryl diketones 7 [7 $\rightarrow \mathbf{8}$; step c]: A mixture of $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{HCO}_{2} \mathrm{NH}_{4}$, and molecular sieves (3A) was added to the methanol solution containing 7. After stirring for 18 h at room temperature, the reaction mixture was purified by preparativeTLC on silica gel to give aza sugars 8 [$\mathbf{8} \rightarrow \mathbf{9}$; step d]: Then 8 was treated with 70% trifluoroacetic acid for 2 h at $50^{\circ} \mathrm{C}$ to give the desired β-C-azanucleosides 9 in good yields.

The stereochemistry of 8 was determined mainly by theresult of NOESY in NMR measurements ($1-\mathrm{H} \leftrightarrow 4-\mathrm{H}$). Further, the β-stucture was supported from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data on the basis of chemical shifts values and their difference ${ }^{7}$ of the two methyl groups of the isopropylidene moiety. These values of $8 \mathbf{a}$ ($\delta 1.30$ and $1.53 \mathrm{ppm} ; \Delta \delta=$ $0.23 \mathrm{ppm})$ were very similar to those of $2-\left(2^{\prime}, 3^{\prime}-0-\right.$ isopropylidene- β-ribofuranosyl)furan ($\delta 1.37$ and 1.59; $\Delta \delta$ $=0.22) .{ }^{8}$ The structure determination for 6, 7, and 9 was carried out by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and mass (FAB) measurements together with elemental analysis.

The β-stereosel ectivity of 8 may appear by the following process: (1) stereoselective amination of the 1-carbonyl group to give the 1(R)-amino group (intermediate A); (2) nucleophilic attack of the 1-amino group to 4-carbonyl group; (3) dehydration to an imino sugar; (4) si-plane attack of hydride ion to C-4 of iminosugar perhaps due to the steric hindrance (intermediate B). The appearance of this selectivity cannot be explained fully. However, the predominant β-selectivity has also been reported in the preparation of pyrrolidine aminosugars. ${ }^{9}$

In conclusion, the present method consists of the β-stereoselective synthesis of C-azanucleosides, which makes possible the synthesis of various kinds of β-Cazanucleosides easily. TheC-azanucleosides obtained by this method are now under study for their chemical properties and for the evaluation of their biological activity.

Experimental Section

All reactions were conducted in oven-dried ($120^{\circ} \mathrm{C}$) glassware under dry argon. Ether and THF were distilled from sodium benzophenone ketyl. Pyridine was distilled from CaH_{2}. Microanalyses were performed at the Chemical Analysis Center of Chiba University. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 270 MHz , a 400 MHz , or a 500 MHz spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 126 MHz spectrometer. Mass spectra were

[^1]recorded using the FAB or an EI methods. Purification was carried out by column chromatography and preparative TLC (pTLC).

Lithiation of Aromatic Heterocycles (thiophene, benzofuran). To a solution of aromatic heterocycle (1.5 mmol) in THF (5 mL) was added n -buthyllithium (1.0 equiv, 1.6 M hexane solution) dropwise at $0^{\circ} \mathrm{C}$. The solution was allowed to rise to room temperature and stirred for 1 h .

Lithiation of \mathbf{N}-(Phenylsulfonyl)indole. To a solution of N -(phenylsulfonyl) indole ($1.1 \mathrm{~g}, 4 \mathrm{mmol}$) in THF (5 mL) was added n-buthyllithium (1.0 equiv, 1.6 M hexane solution) dropwise at $0^{\circ} \mathrm{C}$. The solution was stirred at the same temperature for 1 h .

Preparation of 1-(2-Thienyl)-1,4-butanediol (2). To a solution of 2-hydroxytetrahydrofuran (1) ${ }^{10}(88 \mathrm{mg}, 1 \mathrm{mmol})$ in THF (5 mL) was added dropwise thienyllithium in THF solution (3.5 equiv) at $0{ }^{\circ} \mathrm{C}$ under stirring. After stirring at room temperature for 1.5 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, diluted with CHCl_{3}, and then purified by pTLC (AcOEt/ hexane, 1/1) to give $\mathbf{2}$ as colorless crystals in 88% yield: IR (KBr) 1440, 1480, 2850, 2900, 3060, 3150-3300 cm ${ }^{-1}$; HRMS (FAB, NBA +KI) calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{SK} \mathrm{m} / \mathrm{e}(\mathrm{M}+\mathrm{K}) 211.0195$, found 211.0182; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.70\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}\right)$, $1.90\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{2}\right), 3.70\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2}\right), 4.90(1 \mathrm{H}, \mathrm{t}, 1-\mathrm{CH}, \mathrm{J} 1,2$ $=3 \mathrm{~Hz}), 6.90-7.30(3 \mathrm{H}, \mathrm{m}$, thiophene). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 55.78 ; \mathrm{H}, 7.02$. Found: C, $55.60 ; \mathrm{H}, 6.88$.

Preparation of 1-(2-Thienyl)-1,4-dioxobutane (3). A mixture of DMSO ($0.28 \mathrm{~mL}, 4 \mathrm{mmol}$), TFAA ($0.6 \mathrm{~mL}, 4 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Tothe mixture obtained above was added 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing $2(173 \mathrm{mg}, 1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After the resultant mixture was stirred at the same temperature for $2 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~mL}, 8 \mathrm{mmol})$ was added and the resultant mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h and then at room temperature for 0.5 h . After quenching with $\mathrm{H}_{2} \mathrm{O}$, extracting with CHCl_{3}, washing the organic phase with 1 N HCl , and neutralizing with NaHCO_{3}, purification was performed by pTLC (AcOEt/hexane, 1/1) to give 3 as a yellow oil in 71% yield: IR (neat) 1408, 1560, 1660, 1720, 2800, 2880, $3050 \mathrm{~cm}^{-1}$; MS (EI) m/ e 168 (M); ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $2.90\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}\right), 3.20\left(2 \mathrm{H}, \mathrm{t}, 2-\mathrm{CH}_{2}, \mathrm{~J} 2.3=6 \mathrm{~Hz}\right), 7.10-7.70$ ($3 \mathrm{H}, \mathrm{m}$, thiophene), $9.90\left(1 \mathrm{H}, \mathrm{t}, 4-\mathrm{CH}, \mathrm{J}_{3,4}<0.5 \mathrm{~Hz}\right.$). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 57.12 ; \mathrm{H}, 4.79$. Found: $\mathrm{C}, 57.33 ; \mathrm{H}, 4.64$.

2-(2-Pyrrolydinyl)thiophene (4). To a mixture of NaBH_{3} $\mathrm{CN}(132 \mathrm{mg}, 2.1 \mathrm{mmol}), \mathrm{HCO}_{2} \mathrm{NH}_{4}(132 \mathrm{mg}, 2.1 \mathrm{mmol})$, and molecular sieves (3A) (500 mg) was added a MeOH solution (20 mL) containing $\mathbf{3}(117 \mathrm{mg}, 0.7 \mathrm{mmol})$ at room temperature for 24 h . After being filtered through Celite and extracted with CHCl_{3}, the mixture was purified by pTLC $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 12 / 1\right)$ to give 4^{11} as a yellow oil in 32% yield.

Preparation of Aryl Ribitols 6. Typical Procedure. The organol ithium reagent of aromatic heterocydle (THF solution, 4 mmol) was added dropwise to a solution of 5 ($304 \mathrm{mg}, 1 \mathrm{mmol}$) in THF (10 mL) at $0^{\circ} \mathrm{C}$ and stirred at room temperature for 1 h. The mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, diluted with CHCl_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (AcOEt/hexane, $1 / 3$) to give 6.

5-O-(tert-ButyIdimethylsilyl)-2,3-0-isopropylidene-1-(2-thienyl)-D-ribitol (6a): oil; IR (neat) 840, 1070, 1250, 2900, $3450 \mathrm{~cm}^{-1}$; HRMS ($\mathrm{FAB}, \mathrm{NBA}+\mathrm{KI}$) cal cd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{SSiK} \mathrm{m} / \mathrm{e}$ ($\mathrm{M}+\mathrm{K}$) 427.1377, found 427.1375 ; ${ }^{1 \mathrm{H}}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: (R-form) $\delta 0.09$ ($6 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.93 ($9 \mathrm{H}, \mathrm{s}$, TBDMS Si-tBu), 1.31 ($3 \mathrm{H}, \mathrm{s}$, isopropylidene- CH_{3}), 1.40 ($3 \mathrm{H}, \mathrm{s}$, isopropylidene $-\mathrm{CH}_{3}$), $3.43(1 \mathrm{H}, \mathrm{bs}, 1$ or $4-\mathrm{OH}), 3.68-4.51(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$, $3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{Ha}, 5-\mathrm{Hb}), 4.80(1 \mathrm{H}, \mathrm{bs}, 1$ or $4-\mathrm{OH}), 5.13(1 \mathrm{H}, \mathrm{m}$, 1-H), 6.96-7.29 (3H, m, thiophene); (S-form) $\delta 0.12$ ($6 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.91 ($9 \mathrm{H}, \mathrm{s}, \mathrm{TBDMS}$ Si-tBu), 1.38 ($3 \mathrm{H}, \mathrm{s}$, isopropylidene $\left.-\mathrm{CH}_{3}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}\right.$, isopropylidene- $\left.\mathrm{CH}_{3}\right), 2.75(1 \mathrm{H}$, bs, 1 or $4-\mathrm{OH}$), 3.13 ($1 \mathrm{H}, \mathrm{bs}, 1-$ or $4-\mathrm{OH}$), $3.68-4.51(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$, $3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{Ha}, 5-\mathrm{Hb}), 5.40(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 6.96-7.29$ (3H, m, thiophene). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{SSi}: \mathrm{C}, 55.63 ; \mathrm{H}, 8.30$. Found: C, 55.77; H, 8.18.

1-(2-Benzofuryl)-5-O-(tert-butyldimethylsilyl)-2,3-0-iso-propylidene-D-ribitol (6b): oil; IR (neat) 840, 1090, 1250, 1440, 2900, $3350 \mathrm{~cm}^{-1}$; HRMS (FAB, NBA + KI) calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6}-$

[^2]SiK m/ e(M + K) 461.1762, found 461.1757; 1H NMR (270 MHz, CDCl_{3}): (R-form) $\delta 0.12$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{TBDMS}$ Si-Me), 0.92 ($9 \mathrm{H}, \mathrm{s}$, TBDMS Si-tBu), 1.31 (3H, s, isopropylidene-CH3), $1.38(3 \mathrm{H}, \mathrm{s}$, isopropylidene- CH_{3}), 3.45 ($1 \mathrm{H}, \mathrm{bs}, 1$ or $4-\mathrm{OH}$), $3.72(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{Ha})$, 3.94 (1H, m, 5-Hb), 4.15 (1H, m, 4-H), 4.21 (1H, m, 3-H), 4.72 (1H, bs, 1 or $4-\mathrm{OH}), 5.06(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{s}$, benzofuran $\left.3^{\prime}-\mathrm{H}\right), 7.19-7.28\left(2 \mathrm{H}, \mathrm{m}\right.$, benzofuran $\left.5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.48-7.62(2 \mathrm{H}$, m, benzofuran $\left.4^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 62.53$; $\mathrm{H}, 8.11$. Found: C, 62.63; H, 8.22.

5-O-(tert-ButyldimethyIsilyl)-2,3-O-isopropylidene-1-[2-[N-(phenylsulfonyl)indolyl]]-D-ribitol (6c): foam; IR (KBr) 870, 1090, 1200, 1400, 1470, 2900, $3400 \mathrm{~cm}^{-1}$; HRMS (FAB, NBA $+\mathrm{KI})$ calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{NSSiK} \mathrm{m} / \mathrm{e}(\mathrm{M}+\mathrm{K}) 600.1854$, found 600.1854; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (R-form) $\delta 0.11$ ($6 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.93 ($9 \mathrm{H}, \mathrm{s}, \mathrm{TBDMS}$ Si-tBu), 1.37 (3H, s, isopropylidene- CH_{3}), $1.53\left(3 \mathrm{H}, \mathrm{s}\right.$, isopropylidene $\left.-\mathrm{CH}_{3}\right), 2.85(1 \mathrm{H}$, bs, 1 or $4-\mathrm{OH})$, $3.29(1 \mathrm{H}, \mathrm{bs}, 1$ or $4-\mathrm{OH}), 3.68-4.71(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$, $3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{Ha}, 5-\mathrm{Hb}), 5.98(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{s}$, indole 3'H), 7.18-8.16 ($9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$, indole $4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}$); ($\mathbf{S}-$ form) $\delta 0.13$ ($6 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.94 ($9 \mathrm{H}, \mathrm{s}$, TBDMS Si${ }^{\text {tBu }}$), $1.31\left(3 \mathrm{H}, \mathrm{s}\right.$, isopropylidene $\left.-\mathrm{CH}_{3}\right), 1.38(3 \mathrm{H}, \mathrm{s}$, isopropylidene$\left.\mathrm{CH}_{3}\right), 3.54(1 \mathrm{H}, \mathrm{bs}, 1$ or $4-\mathrm{OH}), 3.68-4.71(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}$, $5-\mathrm{Ha}, 5-\mathrm{Hb}), 4.79(1 \mathrm{H}, \mathrm{bs}, 1$ or $4-\mathrm{OH}), 5.80(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 6.82$ ($1 \mathrm{H}, \mathrm{s}$, indole $3^{\prime}-\mathrm{H}$), 7.18-8.16 ($9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$, indole $4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$, $\left.6^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{NSSi}: \mathrm{C}, 59.86 ; \mathrm{H}, 7.00$; N, 2.49. Found: C, 59.93; H, 7.09; N, 2.65.

Oxidation of 6 To Give Aryl Diketones 7. Typical Procedure. A solution of TFAA (5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise to a solution of DMSO (5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) at $-78^{\circ} \mathrm{C}$ and stirred for 1 h at the same temperature. To the stirring mixture was added dropwise a solution of 6 (1 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, and then the reaction mixture was stirred for an additional 2 h at the same temperature. A solution of $\mathrm{Et}_{3} \mathrm{~N}(8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise, and the stirring was continued for 0.5 h at $-78^{\circ} \mathrm{C}$. The reaction mixture was removed from the cooling bath and allowed to warm to $0^{\circ} \mathrm{C}$ with stirring. The reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ice-water. The organic layer was separated, washed with 2 N HCl and saturated aqueous NaHCO_{3}, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed, and the residue was purified by column chromatography (AcOEt/hexane, 1/3) to give 7 .
(2R,3S)-5-O-(tert-B utyldimethylsilyl)-2,3-O-i sopro-pylidene-1-(2-thienyl)-1,4-pentanedione (7a): oil; IR (neat) 840, 1100, 1240, 1400, 1650, 1720, $2900 \mathrm{~cm}^{-1}$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{SSi} \mathrm{m} / \mathrm{e}(\mathrm{M}+\mathrm{H}) 385.1505$, found 385.1505 ; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.01(3 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.06 ($3 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.85 ($9 \mathrm{H}, \mathrm{s}$, TBDMS Si${ }^{\text {tBu}}$), $1.46\left(3 \mathrm{H}, \mathrm{s}\right.$, isopropylidene $\left.-\mathrm{CH}_{3}\right), 1.48$ ($3 \mathrm{H}, \mathrm{s}$, isopropyl-idene- CH_{3}), $4.34(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{Ha}, \mathrm{J}$ gem $=17.5 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{Hb}$, $\left.\mathrm{J}_{\mathrm{gem}}=17.5 \mathrm{~Hz}\right), 4.92(1 \mathrm{H}, \mathrm{d}, 3-\mathrm{H}, \mathrm{J} 2,3=6.6 \mathrm{~Hz}), 5.57(1 \mathrm{H}, \mathrm{d}$, $2-\mathrm{H}, \mathrm{J} 2.3=6.6 \mathrm{~Hz}), 7.16\left(1 \mathrm{H}, \mathrm{m}\right.$, thiophene $\left.4^{\prime}-\mathrm{H}\right), 7.71(1 \mathrm{H}, \mathrm{m}$, thiophene $\left.3^{\prime}-\mathrm{H}\right), 7.98\left(1 \mathrm{H}, \mathrm{m}\right.$, thiophene $\left.5^{\prime}-\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{SSi}: \mathrm{C}, 56.07 ; \mathrm{H}, 7.58$. Found: C, $55.98 ; \mathrm{H}, 7.42$.
(2R,3S)-1-(2-Benzofuryl)-5-O-(tert-butyldimethylsilyl)-2,3-0-isopropylidene-1,4-pentanedione (7b): oil; IR (neat) 870, 1270, 1550, 1690, 1740, $2900 \mathrm{~cm}^{-1}$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{Si} \mathrm{m} / \mathrm{e}(\mathrm{M}+\mathrm{H}) 419.1890$, found 419.1883; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.01(3 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.07 ($3 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.86 ($9 \mathrm{H}, \mathrm{s}$, TBDMS Si-tBu), 1.51 (6 H , s, isopropylidene- CH_{3}), $4.41(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{Ha}, \mathrm{J}$ gem $=17.8 \mathrm{~Hz}), 4.57$ $\left(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{Hb}, \mathrm{J}_{\text {gem }}=17.8 \mathrm{~Hz}\right), 5.02\left(1 \mathrm{H}, \mathrm{d}, 3-\mathrm{H}, \mathrm{J}_{2,3}=6.7 \mathrm{~Hz}\right)$, $5.67(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}, \mathrm{J} 2,3=6.7 \mathrm{~Hz}), 7.31-7.80(1 \mathrm{H}, \mathrm{m}$, benzofuran). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{Si}$: $\mathrm{C}, 62.98 ; \mathrm{H}, 7.45$. Found: C, 62.95; H, 7.60.
(2R,3S)-5-O-(tert-B utyldimethylsilyl)-2,3-O-isopro-pylidene-1-[2-[N-(phenylsulfonyl)indolyl]]-1,4-pentanedione (7c): foam; IR (KBr) 830, 1180, 1250, 1370, 1420, 1680, 1720, $2900 \mathrm{~cm}^{-1}$; HRMS (FAB, NBA + KI) calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{7}-$ NSSiK m/e (M + K) 596.1541, found 596.1534; ${ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.05$ ($3 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.08 ($3 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.90 ($9 \mathrm{H}, \mathrm{s}$, TBDMS Si- ${ }^{-1} \mathrm{Bu}$), 1.34 (3H, s, isopropylidene$\left.\mathrm{CH}_{3}\right), 1.44\left(3 \mathrm{H}\right.$, s, isopropylidene- $\left.\mathrm{CH}_{3}\right), 4.37(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{Ha}, \mathrm{J}$ gem $=17.8 \mathrm{~Hz}), 4.55(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{Hb}, \mathrm{J} \mathrm{gem}=17.8 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{d}, 3-\mathrm{H}$, $\left.\mathrm{J}_{2,3}=6.6 \mathrm{~Hz}\right), 5.71(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}, \mathrm{J} 2,3=6.6 \mathrm{~Hz}), 7.24-8.11(10 \mathrm{H}$, m, PhH, indole). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{NSSi}: \mathrm{C}, 60.30 ; \mathrm{H}$, $6.33 ; \mathrm{N}, 2.51$. Found: C, $60.45 ; \mathrm{H}, 6.50 ; \mathrm{N}, 2.55$.

Reductive Amination of 7 to give Azasugar 8. Typical Procedure. Ammonium formate (3 mmol), $\mathrm{NaBH}_{3} \mathrm{CN}(3 \mathrm{mmol})$, powdered molecular sieves (3A) (100 mg), and $\mathbf{7}$ were dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$. After stirring for 18 h at room temperature, the reaction mixture was filtrated through Celite (Wako hyflo super-cell), extracted with chloroform, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed, and the residue was purified by pTLC (AcOEt/hexane, 1/3) to give 8.

5-0-(tert-Butyldimethylsilyl)-1,4-dideoxy-1,4-imino-2,3-O-isopropylidene-1-(2-thienyl)-D-ribitol (8a): oil; IR (neat) 840, 1080, 1250, 1370, 1780, $2900 \mathrm{~cm}^{-1}$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{NSSi} \mathrm{m} / \mathrm{e}(\mathrm{M}+\mathrm{H}) 370.1872$, found 370.1880; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (β-form) $\delta 0.08$ ($6 \mathrm{H}, \mathrm{s}$, TBDMS SiMe), 0.91 ($9 \mathrm{H}, \mathrm{s}$, TBDMS Si-tBu), 1.30 ($3 \mathrm{H}, \mathrm{s}$, isopropylideneCH_{3}), $1.53\left(3 \mathrm{H}, \mathrm{s}\right.$, isopropylidene- CH_{3}), $1.91(1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}), 3.04$ $\left(1 \mathrm{H}, \operatorname{ddd}, 4-\mathrm{H}, \mathrm{J}_{3,4}=4.4 \mathrm{~Hz}, \mathrm{~J}_{4,5 \mathrm{a}}=6.9 \mathrm{~Hz}, \mathrm{~J}_{4.5 \mathrm{~b}}=5.8 \mathrm{~Hz}\right.$), 3.83 $(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{Ha}, \mathrm{J} 4,5 \mathrm{a}=6.9 \mathrm{~Hz}$, J gem $=9.9 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{Hb}$, $\left.\mathrm{J} 4.5 \mathrm{~b}=5.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=9.9 \mathrm{~Hz}\right), 4.21(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}, \mathrm{J} 1,2=4.1 \mathrm{~Hz})$, $4.65\left(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}, \mathrm{J}_{1,2}=4.1 \mathrm{~Hz}, \mathrm{~J} 2.3=5.5 \mathrm{~Hz}\right), 4.69(1 \mathrm{H}, \mathrm{dd}$, $\left.3-\mathrm{H}, \mathrm{J} 2,3=5.5 \mathrm{~Hz}, \mathrm{~J}_{3,4}=4.4 \mathrm{~Hz}\right), 6.97\left(1 \mathrm{H}, \mathrm{m}\right.$, thiophene $\left.4^{\prime}-\mathrm{H}\right)$, $7.05\left(1 \mathrm{H}, \mathrm{m}\right.$, thiophene $\left.3^{\prime}-\mathrm{H}\right), 7.26\left(1 \mathrm{H}, \mathrm{m}\right.$, thiophene $\left.5^{\prime}-\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{NSSi}: \mathrm{C}, 58.33 ; \mathrm{H}, 8.71 ; \mathrm{N}, 3.78$. Found: C, 58.16; H, 8.89; N, 3.55.

1-(2-Benzofuryl)-5-0-(tert-butyldimethylsilyl)-1,4-dideoxy-1,4-imino-2,3-O-isopropylidene-D-ribitol (8b): oil; IR (neat) 830, 1070, 1240, 1420, 1780, $2890 \mathrm{~cm}^{-1}$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{NSi} \mathrm{m} / \mathrm{e}(\mathrm{M}+\mathrm{H}) 404.2257$, found 404.2260; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: (β-form) $\delta 0.11$ ($6 \mathrm{H}, \mathrm{s}$, TBDMS Si$\mathrm{Me}), 0.92(9 \mathrm{H}, \mathrm{s}$, TBDMS Si-tBu), 1.30 ($3 \mathrm{H}, \mathrm{s}$, isopropylidene $\left.\mathrm{CH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}\right.$, isopropylidene- $\left.\mathrm{CH}_{3}\right), 1.90(1 \mathrm{H}$, bs, NH), 3.08 $(1 \mathrm{H}, \operatorname{ddd}, 4-\mathrm{H}, \mathrm{J} 3,4=4.3 \mathrm{~Hz}, \mathrm{~J} 4,5 \mathrm{a}=6.6 \mathrm{~Hz}, \mathrm{~J} 4,5 \mathrm{~b}=6.3 \mathrm{~Hz}$), 3.89 $(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{Ha}, \mathrm{J} 4,5 \mathrm{a}=6.6 \mathrm{~Hz}, \mathrm{~J}$ gem $=9.9 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{Hb}$, $\mathrm{J}_{4.5 \mathrm{~b}}=6.3 \mathrm{~Hz}, \mathrm{~J}$ gem $\left.=9.9 \mathrm{~Hz}\right), 4.09(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}, \mathrm{J} 1,2=4.0 \mathrm{~Hz})$, $4.73(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}, \mathrm{J} 1,2=4.0 \mathrm{~Hz}, \mathrm{~J} 2.3=5.6 \mathrm{~Hz}), 4.87(1 \mathrm{H}, \mathrm{dd}$, $\left.3-\mathrm{H}, \mathrm{J}_{2,3}=5.6 \mathrm{~Hz}, \mathrm{~J}_{3,4}=4.3 \mathrm{~Hz}\right), 6.72\left(1 \mathrm{H}, \mathrm{s}\right.$, benzofuran $\left.3^{\prime}-\mathrm{H}\right)$, 7.17-7.54 (4H, m, benzofuran $\left.4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{NSi}: \mathrm{C}, 65.31 ; \mathrm{H}, 8.47 ; \mathrm{N}, 3.46$. Found: C, 65.52; H, 8.43; N, 3.53.

5-O-(tert-Butyldimethylsilyl)-1,4-dideoxy-1,4-imino-2,3-O-isopropylidene-1-[2-[N -(phenylsulfonyl)indolyI]]-d-ribitol (8c): foam; IR (KBr) 840, 1200, 1380, 1440, 1620, 1720, 2900 cm^{-1}; HRMS (FAB, NBA) calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{SSi} m / \mathrm{e}(\mathrm{M}-$ H) 541.2192 , found 541.2192 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\beta$ form) $\delta 0.11$ ($6 \mathrm{H}, \mathrm{s}$, TBDMS Si-Me), 0.93 ($9 \mathrm{H}, \mathrm{s}$, TBDMS Si$\left.{ }^{\text {tBu}}\right), 1.25\left(3 \mathrm{H}, \mathrm{s}\right.$, isopropylidene $\left.-\mathrm{CH}_{3}\right), 1.37(3 \mathrm{H}, \mathrm{s}$, isopropylidene$\left.\mathrm{CH}_{3}\right), 1.72(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 3.11(1 \mathrm{H}, \mathrm{ddd}, 4-\mathrm{H}, \mathrm{J} 3,4=4.4 \mathrm{~Hz}, \mathrm{~J} 4,5 \mathrm{a}$ $=6.9 \mathrm{~Hz}, \mathrm{~J} 4.5 \mathrm{~b}=5.5 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{Ha}, \mathrm{J} 4,5 \mathrm{a}=6.9 \mathrm{~Hz}, \mathrm{~J}$ gem $=9.9 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{Hb}, \mathrm{J} 4.5 \mathrm{~b}=5.5 \mathrm{~Hz}$, J gem $=9.9 \mathrm{~Hz})$, $4.63\left(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}, \mathrm{J}_{1.2}=4.4 \mathrm{~Hz}\right), 4.71\left(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}, \mathrm{J}_{1,2}=4.4 \mathrm{~Hz}\right.$, $\left.\jmath^{2,3}=5.9 \mathrm{~Hz}\right), 5.08\left(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}, \mathrm{J}_{2,3}=5.9 \mathrm{~Hz}, \mathrm{~J}_{3,4}=4.4 \mathrm{~Hz}\right.$), $6.84-8.03$ (10H, m, PhH, indole). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{~N}_{2}-$ SSi: C, 62.07; H, 6.89; N, 5.17. Found: C, 62.23; H, 6.73; N, 5.34.

Deprotection of 8 To Give C-Azanucleoside 9. Typical Procedure. Compound 8 (0.5 mmol) was dissolved in aqueous $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(5 \mathrm{~mL}, 70 \% \mathrm{v} / \mathrm{v}\right.$) and stirred at $50{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was concentrated, and the residue was purified by pTLC ($\mathrm{CHCl}_{3} / \mathrm{MeOH}, 9 / 1$) to give 9.

1,4-Dideoxy-1,4-imino-1-(2-thienyl)-d-ribitol (9a): oil; IR (neat) 800, 1020, 1200, 1420, 1660, $3300 \mathrm{~cm}^{-1}$; HRMS (FAB, $\mathrm{NBA}+\mathrm{NaCl})$ calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NSNam} / \mathrm{e}(\mathrm{M}+\mathrm{Na})$ 238.0514, found 238.0521; ${ }^{1 \mathrm{H}}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) (β-form) $\delta 3.75(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 3.88-3.91(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{Ha}, 5-\mathrm{Hb}), 4.31(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}, \mathrm{J} 1.2$ $\left.=3.6 \mathrm{~Hz}, \mathrm{~J}_{2,3}=4.3 \mathrm{~Hz}\right), 4.58\left(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}, \mathrm{J} 2,3=4.3 \mathrm{~Hz}, \mathrm{~J}_{3,4}=\right.$ $7.7 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}, \mathrm{J} 1,2=3.6 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{m}$, thiophene $\left.4^{\prime}-\mathrm{H}\right), 7.33\left(1 \mathrm{H}, \mathrm{m}\right.$, thiophene $\left.3^{\prime}-\mathrm{H}\right), 7.49\left(1 \mathrm{H}, \mathrm{m}\right.$, thiophene $5^{\prime}-$ H). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NS}: \mathrm{C}, 50.21 ; \mathrm{H}, 6.09$; $\mathrm{N}, 6.51$. Found: C, 50.40; H, 6.13; N, 6.35 .

1-(2-Benzofuryl)-1,4-dideoxy-1,4-imino-d-ribitol (9b): solid; IR (KBr) 800, 1140, 1200, 1670, $3400 \mathrm{~cm}^{-1}$; HRMS (FAB, NBA +NaCl) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{NNa} \mathrm{m} / \mathrm{e}(\mathrm{M}+\mathrm{Na}) 272.0899$, found $272.0894 ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) (β-form) $\delta 3.41$ ($1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 3.76-3.85(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{Ha}, 5-\mathrm{Hb}), 4.35-4.36$ ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$, $3-\mathrm{H}), 4.53(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 6.86\left(1 \mathrm{H}, \mathrm{s}\right.$, benzofuran $3^{\prime}-\mathrm{H}$), $7.16-$ $7.27\left(2 \mathrm{H}, \mathrm{m}\right.$, benzofuran $\left.5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.43-7.56(2 \mathrm{H}, \mathrm{m}$, benzofuran $4^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~N}: \mathrm{C}, 62.64 ; \mathrm{H}, 6.07$; N, 5.62. Found: C, 62.53; H, 6.11; N, 5.58.

1,4-Dideoxy-1,4-imino-1-[2-[N-phenylsulfonyl)indolyl]]-D-ribitol (9c): solid; IR (KBr) 810, 1030, 1210, 1680, $3300 \mathrm{~cm}^{-1}$; HRMS (FAB, NBA) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{e}(\mathrm{M}+\mathrm{H})$ 389.1171 , found 389.1172 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) (β-form) $\delta 3.92(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.99(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{Ha}, 5-\mathrm{Hb}), 4.66(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $4.71(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.42(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}, \mathrm{J} 1,2=3.6 \mathrm{~Hz}), 7.25-8.06$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{PhH}$, indole). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 58.59$; H, 5.44; N, 7.19. Found: C, 58.69; H, 5.28; N, 7.13.

Acknowledgment. We thank Dr. Hiroko Seki (Chemical Analysis Center of Chiba University) for measurement of NMR. This work was supported by a Grant-in-Aid No. 07554085 for Scientific Research from the Ministry of Education, Science and Culture, J apan. J O9605231

Additions and Corrections

Vol. 60, 1995

Edward C. Taylor,* Hemantkumar H. Patel, and

J ong-Gab J un. A One-Step Ring Transformation/Ring AnnuIation Approach to Pyrrol o[2,3-d]pyrimidines. A New Synthesis of the Potent DHFR Inhibitor TNP-351.

Pages 6684-6687. Compound $\mathbf{2}$ was incorrectly identified as TNP-351. The latter has a three-carbon (propyl) bridge between the pyrrole and benzene rings; compound $\mathbf{2}$ is its lower (ethyl-bridged) homolog, which was first described by Shih and Gossett (Shih, C.; Gossett, L. S. Heterocycles 1993, 35, 825). A paper describing a synthesis of TNP-351 utilizing our one-step ring transformation/ring annulation reaction will be submitted shortly to this J ournal.

Vol. 61, 1995

Michael J. Rodriguez,* Mark J. Zweifel, and

Richard J. Loncharich*. Aldol-Promoted Reaction of R106-Sarcosine: Synthesis and Conformational Analysis of Novel R106 Analogs.

Page 1566, Table 1. The corrected entries for "acetone" in Table 1 are shown below.

Page 1566, Figure 2. The D / L ratios after 3 and 24 h are $2: 1$ and $5: 1$, respectively.

Table 1. Alkylation of R106-Sarcosine, $\mathbf{2}$ with Ketones

electrophile	product	temp (${ }^{\circ} \mathrm{C}$)	Rxn time (h)	salt (8 equiv)	BASE (5 equiv/ 5 equiv)	D/L ratios ${ }^{\text {a }}$
acetone	3	-78	3	LiCl	LDA/nBuLi	2:1
		-78	24	LiCl	LDA/nBuLi	5:1
		$-78 \rightarrow-45$	3	LiCl	LDA/nBuLi	3.3:1
		-78	3	MgCl_{2}	LDA/nBuLi	1:1
		-78	0.5	LiCl	MeLi/-	3:1

${ }^{a} \mathrm{D} / \mathrm{L}$ ratios of inseparable mixtures of diastereomers were determined by ${ }^{1} \mathrm{H} N M R$.

J O964004R
S0022-3263(96)04004-2

[^0]: a Reagents and conditions: (a) 2-Aryllithium, THF, rt, 1 h ; (b) DMSO, TFAA, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to rt, 4 h ; (c) $\mathrm{HCO}_{2} \mathrm{NH}_{4}$, $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{MeOH}, \mathrm{rt}, 18 \mathrm{~h}$; (d) $70 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

 Next, the desired β-C-azanucleosides 9 were synthesized by the same way as the model experiment (Scheme 2) [5 $\boldsymbol{6}$ 6; step a]: A THF solution containing the lithium salt of a heterocycle was added to 5-O-(tert-butyldimeth-ylsilyl)-2,3-O-isopropylidene-d-ribofuranose (5) ${ }^{6}$ which
 (6) Kaskar, B.; Heise, G. L.; Michalak, R. S.; Vishnuvajjala, B. R. Synthesis 1990, 1031.

[^1]: (7) Rayner, B.; Tapiero, C.; Inbach, J . L. Carbohydr. Res. 1976, 47, 195.
 (8) Maeba, I.; I wata, K.; Usami, F.; Furukawa, H. J . Org. Chem. 1983, 48, 2998.
 (9) Reitz, A. B.; Baxter, E. W. Tetrahedron Lett. 1990, 31, 6777.

[^2]: (10) Bergman, N.-Å.; Halvarsson, T. J . Org. Chem. 1988, 53, 2548. (11) (a) Burckhalter, J . H.; Short, J. H. J . Org. Chem. 1958, 23, 1281. (b) McGhie, J . F.; Ross, W. A.; Laney, D. H. J Chem. Soc. 1962, 2578.

