57. Synthesis of the Dolabellane Diterpene Hydrocarbon (\pm)- $\boldsymbol{\delta}$-Araneosene

by Luzi Jenny ${ }^{1}$) and Hans-Jürg Borschberg*
Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich

(2. III. 95)

Abstract

The racemic form of the bicyclic diterpene hydrocarbon δ-araneosene (4), endowed with the dolabellane skeleton, was prepared from geraniol in two different ways. The more efficient route involved 13 steps and proceeded with an overall yield of 3.6% (average: 77% per step). With this reference sample at hand, the hitherto elusive metabolite $(-)-4$, a likely biogenetic precursor of cycloaraneosene $((-)-3)$ and sordaricin $((-)-1)$, could finally be isolated in $\geq 99.5 \%$ purity from the neutral fractions of the mold Sordaria araneosa Cain (Ascomycetes).

1. Introduction. - In 1971, Hauser and Sigg reported the isolation of a novel diterpene glycoside, named sordarin, from the mold Sordaria araneosa CaIn [2]. The structure of the monosaccharide sordarose ($=6$-deoxy-4-O-methyl-D-altrose) was readily deduced and subsequently proved by synthesis [3]. The structure and absolute configuration of the aglycon (-)-sordaricin ((-)-1; Scheme 1) were determined by Vasella through extensive chemical degradation studies [4] and confirmed by means of an X-ray analysis of a

${ }^{\text {a }}$) Dashed arrows: proposed biogenctic pathways. Biogenetic numbering.

[^0]derivative thereof [5]. The presence of three contiguous quaternary centers ($\mathrm{C}(7), \mathrm{C}(10)$, and $\mathrm{C}(11)$) in 1 led to vivid speculations as to the possible biogenetic origin of this metabolite [4] [6]. While the mevalonoid root of 1 could readily be demonstrated through a successful incorporation of sodium ($3 R S$) - $\left[2-{ }^{14} \mathrm{C}\right]$ mevalonate into S. araneosa CAIN, a concise biogenetic hypothesis did not emerge until an investigation of the neutral parts of the mold extracts had led to the discovery of the novel tricyclic diterpene hydrocarbon cycloaraneosene (3) [6].

The constitutional formula 3 was proposed for this metabolite in 1975 on the basis of degradation studies and spectroscopic, as well as biogenetic arguments, and the relative and absolute configuration proved in a rather unusual fashion by demonstrating that $(-)-\left[18{ }^{-14} \mathrm{C}\right]$ cycloaraneosene $\left((-)-3^{*}\right)$ is specifically incorporated into $(-)-\mathbf{1}^{*}$ by S. araneosa Cain [6]. In addition, structure 3 was corroborated later through extensive 2DNMR and NOE studies [1] and by means of a total synthesis [7]. A confrontation of structure 1 with the one of its precursor 3 led to the conclusion that in the course of this transformation, the bond between $C(8)$ and $C(9)$ is broken and two new bonds are formed, between $C(7)$ and $C(10)$, and between $C(12)$ and $C(18)$. A likely pathway would involve an oxidative cleavage of the bis-allylic $\mathrm{C}-\mathrm{C}$ bond to give an intermediate, such as 2, which could undergo an intramolecular Diels-Alder reaction to yield the basic skeleton of sordaricin $\left.(\mathbf{1})^{2}\right)$.

Structure 3 obeys the biogenetic isoprene rule [10] and is most likely derived from the bicyclic precursor 4 through an acid-catalyzed cyclization ${ }^{3}$). Indeed, a mixture of doublebond isomers with this basic structure was shown to be present in the neutral fractions of S. araneosa CAIN, but at that time, only one representative, named β-araneosene, could be isolated in reasonably pure form. The admittedly rather limited structural information that could be obtained for this metabolite led us to propose formula 5 for this compound $\left.[6]^{4}\right)$. However, δ-araneosene (4), the alleged biogenetic precursor of 3 and 1 , could not be isolated, and the task to discover this metabolite in the heap of some $80-100$ isomeric $\mathrm{C}_{20} \mathrm{H}_{32}$ hydrocarbons that - according to GC/MS analyses - are present in the neutral extracts of S. araneosa Cain, seemed without prospect. Therefore, we decided to synthesize this compound first in an unambiguous fashion what position and configuration of the double bonds are concerned. With the required reference material at hand, the neutral extracts of the mold should then be scrutinized for the expected presence of 4 .
2. Results and Discussion. - An obvious retrosynthetic analysis of structure 4 is presented in Scheme 2. The ultimate step consists in a McMurry-type formation of the cyclopentene ring from 1,5 -diketo precursors, such as 7 or 8 . Cleavage of the strategic bonds $\mathrm{C}(1)-\mathrm{C}(11)$ and $\mathrm{C}(8)-\mathrm{C}(9)$ leads to two C_{10}-building blocks, and the one contain-

[^1]Scheme 2

ing the pertinent configurational information (9) is known to be readily available through stereoselective SeO_{2} oxidation of protected geraniol derivatives (for references, see below).

The synthesis of the crucial, eleven-membered cyclic intermediate $(\pm)-\mathbf{2 0})$ is outlined in Scheme 3. Geraniol (10) was protected as tetrahydro-2H-pyran-2-yl (Thp) ether $\mathbf{1 1}$ [16]

Scheme 3

[^2]and oxidized with SeO_{2} (for a review, see [17]), using the modification of Shirahama et al. [18]. The major product, obtained in 32% yield after reduction with NaBH_{4} and extensive purification, was the expected monoprotected (E, E)-diol $1 \mathbf{1 2}^{6}$). A side product that was consistently formed in ca. 2% yield was shown by spectroscopic means to be the Thp derivative $\mathbf{1 3}$ [20] ($1: 1$ mixture of two diastereoisomers) of rosiridol (14) [217) ${ }^{7}$. The allylic chloride 15, which was prepared in excellent yield through treatment of 12 with N-chlorosuccinimide (NCS)/ $\mathrm{Me}_{2} \mathrm{~S}$ [23], served as alkylating agent for the reaction with the dianion of methyl 2-methyl-3-oxo-butanoate (16) [24] according to Weiler's recipe [25] to give 17 in 65% yield. Hydrolysis of the acetal function [16], followed by transformation of the resulting allylic alcohol 18 into the corresponding chloride 19 furnished the required intermediate for the subsequent intramolecular β-keto-ester alkylation.

The medium of choice to effect this cyclization was $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMF [26], but under standard conditions, a mixture of two compounds was produced (see Table, Entry 1). The

Table. Cvclization of 19 (1.2-1.4 equiv. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMF at 25°): Product Distribution

Entry	Solvent [ml]	Amount of 19 [mmol in ml]	Duration of addition [h]	Products [\%]		Product ratio$20 / 21$
				20	21	
1	120	1.03 in 30	0.33	43	36	1.2
2	140	1.86 in 20	7	53	10	5.3
3	230	2.73 in 25	18	55	9	6.1
4	800	10.60 in 250	240	80	<1	>95

less polar component could be crystallized from pentane at -20° and shown to be the expected product 20 [14], uncontaminated by double-bond isomers. The more polar product showed very similar spectroscopic data, and MS as well as vapour-pressure osmometry evidence are consistent with the dimeric structure 21 (M^{+}at $m / z 528 \mathrm{amu}$, mol. wt. $519.2 \pm 25 \mathrm{~g} / \mathrm{mol}$). Since three of the expected 16 signals in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{2 1}$ are doubled, the isolated dimer most likely consists of a 1:1 mixture of the meso-form and the corresponding (\pm)-pair. The rather unfavorable ratio between the desired monomer 20 and dimer 21 could be altered dramatically when Ziegler's highdilution principle (for a summary, see [27]) was applied to this cyclization (see Table, Entry 4). This result is consistent with independent investigations [28b] [29a] and rules out the once postulated operation of a 'cesium-template effect' [26d] [26f] in this type of cyclization.

Ketone cleavage of the cyclic β-keto ester $\mathbf{2 0}$ under basic conditions [30] led to the norketone 22 in excellent yield ${ }^{8}$). We then attempted to introduce the C_{6}-side chain by means of an enantioselective Michael addition of the (S)-phenethyl enamine derivative of 22 to isopropyl vinyl ketone. While this method, developed by a French team [32], had led to excellent results in an analogous reaction between 2-methylcyclohexanone and methyl

[^3]vinyl ketone, we were unable to synthesize the desired target 7 by this method because the required enamine derivative of $\mathbf{2 2}$ could not be prepared under a variety of conditions. Thus, heating of 22 in (S)-phenethylamine as the solvent for 2 days at 160° in the presence of $4 \AA$ molecular sieves just gave back starting material and some acetophenone; modifications using TiCl_{4} [33] or $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ [34] as catalysts were likewise unsuccessful in our case. In addition, attempted applications of the procedures recommended by Whitesell and Whitesell [35] and Enders [36] did not produce any 7 either, again because in both cases the required intermediates were not formed. While it could readily be demonstrated that all three protons in the α-positions of the carbonyl group of $\mathbf{2 2}$ can be exchanged on treatment with $\mathrm{KOD} / \mathrm{D}_{2} \mathrm{O}$, EtOD (4 h reflux $\rightarrow 90 \%{ }^{2} \mathrm{H}_{3}$ species), an attempted alkylation of the amine-free lithium enolate of 22 [37] with tosylate 27 (see below, Scheme 4) just gave back starting material (90% recovery). All these negative results reflect once more the inherent difficulties in predicting the reactivity of medium-sized ring systems and forced us to abandon the original plan to synthesize δ-araneosene (4).

The obvious conclusion that the C_{6}-side chain has to be incorporated into the β-ketoester building block before closure of the 11-membered ring led to the modified strategy

a) 1. BuLi, THF; 2. $\mathrm{Me}_{2} \mathrm{CHCOCl}$. b) 2,2-Dimethylpropane-1,3-diol, TsOH, toluene, 12 h , reflux. c) LiAlH_{4}, $\mathrm{Et}_{2} \mathrm{O}$. d) TsCl , pyridine, $20 \mathrm{~h}, 0^{\circ}$. e) MeCOCHNaCOOMe, benzene, 11 d , reflux. f) 1.2 Equiv. of lithium diisopropylamide, 1,2 -dimethoxyethane (DME); 2.2 equiv. of $\mathrm{BuLi} ; 3.9,10 \mathrm{~h}, 5^{\circ} ; 4$. PPTS, $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O}, 70 \mathrm{~h}, 25^{\circ}$. g) NCS, $\mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. h) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, $30 \mathrm{~h}, 25^{\circ}$. i) DIBAH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}, 25^{\circ}$. k) t - $\mathrm{Bu}(\mathrm{Ph})_{2} \mathrm{SiCl}$, pyridine, $5 \mathrm{~d}, 25^{\circ}$. l) Modified Dess-Martin. m) $\mathrm{TiCl}_{3}, \mathrm{Zn} / \mathrm{Cu}$, DME. n) 1. Bu ${ }_{4} \mathrm{NF}$, THF; 2. KH, [18]crown-6; 3. $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{POCl} ; 4 . \mathrm{Li}, \mathrm{NH}_{3}(\mathrm{l})$.
displayed in Scheme 4. The required monoprotected building block $\mathbf{2 8}$ was prepared in a straightforward fashion [38], starting with ethyl hydrogen malonate (23) and via 24-27. The alkylation of the dianion prepared from 28 with bromide 9 produced a mixture of products, from which the desired component 29 could be isolated in 27% yield after hydrolytic removal of the (dimethylpropanediyl)dioxy and Thp protecting groups. As in the case described above, the derived allylic chloride 30 underwent a neat intramolecular ring closure upon treatment with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMF under high-dilution conditions to give 8 in 67% yield.

To avoid possible complications in the following McMurry cyclization due to the presence of the COOMe group, intermediate 8 was first reduced to triol 31 (mixture of 4 diastereoisomers). The primary OH group was selectively protected as (tert-butyl)diphenylsilyl ether [39] and the resulting diol mixture 32 oxidized to 33 by means of the tert-butoxy-modified version [40] of the original Dess-Martin periodinane reagent [41]. The reductive coupling of the 1,5-dicarbonyl compound furnished 34 in 90% yield [22] [42] ${ }^{9}$). After cleavage of the silyl ether with $\mathrm{Bu}_{4} \mathrm{NF}$ [44], the resulting primary alcohol was deprotonated with $\mathrm{KH} /[18]$ crown-6 [45] and phosphorylated with $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{POCl}$. The resulting crude material was cleaved reductively with $\mathrm{Li} / \mathrm{NH}_{3}(1)$ according to Ireland et al. [46] to give the desired target δ-araneosene $((\pm)-4$; for a definite structure assignment and full characterization, see below).

Whereas this synthesis met the primary requirement to provide a configurationally defined, racemic sample of the elusive metabolite 4, the overall efficiency of the above approach (0.8% yield over 16 steps) was considered insufficient for future investigation of acid-catalyzed biomimetic cyclization reactions of this compound and for the envisaged preparation of a ${ }^{14} \mathrm{C}$-labelled substrate. Therefore, the alternative route shown in Scheme 5 was explored. Starting point of this second approach was the readily available crystalline racemic β-keto ester 20 (see Scheme 3). Reduction of this intermediate with diisobutylaluminium hydride (DIBAH) [47] gave a $1: 1$ mixture of the two diols 35 and 35^{\prime} which could be separated by chromatography ${ }^{16}$). Though the spectroscopic data of the two isomers differs substantially, we were unable to determine the relative configuration at the centers $C(10)$ and $C(11)$. This has no bearing on the issue of the synthesis since the diol mixture could be oxidized to the unstable aldehyde 36, which was treated in situ with methyl 2,2-dimethyl-3-oxobutanoate (37) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to furnish the aldol product $\mathbf{3 8}$ in 44% overall yield ${ }^{\text {" }}$). Treatment of this intermediate with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in aqueous DMF led to ketone cleavage and furnished 39 as the single product, which was reduced to 7 with $\left(\mathrm{Ph}_{3} \mathrm{PCuH}\right)_{6}$ in toluene [49]. The following, lowvalent Ti-mediated reductive coupling worked as well as in the first synthesis and gave (\pm)-4 in 91% yield. After vacuum distillation, the resulting product was $\geq 99.5 \%$ pure (capillary GC evidence, correct combustion analysis, sharp m.p. $47-48^{\circ}$) and was indistinguishable from the sample prepared before, according to Scheme 3. The fact that two independent straightforward

[^4]Scheme 5

a) DIBAH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}, 25^{\circ}$. b) 1. Modified Dess-Martin; $2 . \mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, 37, $2 \mathrm{~d}, 25^{\circ}$. c) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ $4: 1,4 \mathrm{~d}, 45^{\circ}$. d) $\left(\mathrm{Ph}_{3} \mathrm{PCuH}_{6}, \mathrm{Bu}_{4} \mathrm{~N}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)\right.$, toluene, $16 \mathrm{~h}, 25^{\circ}$. e) $\mathrm{TiCl}_{3}, \mathrm{Zn} / \mathrm{Cu}$, DME. f) 1 . Pentaisopropylguanidine, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2} .2$. (-)-Camphanoyl chloride, $16 \mathrm{~h}, 25^{\circ} . \mathrm{g}$) $\mathrm{KOH},[18]$ crown- $6, \mathrm{THF}, 19 \mathrm{~h}, 25^{\circ}$.
syntheses gave the same end product, as well as the NMR data document unambiguously that the obtained compound indeed possesses structure (\pm)-4 $\mathbf{4}^{12}$).

With the required reference compound $(\pm)-4$ at hand, the neutral fractions of the mycelium extracts of S. araneosa Cain were investigated once more. After extensive column chromatography, monitored by means of capillary GC, the fractions containing δ-arancosene ($(-)-4)$ were pooled and further purified on $10 \% \mathrm{AgNO}_{3} /$ silica gel, until a sample of more than 99% purity was obtained. The natural product had $[\alpha]_{D}=-127.6$ ($c=3.0$, hexane) and spectroscopic and chromatographic properties that were indistinguishable from the data obtained before for synthetic (\pm)-4.

[^5]With the aim to provide unambiguous evidence for the absolute configuration of $(-)-4$, diol $(\pm)-35$ was transformed into the readily separable dicamphanate mixture 40/41 through reaction with (- -camphanoyl chloride and base. While both products were solids, the obtained crystals were not suitable for an X-ray analysis which would have yielded the relative and absolute configuration of intermediate $\mathbf{3 5}$. However, biogenetic arguments strongly favor the absolute configuration shown in Scheme I for (-)-4, since the quaternary asymmetric center conceivably remains intact during the postulated transformations $(-)-\mathbf{4} \rightarrow(-)-\mathbf{3} \rightarrow(-)-\mathbf{1}$. The same holds for the isomeric metabolite (-)- β araneosene $((--)-5)$, for which the opposite absolute configuration was postulated first [13f], but subsequent investigations led to revision of the original proposal and demonstrated that (-)-5 indeed possesses the absolute configuration $(10 R, 11 S)$ as shown in Scheme I [13p].

Experimental Part

General. Reagents and solvents: purchased from Fluka $A G$ in the highest obtainable purity, unless stated otherwise. CHCl_{3} and CDCl_{3} were passed through basic alumina (Woelm, act. I) immediately before use. GC: HP 5890 or Carlo Erba HRGC 5300 ; FID; carrier: H_{2} at $0.45 \mathrm{~m} / \mathrm{s}$; capillary tubes, internal diameter $0.25-0.32 \mathrm{~mm}$ (glass or fused silica). M.p. (not corrected). Tottoli apparatus; sealed evacuated capillaries. Optical rotations: Perkin-Elmer 241 at 25° and $589 \mathrm{~nm}\left(\mathrm{Na}_{\mathrm{D}}\right)$. IR ($\tilde{v}_{\text {max }}\left[\mathrm{cm}^{-1}\right]$): Perkin-Elmer-PE-781 or -PE-983 spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectra: δ in ppm rel. to internal $\mathrm{SiMe}_{4}(=0 \mathrm{ppm}), J$ in $\mathrm{Hz} ; 400 \mathrm{MHz}$, Bruker $A M X 400 ; 300 \mathrm{MHz}$, Bruker WM 300 or Varian XL-300. ${ }^{13} \mathrm{C}$-NMR Spectra: multiplicies from DEPT experiments; 100 MHz , Bruker AMX $400 ; 75 \mathrm{MHz}$, Varian XL-300. NOE: Bruker $W M 300(300 \mathrm{MHz})$; irradiated proton \rightarrow affected signal(s). HETCOR: Varian Gemini $300\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$; cross-peaks $\delta\left({ }^{13} \mathrm{C}\right) / \delta(\mathrm{s})$ (${ }^{(} \mathrm{H}$). Mass spectra ($\mathrm{m} / \mathrm{z}[\mathrm{amu}]$ ($\%$ base peak)): Hitachi-Perkin-EImer, VG TRIBRID, or Hitachi-Perkin-Elmer, RMU-6D; EI at 70 eV .

1. Symheses. Oxidation of 2-(Geranyloxy) tetrahydro- $2 \mathrm{H}-\mathrm{pypan}$ (11) with SeO_{2}. Method: [18]. To a soln. of 6.21 g (56 mmol) of SeO_{2} (Fluka, puriss.) in 13 ml of $\mathrm{H}_{2} \mathrm{O}$ and 250 ml of MeOH were added 125 g of silica gel. After stirring at 25° for 3 h , the mixture was evaporated ($70^{\circ} / 30$ Torr) and the residue suspended in 600 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After addition of 70 ml of 70% aq. tert-butyl hydroperoxide soln. (502 mmol), a soln. of 40 g (168 mmol) of 11 [16] in 270 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added within 1 h . After stirring at 25° for 21 h , the mixture was filtered through a sintered glass frit and the filtrate washed twice with 11 of sat. aq. FeSO_{4} soln. and twice with sat. aq. NaCl soln. The crude material, resulting after drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation of the org. phase, was dissolved in 200 ml of 1,4-dioxane and treated with a soln. of $3.0 \mathrm{~g}(80 \mathrm{mmol})$ of NaBH_{4} in 20 ml of $\mathrm{H}_{2} \mathrm{O}$ at 10° for 1 h . Workup with $\mathrm{Et}_{2} \mathrm{O}$ and sat. aq. NaCl soln. furnished a crude product that was chromatographed twice (silica gel, hexane $/ \mathrm{AcOEt}^{2} / \mathrm{Et}_{2} \mathrm{O} 3: 1: 1$, then $2: 1: 1): 13.6 \mathrm{~g}(32 \%)$ of $\mathbf{1 2}$ and $0.50 \mathrm{~g}(1.2 \%)$ of $\mathbf{1 3}$.

Data of Tetrahydro-2-[(2E,6E)-8-hydroxy-3,7-dimethylocta-2,6-dien-1-yloxy 7-2H-pyran (12): Colorless oil. IR (CCl_{4}): $3620,3470,1385,1353, \mathrm{I} 260,1200,1185,1118,1087,1055,1022,950,908,870 .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 5.41-5.33(\mathrm{~m}, 2 \mathrm{H}) ; 4.62(\mathrm{~m}, 1 \mathrm{H}) ; 4.24(d d q, J=11.9,6.4,0.7,1 \mathrm{H}) ; 4.02(d d, J=11.9,7.4,1 \mathrm{H}) ; 3.99$ (br. $s, 2 \mathrm{H}) ; 3.89(\mathrm{~m}, 1 \mathrm{H}) ; 3.50(\mathrm{~m}, 1 \mathrm{H}) ; 2.18(\mathrm{~m}, 1 \mathrm{H}) ; 2.08(\mathrm{~m}, 1 \mathrm{H}) ; 1.84(\mathrm{~m}, 1 \mathrm{H}) ; 1.78-1.47(\mathrm{~m}, 6 \mathrm{H}) ; 1.68$ (br.s, 3 H$)$; 1.67 (br. $s, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 139.5(\mathrm{~s}) ; 135.2(\mathrm{~s}) ; 125.6(\mathrm{~d}) ; 121.2(\mathrm{~d}) ; 97.9(\mathrm{~d}) ; 68.9(t) ; 63.7(t) ;$ $62.3(t) ; 39.2(t) ; 30.7(t) ; 25.8(t) ; 25.6(t) ; 19.6(t) ; 16.3(q) ; 13.7(q) . \mathrm{MS}: 236\left(0.4,[M-18]^{+}\right), 152(6), 135(8), 95$ (15), 93 (13), 85 (100), 43 (35), 41 (24).

Data of Tetrahydro-2-(4-hydroxy-3,7-dimethylocta-2,6-dien-1-yloxy)-2H-pyran (13; 1:1 mixture of 2 diastereoisomers): Colorless oil. IR $\left(\mathrm{CCl}_{4}\right): 3620,3470,1385,1378,1353,1260,1200,1185,1118,1087,1055,1022$, $950,908,880,870$. ${ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.62(\mathrm{tm}, J=6.6,1 \mathrm{H}) ; 5.11(\mathrm{tm}, J=7.2,1 \mathrm{H}) ; 4.63(\mathrm{~m}, 1 \mathrm{H}) ; 4.28$ $(d d m, J=11.9,6.4,1 \mathrm{H}) ; 4.08(d d m, J=11.9,7.4,1 \mathrm{H}) ; 4.03(\mathrm{tm}, J=6.4,1 \mathrm{H}) ; 3.88(\mathrm{~m}, \mathrm{I} \mathrm{H}) ; 3.51(\mathrm{~m}, 1 \mathrm{H})$; 2.30-2.24 (m, 2 H); $1.84(\mathrm{~m}, 1 \mathrm{H})$; 1.78-1.47 ($\mathrm{m}, 15 \mathrm{H}$; incl. 1.73 (br. $s, 3 \mathrm{H}$); 1.69 (br. $s, 3 \mathrm{H}$); 1.64 (br. $s, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 140.9(2 s) ; 134.9(2 s) ; 122.1(2 d) ; 119.9(2 d) ; 97.96(d) ; 97.84(d) ; 76.6(2 d) ; 63.38(t) ;$ $63.31(t) ; 62.28(t) ; 62.22(t) ; 34.0(2 t) ; 30.7(2 t) ; 25.9(2 q) ; 25.5(2 t) ; 19.5(2 t) ; 18.0(2 q) ; 12.2(2 q)$. MS: $254(0.1$, M^{+}), $185(0.2), 153$ (2), 103 (6), 85 (100), 69 (17), 43 (9), 41 (18).

2- ($2 \mathrm{E}, 6 \mathrm{E}$)-8-Chloro-3,7-dimethylocta-2,6-dien-l-yloxy]tetrahydro-2H-pyran (15). Method: [23]. To a soln. of 7.2 g (53.9 mmol) of freshly sublimed ($80^{\circ} / 0.1$ Torr) N-chlorosuccinimide (Fluka, puriss.; NCS) in 180 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $6.5 \mathrm{ml}(88.6 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{~S}$ (Fluka, purum; dist. from Na) within 10 min at 0° under Ar. The
resulting suspension was stirred at 25° for 15 min and cooled to 0°. Then a soln. of $8.90 \mathrm{~g}(35.0 \mathrm{mmol})$ of $\mathbf{1 2} \mathrm{in} 60 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and stirring continued for 15 min at 0°. Workup with $\mathrm{H}_{2} \mathrm{O}$ and hexane furnished $9.40 \mathrm{~g}(98 \%)$ of pure 15. Colorless oil. IR $\left(\mathrm{CCl}_{4}\right): 1385,1353,1260,1200,1185,1135,1118,1087,1055,1022,975,908,870,690$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.51(\mathrm{tm}, J=7,1 \mathrm{H}) ; 5.37(\mathrm{tm}, J=7,1 \mathrm{H}) ; 4.62(\mathrm{~m}, 1 \mathrm{H}) ; 4.24(\mathrm{~d} q, J=11.9,6.4$, $0.7,1 \mathrm{H}) ; 4.03(\mathrm{~d} d, J=11.9,7.3,1 \mathrm{H}) ; 4.01$ (br. $s, 2 \mathrm{H}) ; 3.89(\mathrm{~m}, 1 \mathrm{H}) ; 3.51(\mathrm{~m}, 1 \mathrm{H}) ; 2.22-2.15(\mathrm{~m}, 2 \mathrm{H}) ; 2.11-2.06$ $(m, 2 \mathrm{H}) ; 1.84(m, 1 \mathrm{H}) ; 1.73$ (br. $s, 3 \mathrm{H}) ; 1.72(m, 1 \mathrm{H}) ; 1.68(\mathrm{br} . s, 3 \mathrm{H}) ; 1.64-1.49(m, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 139.3(\mathrm{~s}) ; 131.9(\mathrm{~s}) ; 130.3(\mathrm{~d}) ; 121.2(\mathrm{~d}) ; 97.9(\mathrm{~d}) ; 63.6(t) ; 62.3(t) ; 52.4(t) ; 38.8(t) ; 30.7(t) ; 26.2(t) ;$ $25.5(t) ; 19.7(t) ; 16.4(q) ; 14.2(q)$. MS: $237\left(0.2,[M-\mathrm{Cl}]^{+}\right), 171(9), 135(5), 103(8), 93(6), 85(100), 81(12), 67$ (17), 41 (16).

2- $(2 \mathrm{E}, 6 \mathrm{E})$-8-Bromo-3,7-dimethylocta-2,6-dien-l-yloxy]tetrahydro-2H-pyran (9). Method: [23]. As above, starting with $1.96 \mathrm{~g}(11 \mathrm{mmol})$ of freshly sublimed $\left(80^{\circ} / 0.1\right.$ Torr) N-bromosuccinimide (Fluka, puriss.), 1 ml (13.6 $\mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{~S}$, and $2.0 \mathrm{~g}(7.86 \mathrm{mmol})$ of $12: 1.68 \mathrm{~g}(67 \%)$ of pure 9 . Colorless oil. IR $\left(\mathrm{CCl}_{4}\right): 1385,1353,1260$, $1200,1185,1135,1118,1087,1055,1022,975,908,870,610 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.58(\mathrm{tm}, J=7,1 \mathrm{H})$; $5.36(\mathrm{~lm}, J=7,1 \mathrm{H}) ; 4.62(m, 1 \mathrm{H}) ; 4.24(d d q, J=12.0,6.4,0.7,1 \mathrm{H}) ; 4.03(d d, J=12.0,7.4,1 \mathrm{H}) ; 3.96$ (br. $s, 2 \mathrm{H})$; $3.89(\mathrm{~m}, 1 \mathrm{H}) ; 3.51(\mathrm{~m}, 1 \mathrm{H}) ; 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}) ; 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}) ; 1.84(\mathrm{~m}, 1 \mathrm{H}) ; 1.75(\mathrm{br} . \mathrm{s}, 3 \mathrm{H}): 1.70(\mathrm{~m}, 1 \mathrm{H})$; 1.67 (br. s, 3 H); 1.62-1.49 (m, 4 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 139.3(\mathrm{~s}) ; 132.2(s) ; 130.8(d) ; 121.2(d) ; 97.9(d)$; $63.6(t) ; 62.3(t) ; 41.7(t) ; 38.7(t) ; 30.7(t) ; 26.5(t) ; 25.5(t) ; 19.6(t) ; 16.4(q) ; 14.7(q)$. MS: $103(6), 93(1), 85(100)$, 83 (27), 70 (16), 69 (17), 41 (18).

Methyl (6E,10E)-12-Hydroxy-2,6,10-trimethyl-3-oxododeca-6,10-dienoate (18). Method: [25]. To a suspension of $1.08 \mathrm{~g}(27 \mathrm{mmol})$ of KH (Fluka, pract.; washed 3 times with THF) in 160 ml of THF were added $2.75 \mathrm{~g}(21.1$ mmol) of methyl 2 -methyl-3-oxobutanoate (16 ; prepared according to [24]) within 15 min at 0° under Ar. The resulting suspension was stirred at 25° for 20 min and cooled to 0°. Then were added 9.1 ml of 2.4 m BuLi in hexane within 40 min . After stirring for 2 h at 25°, the mixture was cooled to -15°, treated with a soln. of $3.40 \mathrm{~g}(12.5 \mathrm{mmol})$ of 15 in 35 ml of THF, and then stirred for 6 h at 0° and 16 h at 25°. Workup with aq. $\mathrm{KH}_{2} \mathrm{PO}_{4}$ soln. and $\mathrm{Et}_{2} \mathrm{O}$ furnished 3.50 g of crude product which was chromatographed (silica gel, hexane/AcOEt 4:1): $2.98 \mathrm{~g}(65 \%)$ of 17 . A soln. of 2.10 g (5.73 mmol) of 17 and of 250 mg of pyridinium toluene- 4 -sulfonate [16] in 100 ml of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ 9:1 was stirred at 25° for 48 h and then $\left(T<35^{\circ}\right)$. The residue was worked up with sat. aq. NaCl soln. and $\mathrm{Et}_{2} \mathrm{O}$. The crude material was chromatographed (silica gel, hexane/Et $\mathrm{E}_{2} \mathrm{O} / \mathrm{AcOEt} 4: 3: 3$): $1.38 \mathrm{~g}(85 \%)$ of pure 18. Colorless oil. IR (CCl_{4}): 3620, 3550, 1750, 1720, 1665, 1612, 1453, 1433, 1380, 1330, 1260, 1240, 1200, 1175, 1130, 1075. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.39(\mathrm{tm}, J=7,1 \mathrm{H}) ; 5.10(\mathrm{tm}, J=7,1 \mathrm{H}) ; 4.15(\mathrm{dm}, J=6.9,2 \mathrm{H}) ; 3.73(s$, $3 \mathrm{H}) ; 3.54(q, J=7.2,1 \mathrm{H}) ; 2.67(d t, J=17.2,7.4,1 \mathrm{H}) ; 2.59(d t, J=17.2,7.4,1 \mathrm{H}) ; 2.26(t m, J=7.4,2 \mathrm{H})$; 2.15-2.07 (m, 2 H); 2.05-2.00 (m, 2 H); 1.66 (br. $s, 3 \mathrm{H}$); 1.60 (br. $s, 3 \mathrm{H}$); 1.47 (br. $s, 1 \mathrm{H}) ; 1.34(d, J=7.2,3 \mathrm{H})$; evidence of $c a .5 \%$ of the enol tautomer at $12.60(s, 0.05 \mathrm{H})$ and $3.76(s, 0.15 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 205.5$ $(s) ; 171.1(s) ; 139.2(s) ; 133.6(s) ; 124.7(d) ; 123.8(d) ; 59.4(t) ; 52.7(d) ; 52.4(q) ; 40.0(t) ; 39.3(t) ; 33.2(t) ; 26.1(t) ;$ $16.2(q) ; 16.1(q) ; 12.9(q)$. MS: $282\left(0.9, M^{+}\right), 197(4), 171(20), 134(14), 119(34), 115(28), 109(67), 93(12), 81$ (100), 79 (13), 67 (26), 59 (24), 55 (20), 43 (14), 41 (40).

Methyl ($6 \mathrm{E}, 10 \mathrm{E}$)-12-Chloro-2,6,10-frimethyl-3-oxododeca-6,10-dienoate (19). As described for 15 , with 3.10 g (10.98 mmol) of $\mathbf{1 8}, 2.56 \mathrm{~g}$ of NCS and 2.94 ml of $\mathrm{Me}_{2} \mathrm{~S}: 3.20 \mathrm{~g}(97 \%)$ of 19 . Colorless oil. IR $\left(\mathrm{CCl}_{4}\right): 1750,1720$, $1660,1612,1453,1433,1380,1330,1250,1200,1175,1120,1075,670 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.43(\mathrm{tm}$, $J=8,1 \mathrm{H}) ; 5.09(\mathrm{tm}, J=7,1 \mathrm{H}) ; 4.10(d, J=8.0,2 \mathrm{H}) ; 3.73(\mathrm{~s}, 3 \mathrm{H}) ; 3.54(q, J=7.2,1 \mathrm{H}) ; 2.67(d t, J=17.2,7.7$, $1 \mathrm{H}) ; 2.59(d t, J=17.2,7.7,1 \mathrm{H}) ; 2.25(\mathrm{~m}, J=7.7,2 \mathrm{H}) ; 2.15-2.03(m, 4 \mathrm{H}) ; 1.72(\mathrm{br} . s, 3 \mathrm{H}) ; 1.60($ br. $s, 3 \mathrm{H}) ; 1.34$ $(d, J=7.2,3 \mathrm{H})$; evidence of $c a .5 \%$ of the enol tautomer at $12.60(s, 0.05 \mathrm{H})$ and $3.76(s, 0.15 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 205.4(s) ; 171.0(s) ; 142.4(s) ; 134.0(s) ; 124.3(d) ; 120.6(d) ; 52.7(d) ; 52.4(q) ; 41.1(t) ; 40.1(t) ;$ $39.2(t) ; 33.2(t) ; 26.0(t) ; 16.1(2 q) ; 12.8(q)$. MS: 302/300 (0.2/0.6, $\left.M^{+}\right), 265(3), 197(13), 171(25), 135(10), 119$ (43), 115 (24), 109 (65), 93 (16), 81 (100), 67 (36), 59 (23), 55 (20), 43 (12), 41 (38).

Methyl ($1 \mathrm{RS}, 3 \mathrm{E}, 7 \mathrm{E}$)-1,4,8-Trimethyl-11-oxocycloundeca-3,7-diene-I-carboxylate (20). Method A : A soln. of $3.20 \mathrm{~g}(10.6 \mathrm{mmol})$ of 19 in 250 ml of dry DMF was added within 10 days by means of a motor-driven syringe to a suspension of $5.21 \mathrm{~g}(10 \mathrm{mmol})$ of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (Fluka, puriss.; dried at 150° for 5 h) in 800 ml of DMF. The solvent was removed ($40^{\circ} / 1$ Torr) and the residue worked up with aq. $\mathrm{KH}_{2} \mathrm{PO}_{4}$ soln. and $\mathrm{Et}_{2} \mathrm{O}$ to furnish 2.82 g of crude product which was chromatographed (silica gel, hexane/ $\mathrm{Et}_{2} \mathrm{O} 9: 1$): $2.24 \mathrm{~g}(80 \%)$ of 90% pure 20 . An anal. sample was prepared by recrystallization from $\mathrm{Et}_{2} \mathrm{O} /$ pentane at -20°. M.p. $55-57^{\circ}$. $\mathrm{IR}\left(\mathrm{CCl}_{4}\right): 1745,1733,1713,1670$, $1460,1435,1410,1390,1378,1348,1285,1270,1240,1175,1120,1072 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.86-4.75$ (br. $m, 2 \mathrm{H}$); 3.73 ($s, 3 \mathrm{H}$); 2.95-2.18 (br. $m, 5 \mathrm{H}$); 2.18-1.92 (br. $m, 5 \mathrm{H}$); 1.59 (br. $s, 3 \mathrm{H}$); 1.46 (br. $s, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 208.8$ (br. s); $174.4(\mathrm{~s}) ; 136.7$ (br. $\left.s\right) ; 135.7(s) ; 125.6(\mathrm{~d}) ; 120.5$ (br. d); $59.3(\mathrm{~s}) ; 52.3$ $(q) ; 40.5$ (br. t) $; 39.1(t) ; 35.2(t) ; 31.4($ br. $t) ; 24.2(t) ; 21.4($ br. $q) ; 17.8(q) ; 15.7(q)$. MS: $264\left(7, M^{+}\right), 246(21), 236$
(12), 196 (20), 187 (20), 164 (36), 137 (91), 119 (32), $115(95), 108$ (37), 95 (57), 79 (57), 67 (88), 59 (20), $55(57), 53$ (59), 41 (100). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}(264.37)$: C $72.69, \mathrm{H} 9.15$; found: C $72.77, \mathrm{H} 9.35$.

Method B: As above, but addition of $309 \mathrm{mg}(1.03 \mathrm{mmol})$ of 19 in 30 ml of DMF to a suspension of 500 mg of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in 120 ml of DMF within 20 min . Chromatography (silica gel, hexane/ $\mathrm{Et}_{2} \mathrm{O} 4: 1$) gave $118 \mathrm{mg}(43 \%)$ of $\mathbf{2 0}$ and $98 \mathrm{mg}(36 \%)$ of dimethy/ $1,4,8,12,15,19$-hexamethyl-11,22-dioxodocosa-3,7,14,18-tetraene-1,12-dicarboxylate (21) as a 1:1 mixture of two diastereoisomers: M.p. $82.5^{\circ}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.-20^{\circ}\right) . \mathrm{IR}\left(\mathrm{CCl}_{4}\right): 1745,1733,1718,1670$, $1460,1435,1390,1378,1280,1240,1170,1110$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.99$ (br. $t, J=7,2 \mathrm{H}$); 4.88 (br. t, $J=8,2 \mathrm{H}) ; 3.70(\mathrm{~s}, 6 \mathrm{H}) ; 2.66-2.44(\mathrm{~m}, 8 \mathrm{H}) ; 2.27-2.14(\mathrm{~m}, 4 \mathrm{H}) ; 2.11-1.98(\mathrm{~m}, 8 \mathrm{H}) ; 1.57$ (br. $s, 6 \mathrm{H}) ; 1.56$ (br. s, $6 \mathrm{H}) ; 1.31(s, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 206.6(2 s) ; 173.4(2 s) ; 137.9(2 s) ; 133.5,133.4(2 s) ; 124.1$ ($2 d$); 118.7, $118.6(2 d) ; 59.5(2 s) ; 52.2(2 q) ; 39.4(2 t) ; 37.1(2 t) ; 33.5(2 t) ; 33.1(2 t) ; 25.2(2 t) ; 19.0,18.9(2 q) ; 16.4(2 q)$; 15.8 (2q). MS: 528 (12, M^{+}), 469 (9), 263 (4), 177 (11), 165 (14), 137 (16), 134 (29), 115 (20), 109 (18), 107 (16), 95 (44), 93 (36), 81 (100), 67 (59), 59 (14), 55 (45), 41 (44). Vapor-pressure osmometry [50]: mol. wt. 519.23. Anal. calc. for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{6}(528.74)$: C 72.69, H 9.15; found: C 72.80, H 9.26.
($2 \mathrm{RS}, 4 \mathrm{E}, 8 \mathrm{E}$)-2,5,9-Trimethylcycloundeca-4,8-dien-1-one (22). Procedure: [30]. To a soln. of 585 mg (2.21 mmol) of 20 in 5 ml of EtOH were added 20 ml of 0.25 M KOH in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 3: 1$ under Ar at 25°. After refluxing for 4 h , the mixture was worked up with sat. aq. NaCl soln. and pentane and the crude product purified by bulb-to-bulb distillation ($50 \% 0.005$ Torr): $447 \mathrm{mg}\left(98 \%\right.$) of 22 . Colorless oil. IR $\left(\mathrm{CCl}_{4}\right): 1712,1458,1450,1435$, $1410,1382,1370,1350,1180,1085,1060,843 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.05$ (br. $t, J=7.5,1 \mathrm{H}$); 4.80 (m , $1 \mathrm{H}) ; 2.80(\mathrm{~m}, 1 \mathrm{H}) ; 2.62(\mathrm{~m}, \mathrm{l} \mathrm{H}) ; 2.45(\mathrm{~m}, 1 \mathrm{H}) ; 2.33-2.16(\mathrm{~m}, 3 \mathrm{H}) ; 2.14-1.94(\mathrm{~m}, 5 \mathrm{H}) ; 1.63$ (br. $\mathrm{s}, 3 \mathrm{H}) ; 1.47$ (br. $s, 3 \mathrm{H}) ; 1.04(d, J=7.0,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 216.5(\mathrm{~s}) ; 134.0(\mathrm{~s}) ; 133.3(\mathrm{~s}) ; 126.9(d) ; 125.2(d) ; 49.1$ $(d) ; 41.0(t) ; 38.8(t) ; 35.9(t) ; 31.9(t) ; 24.8(t) ; 17.3(q) ; 16.2(q) ; 15.0(q)$ MS: $206\left(31, M^{+}\right), 191(7), 178(8), 164$ (18), $138(79), 123(67), 111(22), 110(16), 109(36), 96(100), 95(34), 81(41), 67(34), 55(28), 53$ (24), 41 (38). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}(206.33)$: C 81.50, H 10.75 ; found: C $81.34, \mathrm{H} 11.03$.

Ethyl 3,3-((2,2-Dimethylpropane-1,3-diyl)dioxy]-4-methylpentanoate ($=$ Ethyl 2-Isopropyl-5,5-dimethyl-1,3-dioxane-2-acetate; 25). A mixture of $85 \mathrm{~g}(0.54 \mathrm{~mol})$ of $\mathbf{2 4}$ (Fluka, purum), $201.3 \mathrm{~g}(1.93 \mathrm{~mol})$ of 2,2-dimethyl-propane-1,3-diol (Fluka, purum), and $3.5 \mathrm{~g}(18.4 \mathrm{mmol})$ of TsOH in 3.21 of toluene was refluxed in an apparatus connected with a Dean-Stark trap, filled with $4 \AA$ molecular sieves, for 15 h . The mixture was worked up with sat. aq. NaCl soln. and $\mathrm{Et}_{2} \mathrm{O}$, and the org. extracts were washed 4 times with $\mathrm{H}_{2} \mathrm{O}$. The crude product was purified by bulb-to-bulb distillation ($100^{\circ} / 0.01$ Torr): $105.2 \mathrm{~g}(80 \%)$ of $\mathbf{2 5}$. Colorless oil. IR $\left(\mathrm{CCl}_{4}\right): 1738,1475,1450,1368$, 1320, 1305, 1235, 1125, 1100, 1075, 1038, 1020, 970. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.16(q, J=7.2,2 \mathrm{H}) ; 3.63(d$, $J=11.7,2 \mathrm{H}) ; 3.47(d, J=11.7,2 \mathrm{H}) ; 2.82(s, 2 \mathrm{H}) ; 2.32($ sept., $J=6.8,1 \mathrm{H}) ; 1.27(t, J=7.2,3 \mathrm{H}) ; 1.04(s, 3 \mathrm{H})$; $1.00(d, J=6.8,6 \mathrm{H}) ; 0.88(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.9(s) ; 100.4(s) ; 70.3(t) ; 60.5(t) ; 34.7(t) ;$ $32.5(d) ; 29.7(s) ; 22.9(q) ; 22.5(q) ; 16.5(2 q) ; 14.2(q)$. MS: $201\left(26,[M-43]^{+}\right), 159(16), 157(74), 115(32), 113$ (12), 71 (84), 69 (84), 43 (100). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{4}$ (244.33): C 63.91, H 9.90; found: C $64.07, \mathrm{H} 10.10$.

1-Hydroxy-4-methylpentan-3-one 2,2-Dimethylpropane-1,3-diyl Acetal $(=2$-Isopropyl-5,5-dimethyl-1,3-diox-ane-2-ethanol; 26). To a soln. of $67.2 \mathrm{~g}(275 \mathrm{mmol})$ of 25 in 400 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added a suspension of $10 \mathrm{~g}(263$ mmol) of LiAlH_{4} in $300 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$ within 1 h at 0° under Ar. After stirring for 2 h at 0°, the mixture was poured carefully onto 31 of well-stirred ice water. After neutralization with $5 \% \mathrm{aq} . \mathrm{H}_{2} \mathrm{SO}_{4}$ soln., the mixture was worked up with sat. aq. NaCl soln. and $\mathrm{Et}_{2} \mathrm{O}$ and the crude product purified by bulb-to-bulb distillation ($\mathbf{3} 5^{\circ} / 0.01 \mathrm{Torr}$): $30.0 \mathrm{~g}(54 \%)$ of $\mathbf{2 6}$. An anal. sample thereof was prepared by chromatography (silica gel, hexane/AcOEt 7.3), followed by distillation ($80^{\circ} / 0.008$ Torr). Colorless oil. IR (CCl 4): 3640, 3560, 1470, 1398, 1370, 1108, 1092, 1072, $1050,1040,1025 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.90(\mathrm{~m}, 2 \mathrm{H}) ; 3.66(d, J=11.6,2 \mathrm{H}) ; 3.39(d, J=11.6,2 \mathrm{H}) ; 3.18$ $(m, 1 \mathrm{H}) ; 2.69($ sept., $J=6.9,1 \mathrm{H}) ; 1.81(\mathrm{~m}, 2 \mathrm{H}) ; 1.18(s, 3 \mathrm{H}) ; 0.91(d, J=6.9,6 \mathrm{H}) ; 0.80(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$-NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 103.8(s) ; 69.4(t) ; 58.5(t) ; 32.8(t) ; 29.5(s) ; 26.1(d) ; 23.2(q) ; 22.4(q) ; 16.6(2 q)$. MS: $159(76$, $\left.[M-43]^{+}\right), 157(58), 117(17), 87(11), 73(100), 71(61), 69(94), 56(27), 55(22), 43(95), 41$ (82). Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{3}$ (202.29): C 65.31, H 10.96 ; found: C 65.48, H 11.20.

4-Methyl-I-(tosyloxy)pentan-3-one 2,2-Dimethylpropane-1,3-diyl Acetal ($=$ 2-Isopropyl-5,5-dimethyl-I,3-dioxane-2-ethy/ Toluene-4-sulfonate; 27). To $30 \mathrm{~g}(148 \mathrm{mmol})$ of 26 was added slowly a soln. of $35.8 \mathrm{~g}(188 \mathrm{mmol})$ of toluenc-4-sulfonyl chloride (Fluka, purum) in 40 ml of pyridine at 0°. After stirring for 20 h at 25°, the mixture was worked up with 0.1 m aq. CuSO_{4} and $\mathrm{Et}_{2} \mathrm{O}$ and the crude product purified by crystallization from hexane, followed by washing with cold pentane: 65.8 g of crystalline $\mathbf{2 7}$ containing ca. 25% of pentane. In this form, the material could be stored at -20° for several months without decomposition. Colorless crystals that - when dry - decomposed within seconds at $25^{\circ} / 0.001$ Torr. IR $\left(\mathrm{CCl}_{4}\right): 1375,1355,1190,1180,1105,960,662,{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.81(d m, J=8,2 \mathrm{H}) ; 7.35(d m, J=8,2 \mathrm{H}) ; 4.26(m, 2 \mathrm{H}) ; 3.45(d, J=11.5,2 \mathrm{H}) ; 3.31(d, J=11.5,2 \mathrm{H}) ;$ $2.45(s, 3 \mathrm{H}) ; 2.34($ sept., $J=6.9,1 \mathrm{H}) ; 2.02(\mathrm{~m}, 2 \mathrm{H}) ; 0.93(\mathrm{~s}, 3 \mathrm{H}) ; 0.86(d, J=6.9,6 \mathrm{H}) ; 0.84(s, 3 \mathrm{H}) .{ }^{1.3} \mathrm{C}-\mathrm{NMR}$
$\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 144.6(s) ; 133.4(s) ; 129.8(2 d) ; 127.9(2 d) ; 100.8(s) ; 69.5(t) ; 67.3(t) ; 29.8(t) ; 29.3(s) ; 28.2(d) ;$ $23.1(q) ; 22.6(q) ; 21.6(q) ; 16.4(2 q)$.

Methyl 2-Acetyl-5,5-[(2,2-dimethylpropane-1,3-diyl)dioxy]-6-methylheptanoate ($=$ Methyl α-Acetyl-2-iso-propyl-5,5-dimethyl-1,3-dioxane-2-butanoate; 28). To a suspension of $2.65 \mathrm{~g}(19.2 \mathrm{mmol})$ of the sodium salt of methyl 3-oxobutanoate (Fluka, purum; dried for 48 h at $25^{\circ} / 0.05 \mathrm{Torr}$) in 50 ml of benzene were added 585 mg of 27 at 0° under Ar. After refluxing for 11 days, the mixture was worked up with sat. aq. $\mathrm{KH}_{2} \mathrm{PO}_{4}$ soln. and $\mathrm{Et}_{2} \mathrm{O}$ and the crude product dried for 4 h at $25 \% 0.05$ Torr. The crude material was purified by chromatography (silica gel, benzene/AcOEt 9:1), followed by distillation ($100 \% / 0.01$ Torr): $339 \mathrm{mg}\left(69 \%\right.$) of 28. Colorless oil. IR (CCl_{4}): 1750, 1720, 1472, 1435, 1398, 1360, 1245, 1205, 1165, $1108 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.74(s, 3 \mathrm{H}), 3.48-3.44(m$, $5 \mathrm{H}) ; 2.33(\operatorname{sept} ., J=6.9,1 \mathrm{H}) ; 2.24(s, 3 \mathrm{H}) ; 2.04-1.94(m, 2 \mathrm{H}) ; 1.67-1.61(m, 2 \mathrm{H}) ; 0.95(s, 3 \mathrm{H}) ; 0.94(s, 3 \mathrm{H}) ; 0.91$ ($d, J=6.9,6 \mathrm{H}$); evidence of $c a .5 \%$ of the enol tautomer at $12.66(s, 0.05 \mathrm{H})$ and $3.76(s, 0.15 \mathrm{H}) .{ }^{13} \mathrm{C}$-NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 203.3(s) ; 170.4(s) ; 101.4(s) ; 69.7(2 t) ; 59.7(d) ; 52.3(q) ; 29.5(s) ; 29.3(d) ; 28.8(q) ; 26.7(t) ; 23.0$ $(q) ; 22.8(q) ; 21.8(t) ; 16.4(2 q)$. MS: $140\left(20,[M-160]^{+}\right), 135(100), 128(18), 124(29), 112(24), 93(25), 81(22)$, 79 (28), 77 (14). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{5}$ (300.40): C 63.97, H 9.40; found: C 63.78, H 9.34.

Methyl (2RS,6E,10E)-12-Hydroxy-6,10-dimethyl-2-(4-methyl-3-oxopentyl)-3-oxododeca-6,10-dienoate (29). To a soln. of $6.1 \mathrm{~g}(20.3 \mathrm{mmol})$ of freshly distilled 28 in 16 ml of 1,2-dimethoxyethane (DME) was added slowly via a stainless steel canula a cold $\left(-78^{\circ}\right)$ suspension of 48 mmol of lithium diisopropylamide in 32 ml of DME under Ar. The resulting yellow mixture was stirred at -13° for 45 min and then cooled to -78°. After slow addition of $16 \mathrm{ml}(40 \mathrm{mmol})$ of 2.5 m BuLi in hexane, stirring was continued at -13° for 45 min . After cooling to -78°, a soln. of $6.3 \mathrm{~g}(19.9 \mathrm{mmol})$ of 9 in 16 ml of DME was added slowly via a syringe and stirring continued for 10 h , during which the temp. was allowed to rise to 5°. The mixture was poured onto 500 ml of cold aq. 0.25 N HCl and worked up with $\mathrm{Et}_{2} \mathrm{O}$. The crude material (11.4 g) was purified by chromatography (silica gel, hexane/AcOEt 17:3) to furnish 5.21 g of an intermediate which was hydrolized according to Grieco's procedure [16] to yield $1.97 \mathrm{~g}(27 \%$ overall) of 29 after chromatography (silica gel, hexane/AcOEt 11:9). Colorless oil. IR $\left(\mathrm{CCl}_{4}\right): 3620,1750,1718$, $1670,1650(\mathrm{sh}), 1468,1438,1385,1240,1200,1165,1005 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.39(t q, J=6.9,1.2,1 \mathrm{H})$; $5.10(\mathrm{~m}, 1 \mathrm{H}) ; 4.16(\mathrm{~m}, 2 \mathrm{H}) ; 3.74(\mathrm{~s}, 3 \mathrm{H}) ; 3.56(d d, J=7.7,6.6,1 \mathrm{H}) ; 2.69(d t, J=17.2,7.4,1 \mathrm{H}) ; 2.61(d t, J=17.2$, $7.4,1 \mathrm{H}) ; 2.58($ sept., $J=7.0,1 \mathrm{H}) ; 2.52(t, J=6.9,2 \mathrm{H}) ; 2.25$ (br. $t, J=7.5,2 \mathrm{H}) ; 2.16-2.01(m, 6 \mathrm{H}) ; 1.68$ (br. s, $3 \mathrm{H}) ; 1.60$ (br. $s, 3 \mathrm{H}) ; 1.42$ (br. $t, J=5.5,1 \mathrm{H}) ; 1.09(d, J=7.0,6 \mathrm{H})$; evidence of $c a .3 \%$ of the enol tautomer at $12.72(s, 0.03 \mathrm{H})$ and $3.78(s, 0.09 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 213.7(s) ; 204.8(s) ; 170.1(s) ; 139.0(s) ; 133.6$ $(s) ; 124.7(d) ; 123.8(d) ; 59.3(t) ; 57.4(d) ; 52.4(q) ; 40.9(d) ; 40.6(t) ; 39.3(t) ; 37.1(t) ; 33.0(t) ; 26.1(t) ; 21.9(t) ;$ $18.2(2 q) ; 16.2(q) ; 16.1(q)$. MS: $348\left(4,[M-18]^{+}\right), 249(13), 167(11), 139(11), 134(100), 119(47), 105(15), 93$ (49), 81 (59), 79 (24), 71 (29), 69 (18), 67 (20), 55 (46), 43 (48), 41 (35).

Methyl (1RS,6E, 10E)-12-Chloro-6,10-dimethyl-2-(4-methyl-3-oxopentyl)-3-oxodeca-6,10-dienoate (30). As described for $\mathbf{1 5}$, starting with $6.0 \mathrm{~g}(16.4 \mathrm{mmol})$ of $29: 6.2 \mathrm{~g}(98 \%)$ of $\mathbf{3 0}$. Colorless oil. IR $\left(\mathrm{CCl}_{4}\right): 1750,1718,1662$, $1468,1438,1385,1252,1240,1200,1165,670 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.43(\mathrm{rq}, J=8.0,1.3,1 \mathrm{H}) ; 5.09(\mathrm{~m}$, $1 \mathrm{H}) ; 4.10(d, J=7.9,2 \mathrm{H}) ; 3.73(s, 3 \mathrm{H}) ; 3.55(d d, J=7.7,6.6,1 \mathrm{H}) ; 2.67(d t, J=17.2,7.4,1 \mathrm{H}) ; 2.59(d t, J=17.2$, $7.4,1 \mathrm{H}) ; 2.57($ sept., $J=7.0,1 \mathrm{H}) ; 2.51(t, J=6.9,2 \mathrm{H}) ; 2.24$ (br. $t, J=7.2,2 \mathrm{H}) ; 2.15-2.01(\mathrm{~m}, 6 \mathrm{H}) ; 1.72(\mathrm{~m}, 6 \mathrm{H})$; $1.72(\mathrm{br} . s, 3 \mathrm{H}) ; 1.59(\mathrm{br} . s, 3 \mathrm{H}) ; 1.08(d, J=7.0,6 \mathrm{H})$; evidence of $c a .3 \%$ of the enol tautomer at $12.72(s, 0.03 \mathrm{H})$ and $3.77(s, 0.09 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 213.5(s) ; 204.7(s) ; 170.1(s) ; 142.4(s) ; 133.9(s) ; 124.3(d) ;$ $120.6(d) ; 57.4(d) ; 52.4(q) ; 41.1(t) ; 40.9(d) ; 40.7(t) ; 39.2(t) ; 37.2(t) ; 33.1(t) ; 26.0(t) ; 22.0(t) ; 18.2(2 q) ; 16.12$ $(q) ; 16.05(q) . \mathrm{MS}: 317\left(16,[M-69]^{+}\right), 249(65), 167(9), 139(8), 134(26), 121$ (17), 109 (22), 93 (23), 81 (100), 71 (31), 67 (57), 55 (69), 43 (98), 41 (89).

Methyl (1RS,3E,7E)-4,8-Dimethyl-1-(4-methyl-3-oxopentyl)-11-oxocycloundeca-3,7-diene-1-carboxylate (8). As described for 20, adding a 9.4 mm soln. of $202 \mathrm{mg}(0.525 \mathrm{mmol}$) of 30 in DMF to a suspension of 550 mg (1.69 mmol) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in 150 ml of DMF within $30 \mathrm{~h}: 122 \mathrm{mg}(67 \%)$ of 8 after bulb-to-bulb distillation ($180^{\circ} / 0.01$ Torr). Colorless oil. IR (CCl_{4}): 1742, 1718, 1670, 1470, 1440, 1230, 1198, 1172, 1110, $1100 .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}) : 4.81-4.75 ($\mathrm{m}, 2 \mathrm{H}$); 3.74 (br. $s, 3 \mathrm{H}$) ; 2.87-1.92 ($\mathrm{m}, 14 \mathrm{H}$) ; 2.57 (sept., $J=6.9,1 \mathrm{H}$); 1.58 (br. $s, 3 \mathrm{H}$); 1.44 (br. $s, 3 \mathrm{H}$); $1.07\left(d, J=6.9,6 \mathrm{H}\right.$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 213.2(s) ; 208.1$ (br. s); 173.3 (s); 136.7 (br. s); $135.7(\mathrm{~s}) ; 125.6(\mathrm{~d}) ; 120.3$ (br. d) ; $62.7(\mathrm{~s}) ; 52.2(\mathrm{q}) ; 41.8(\mathrm{br} . t) ; 40.9(\mathrm{~d}) ; 39.3(t) ; 39.1(t) ; 35.5(t) ; 33.2(\mathrm{br} . t) ; 31.3$ (br.t); 29.2 (br. t); 24.1 (t); 18.3 (2q); 17.9 (2q); $15.6(q)$. MS: 348 ($34, M^{+}$), 331 (10), 330 (26), 317 (34), 316 (20), 298 (15), 288 (18), 248 (16), 206 (21), 205 (25), 177 (26), 135 (58), 134 (57), 121 (38), 107 (28), 93 (33), 81 (48), 79 (29), 71 (44), 67 (36), 55 (41), 43 (100), 41 (50).
(4E,8E)-2-(Hydroxymethyl)-2-(3-hydroxy-4-methylpentyl)-5,9-dimethylcycloundeca-4,8-dien-1-ol (31). To a soln. of $226 \mathrm{mg}(0.65 \mathrm{mmol})$ of 8 in 31 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $4.3 \mathrm{ml}(6.5 \mathrm{mmol})$ of 1.5 M diisobutylaluminium hydride in toluene (Aldrich) at -78°. After stirring at 25° for 2 h , the mixture was poured onto 10 ml of cold aq. In HCl with efficient stirring. Workup with $\mathrm{Et}_{2} \mathrm{O}$ furnished 240 mg of crude material which was separated into two
fractions by chromatography (silica gel, AcOEt/hexane 9:1): $66 \mathrm{mg}\left(31 \%\right.$) of less polar fraction ($R_{\mathrm{f}} 0.29$), and 78 $\mathrm{mg}(37 \%)$ of more polar component ($R_{\mathrm{f}} 0.23$). Recrystallization of the latter from 4 ml of AcOMe at 4° gave 25 mg of a homogeneous material (GLC, SE 54). M.p. 167°, sintering at 163°. IR (CHCl_{3}): 3300 (br.), 1465 (sh), 1450, $1435(\mathrm{sh}), 1382,1060,1042,988,890{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right): 4.86$ (br. $\left.d d, J=11.5,2.9,1 \mathrm{H}\right) ; 4.79$ (br. $d, J=9.6,1 \mathrm{H}) ; 3.63-3.48(\mathrm{~m}, 3 \mathrm{H}) ; 3.31(\mathrm{~m}, 1 \mathrm{H}) ; 2.47(\mathrm{~m}, 1 \mathrm{H}) ; 2.32(\mathrm{~m}, 1 \mathrm{H}) ; 2.20(\mathrm{~m}, 1 \mathrm{H}) ; 2.10-2.03(\mathrm{~m}, 3$ $\mathrm{H}) ; 1.97(\mathrm{~m}, 1 \mathrm{H}): 1.79$ (br. $d q, J=15.7,1.5,1 \mathrm{H}) ; 1.70-1.25(m, 7 \mathrm{H}) ; 1.59$ (br. $s, 3 \mathrm{H}) ; 1.42$ (br. $s, 3 \mathrm{H}) ; 0.91(d$, $J=6.6,3 \mathrm{H}) ; 0.90(d, J=6.6,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 137.3(s) ; 135.5(s) ; 123.9(d) ; 120.8(d) ; 79.9$ $(d) ; 76.7(d) ; 66.0(t) ; 43.4(s) ; 39.2(t) ; 36.4(t) ; 34.4(d) ; 32.5(t) ; 28.1(t) ; 27.1(t) ; 26.9(t) ; 24.8(t) ; 18.9(q) ; 17.8$ (q); $17.3(\mathrm{q}) ; 15.9(\mathrm{q}) . \mathrm{MS}: 306\left(3,[M-18]^{+}\right), 275(17), 189(8), 187(9), 170(10), 159(17), 147(20), 135(23), 121$ (47), 109 (52), $107(47), 105(30), 95(63), 93(60), 81(80), 79(42), 69(69), 67(56), 55(100), 43(95), 41$ (84). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{3}$ (324.51): C 74.03, H 11.18 ; found: C 73.97, H 11.41.
($2 \mathrm{RS}, 4 \mathrm{E}, 8 \mathrm{E})-2-\{[($ tert - Butyl) diphenylsilyloxy]methyl $\}-5,9-$ dimethyl-2-(4-methyl-3-oxopentyl) cycloun-deca-4,8-dien-1-one (33). Silylation reagent [39]: To a soln. of $100 \mathrm{mg}(0.819 \mathrm{mmol})$ of 4-(dimethylamino)pyridine and 1.6 ml of pyridine in 12.3 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $2.6 \mathrm{ml}(10 \mathrm{mmol})$ of (tert-butyl)diphenylsilyl chloride (Fluku, puriss.) at 0°. To a soln. of $89 \mathrm{mg}\left(0.274 \mathrm{mmol}\right.$) of 31 (mixture of 4 diastereoisomers) in 3 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $0.75 \mathrm{ml}(0.45 \mathrm{mmol})$ of the above silylation mixture. After stirring at 25° for 120 h , the mixture was poured onto 20 ml of cold aq. 1N HCl with efficient stirring. Workup with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ furnished 130 mg of crude material which was chromatographed (silica gel, AcOEt/hexane $1: 3$) to yield $110 \mathrm{mg}(71 \%)$ of $\mathbf{3 2}$ (mixture of diastereoisomers). This material was dissolved in 1.6 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with 4 ml of 0.25 m 'tert-butoxy-modified Dess-Martin reagent' [40]. After stirring under Ar for 15 min , the resulting suspension was poured onto a mixture of 20 ml of sat. aq. NaHCO_{3} soln. and of 7 ml of 1 N aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Extraction with $\mathrm{Et}_{2} \mathrm{O}$, followed by chromatography gave $70 \mathrm{mg}(64 \%)$ of $\mathbf{3 3}$. Colorless oil. IR (CCl_{4}): 1715, 1708, 1670, 1470, 1450, 1430, 1112, 1105, 1090, 700, 690. ${ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.63-7.59(\mathrm{~m}, 4 \mathrm{H}) ; 7.50-7.34(\mathrm{~m}, 6 \mathrm{H}) ; 4.70(\mathrm{~m}, 1 \mathrm{H}) ; 4.58(\mathrm{~m}, 1 \mathrm{H}) ; 3.85(\mathrm{~m}$, $1 \mathrm{H}) ; 3.71(\mathrm{~m}, 1 \mathrm{H}) ; 3.00-1.80(\mathrm{~m}, 14 \mathrm{H}) ; 2.48($ sept., $J=6.9,1 \mathrm{H}) ; 1.56$ (br. $s, 3 \mathrm{H}) ; 1.42(\mathrm{br} . s, 3 \mathrm{H}) ; 1.05(\mathrm{~s}, 9 \mathrm{H})$; $1.033(d, J=6.9,3 \mathrm{H}) ; 1.031(d, J=6.9,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 214.0(\mathrm{~s}) ; 135.71(2 d) ; 135.68(2 d) ;$ $135.6(s) ; 133.1(2 s) ; 129.8(2 d) ; 127.70(2 d) ; 127.68(2 d) ; 125.2(d) ; 120.5(d) ; 64.3(t) ; 56.2(s) ; 40.9(d) ; c a .39 .1$ (br. t); $39.0(t) ; 35.1(t) ; c a .32($ br. $t) ; 31.6(t) ; 27.0(3 q) ; 25.5(\mathrm{br} . t) ; 24.1(t) ; 19.3(s) ; 18.31(q) ; 18.29(q) ; 17.5(q)$; $15.7(q)$; ($2 s$, expected at $c a .200$ and 139 ppm , not detected). MS: $558\left(1.3, M^{+}\right), 540(3), 501(51), 433(11), 302(22)$, $285(19), 217(16), 199(100), 183(16), 139(38), 135(63), 121(28), 107(26), 105(25), 81(28), 71(46), 55(24), 43(86)$, 41 (23).
(1RS,3E,7E)-15-/(tert-Butyl)diphenylsilyloxy]dolabella-3,7,11-triene ($=(1 \mathrm{RS}, 3 \mathrm{E}, 7 \mathrm{E})-1-\{[($ tert-Butyl) diphenylsilyloxy]methyl $\}$-12-isopropyl-4,8-dimethylbicyclo/9.3.0]tetradeca-3,7,11-triene; 34). Method: [40]. In a glove-box $\left(\mathrm{N}_{2}\right), 2.6 \mathrm{~g}(16.9 \mathrm{mmol})$ of TiCl_{3} (Alfa Inorganics, $98 \%, \mathrm{H}_{2}$-reduced) and $10 \mathrm{~g}(152 \mathrm{mmol})$ of $\mathrm{Zn} / \mathrm{Cu}$ couple [42] were placed in a flame-dried, silylated glass flask containing a magnetic stirring rod. Under Ar, 80 ml of DME were distilled from K into this flask, and the resulting suspension was refluxed for 6 h . To this mixture was added a soln. of $40 \mathrm{mg}(0.819 \mathrm{mmol})$ of 33 in 10 ml of DME within 12 h , and refluxing was continued for 6 h . The mixture was cooled to 20° and filtered through silica gel (40 g , hexane). The crude material was chromatographed (silica gel, hexane) to give $34 \mathrm{mg}\left(90 \%\right.$) of $\mathbf{3 4}$. Colorless oil. IR (CCl_{4}): 1662, 1460, $1450(\mathrm{sh}), 1430,1380,1360$, $1110,1090,1072,700,690,612 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.70-7.65(\mathrm{~m}, 4 \mathrm{H}) ; 7.46-7.37(\mathrm{~m}, 6 \mathrm{H}) ; 4.80$ (br. $d d$, $J=10.5,5.5,1 \mathrm{H}) ; 4.63(\mathrm{br} . t, J=4.5,1 \mathrm{H}) ; 3.38(d, J=9.9,1 \mathrm{H}) ; 3.37(d, J=9.9,1 \mathrm{H}) ; 2.84($ sept. $J=6.8, \mathrm{IH})$; $2.27(\mathrm{~m}, 1 \mathrm{H}) ; 2.25 \cdots 2.16(\mathrm{~m}, 4 \mathrm{H}) ; 2.10-2.00(\mathrm{~m}, 3 \mathrm{H}) ; 1.98-1.75(\mathrm{~m}, 5 \mathrm{H}) ; 1.64(\mathrm{~m}, 1 \mathrm{H}) ; 1.52$ (br. $s, 3 \mathrm{H}) ; 1.34$ (br. $s, 3 \mathrm{H}) ; 1.12(d, J=6.8,3 \mathrm{H}) ; 1.07(s, 9 \mathrm{H}) ; 0.97(d, J=6.8,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 147.0(s) ; 137.9$ $(s) ; 135.8(4 d) ; 135.4(s) ; 134.04(s) ; 133.99(s) ; 129.8(s) ; 129.5(2 d) ; 127.6(4 d) ; 126.5(d) ; 124.8(d) ; 70.7(t) ; 57.6$ $(s) ; 41.1(t) ; 38.3(t) ; 32.2(t) ; 30.0(t) ; 27.8(t) ; 27.7(d) ; 26.9(3 q) ; 26.1(t) ; 22.5(t) ; 21.5(q) ; 20.9(q) ; 19.4(s) ; 16.9$ (q); $15.6(q)$. MS: $526\left(88, M^{+}\right), 469(30), 389(41), 335(11), 269(23), 257(91), 227(16), 213(20), 199(100), 189$ (40), 183 (32), 161 (23), 147 (25), 135 (81), 121 (42), 105 (44), 93 (25), 81 (25), 69 (16), 55 (17), 41 (17).
(\pm)- δ-Araneosene $(=(1 \mathrm{RS}, 3 \mathrm{E}, 7 \mathrm{E})$-Dolabella- $3,7,11$-triene $=(1 \mathrm{RS}, 3 \mathrm{E}, 7 \mathrm{E})$-12-Isopropyl-1,4,8-trimethylbicyclof9.3.0 tetradeca-3,7,11-triene; (土)-4). Method A [46]: To a soln. of $21 \mathrm{mg}(0.038 \mathrm{mmol})$ of 34 in 0.2 ml of THF were added 0.1 ml of $1 \mathrm{~m} \mathrm{Bu}{ }_{4} \mathrm{NF}$ in THF [44] (Fluka, purum) at 25°. Then was added a suspension of 84 mg of KH (Fluka, pract; ; 20% in oil) and 44 mg of freshly distilled [18]crown-6 (Fluka, purum) in 0.2 ml of THF [45]. After stirring for 10 min at $25^{\circ}, 0.07 \mathrm{ml}(0.483 \mathrm{mmol})$ of $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{POCl}$ (Fluka, pract.) were added, and stirring under Ar was continued for 12 h . The mixture was diluted with 5 ml of THF and added to a cold (-78°) soln. of 80 $\mathrm{mg}(11.5 \mathrm{mmol})$ of Li in 20 ml of liq. NH_{3}. After refluxing for 90 min , the mixture was cooled to -78°, diluted with 30 ml of hexane, and treated portionwise with 1.8 g of $\mathrm{NH}_{4} \mathrm{Cl}$. After evaporation of NH_{3}, the mixture was poured onto 30 ml of sat. aq. $\mathrm{KH}_{2} \mathrm{PO}_{4}$ soln. and worked up with hexane. The crude material resulting after evaporation was adsorbed on 1 g of $10 \% \mathrm{AgNO}_{3} /$ silica gel and the oil removed by elution with hexane. The product was
desorbed by means of elution with hexane $/ \mathrm{Et}_{2} \mathrm{O} 95: 5: 3 \mathrm{mg}(29 \%)$ of $(\pm)-4$, which was identical with a specimen prepared according to Method B (TLC, GC (SE 54 and $O V-1701),{ }^{1} \mathrm{H}-\mathrm{NMR}$; no m.p. depression when mixed with 50% of $(\pm)-4$, prepared according to Method $B)$.

Method B: As described for the preparation of 34 from 33 , starting with $103 \mathrm{mg}(0.338 \mathrm{mmol})$ of (\pm)-7 (see below): $84 \mathrm{mg}(91 \%)$ of (\pm)-4. Waxy crystals after distillation at $100^{\circ} / 0.01$ Torr. M.p. $47-48^{\circ}$. IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, ${ }^{13} \mathrm{C}$-NMR, and MS: superimposable with the spectra obtained for natural (-)-4, isolated from S.araneosa CAIN (see below). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{32}$ (272.48): C 88.16, H 11.84; found: C 88.34, H 11.87.
$(4 \mathrm{E}, 8 \mathrm{E})-2-($ Hydroxymethyl $)-2,5,9$-trimethylcycloundeca-4,8-dien-l-ols ($\mathbf{3 5}$ and 35^{\prime}). As described for 31, with 500 mg (1.89 mmol) of 20 and 6 equiv. of DIBAH: 460 mg of $35 / 35^{\prime}$. The 2 diastereoisomers were separated by chromatography (silica gel, $\mathrm{Et}_{2} \mathrm{O} /$ hexane $4: 1$): $220 \mathrm{mg}(49 \%)$ of the less polar 35 and $186 \mathrm{mg}(41 \%)$ of the more polar 35°.

Data of 35: M.p. 134.5° (sintering at 129°). IR (KBr): 1662, 1630, 1470, 1440, 1430, 1382, 1360, 1345, 1278, $1220,1190,1180,1140,1060,1025,1000,978,968,952,928,900,860,830,635,560 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $4.90(d m, J=10.0,1 \mathrm{H}) ; 4.85(d d d, J=11.5,3.8,1.0,1 \mathrm{H}) ; 3.79\left(d d, J=10.5,3.8,1 \mathrm{H}\right.$, with $\left.\mathrm{D}_{2} \mathrm{O} d, J=10.5\right) ; 3.66$ (tm, $J=7.8,1 \mathrm{H}$, with $\left.\mathrm{D}_{2} \mathrm{O} d m, J=8.5\right) ; 3.33\left(d d d, J=10.5,6.7,1.6,1 \mathrm{H}\right.$, with $\left.\mathrm{D}_{2} \mathrm{O} d d, J=10.5,1.6\right) ; 2.49(d d$, $J=6.5,3.3,1 \mathrm{H}$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; 2.40\left(\right.$ br. $d, J=7.1,1 \mathrm{H}$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; 2.32(\mathrm{~m}, 1 \mathrm{H}) ; 2.21(\mathrm{~m}, 1 \mathrm{H})$; $2.09-2.01(m, 3 \mathrm{H}) ; 1.97(d d, J=12.1,5.4,1 \mathrm{H}) ; 1.84(d d m, J=15.1,10.0,1 \mathrm{H}) ; 1.68(d s e x t ., J=15.1,1.8,1 \mathrm{H})$; $1.59(\mathrm{tm}, J=1.2,3 \mathrm{H}) ; 1.51(\mathrm{~m}, 1 \mathrm{H}) ; 1.42(\mathrm{tm}, J=1.2,3 \mathrm{H}) ; 1.30(\mathrm{~m}, 1 \mathrm{H}) ; 1.30(\mathrm{br} . s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 137.0(\mathrm{~s}) ; 135.2(\mathrm{~s}) ; 124.2(\mathrm{~d}) ; 121.6(\mathrm{~d}) ; 78.2(\mathrm{~d}) ; 70.0(t) ; 41.6(\mathrm{~s}) ; 39.3(t) ; 36.4(t) ; 34.2(t) ; 32.2(t) ;$ $25.0(t) ; 20.9(q) ; 17.6(q) ; 15.8(q)$. MS: $238\left(7, M^{+}\right), 220(12), 207(9), 189$ (53), 161 (27), 147 (19), 123 (27), 121 (47), 119 (37), 109 (53), $107(49), 105(29), 95(83), 93(78), 81$ (100), $79(43), 69(81), 67(82), 55(87), 43(72), 41$ (82). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$ (238.37): C 75.58, H 10.99; found: C 75.85, H 11.23.

Data of 3^{\prime} : M.p. 117-18 ${ }^{\circ}$ (sintering at 112°). IR (KBr):1662, 1630, 1470 (sh), 1455, 1440, 1382, 1360, 1345, $1280,1220,1185,1175,1140,1070,1050,1030,1015,985,968,900,868,825,552,495 .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 4.96(\mathrm{tm}, J=6.4,1 \mathrm{H}) ; 4.90(\mathrm{tm}, J=7.0,1 \mathrm{H}) ; 3.87-3.82\left(\mathrm{~m}, 2 \mathrm{H}\right.$, with $\mathrm{D}_{2} \mathrm{O} \mathrm{tm}, J=4.6,1 \mathrm{H}$, and d, $J=10.9,1 \mathrm{H}) ; 3.51\left(d d, J=10.9,6.9,1 \mathrm{H}\right.$, with $\left.\mathrm{D}_{2} \mathrm{O} d, J=10.9\right) ; 2.73\left(\mathrm{br} . s, 1 \mathrm{H}\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; 2.25(\mathrm{~m}$, $1 \mathrm{H}) ; 2.18-1.94(m, 7 \mathrm{H}$, incl. I exchangeable H$) ; 1.88(d d, J=15.3,8.7,1 \mathrm{H}) ; 1.61(d, J=1.4,3 \mathrm{H}) ; 1.46$ (br. s, $3 \mathrm{H}) ; 1.41-1.37(\mathrm{~m}, 2 \mathrm{H}) ; 0.93(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 136.7(\mathrm{~s}) ; 135.0(\mathrm{~s}) ; 125.1(\mathrm{~d}) ; 122.4(\mathrm{~d}) ; 76.6$ (d); $72.4(t) ; 41.8(s) ; 39.4(t) ; 36.5(t) ; 35.4(t) ; 34.9(t) ; 24.8(t) ; 18.3(q) ; 17.0(q) ; 15.5(q) . \mathrm{MS}: 238\left(8, M^{+}\right), 220$ (12), 207 (7), $189(51), 161(33), 147(19), 123(34), 121(60), 119(36), 109(71), 107(62), 105(30), 95(75), 93(77), 81$ (83), 79 (55), $69(92), 67(81), 55(100), 43(77), 41$ (85). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}(238.37)$: C 75.58, H 10.99; found: C 75.84, H 11.29.

Methyl (4E)-2-Methyl-3-oxo-5-[(1RS,3E,7E)-1,4,8-trimethyl-1l-oxoundeca-3,7-dienyl]pent-4-enoate (38). To a soln. of $558 \mathrm{mg}(2.34 \mathrm{mmol})$ of $\mathbf{3 5} / 35^{\prime}$ in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added 20 ml of a 0.25 m soln. of the modified Dess-Martin reagent in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (see above). After stirring for 15 min at 25° under Ar, most of the solvent was evaporated at $25^{\circ} / \mathrm{ca}$. 100 Torr and the residue taken up in 15 ml of DMF. The resulting mixture was added to a suspension of 8.4 g (25.8 mmol) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and of 6.5 g (45.1 mmol) of methyl 2,2-dimethyl-3-oxobutanoate (37) in 10 ml of DMF. After stirring at 25° for 48 h under Ar , the mixture was worked up with sat. aq. NaCl soln. and $\mathrm{Et}_{2} \mathrm{O}$ and the crude material chromatographed (silica gel, hexane/AcOEt 9:1): $368 \mathrm{mg}(44 \%)$ of $\mathbf{3 8}$. Colorless crystals. M.p. $57-60^{\circ}$ (hexane, at -20°). IR (KBr): 1742, 1700, 1690, 1665 (sh), 1618, 1460, 1448, 1438, 1385, 1375, 1290 , $1250,1190,1070,985,865 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.29(d, J=15.7,1 \mathrm{H}) ; 6.29(d, J=15.7,1 \mathrm{H}) ; 4.87(\mathrm{tm}$, $J=7.0,1 \mathrm{H}) ; 4.79(\mathrm{tm}, J=7.0,1 \mathrm{H}) ; 3.72(s, 3 \mathrm{H}) ; 2.70-2.00(\mathrm{~m}, 10 \mathrm{H}) ; 1.61(\mathrm{br} . s, 3 \mathrm{H}) ; 1.45(\mathrm{br} . s, 3 \mathrm{H}) ; 1.41(s$, $3 \mathrm{H}) ; 1.40(s, 3 \mathrm{H}) ; 1.29$ (br. $s, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $211.6(\mathrm{~s}) ; 196.2(s) ; 174.2(s) ; 150.9$ (br. d); 137.0 $(s) ; 135.3(s) ; 125.6(d) ; 123.1(d) ; 120.4(d) ; 54.8(s) ; 54.6(s) ; 52.5(q) ; 40.8(\mathrm{br} . t) ; 39.2(t) ; 38.1(t) ; 32.0(t) ; 24.2$ (t); 22.5 (br. q); $21.9(2 q) ; 17.7(q) ; 15.7$ (q). MS: $360\left(20, M^{+}\right), 259(24), 231$ (14), 213 (16), 197 (26), 195 (13), 191 (27), 164 (30), $151(56), 149(62), 135(44), 123(74), 121(48), 109(51), 107(57), 105(25), 95(100), 93(35), 91$ (33), 81 (43), 73 (26), 67 (45), 55 (42), 53 (37), 43 (16), 41 (40).
(2RS,4E,8E)-2,5,9-Trimethyl-2-[(E)-4-methyl-3-oxopent-1-enyl]cycloundeca-4,8-dien-1-one (39). To a soln. of $130 \mathrm{mg}(0.361 \mathrm{mmol})$ of 38 in 4 ml of DMF was added a soln. of $482 \mathrm{mg}(1.48 \mathrm{mmol})$ of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in $1 \mathrm{ml} \mathrm{of} \mathrm{H}_{2} \mathrm{O}$. After stirring at $40-50^{\circ}$ for 96 h and evaporation at $40^{\circ} / 0.5$ Torr, the residue was worked up with sat. aq. NaCl soln. and $\mathrm{Et}_{2} \mathrm{O}$ and the crude material chromatographed (silica gel, $\mathrm{Et}_{2} \mathrm{O} /$ hexane $3: 17$): $97 \mathrm{mg}(89 \%$) of 39 . Colorless crystals. M.p. $58.5-59^{\circ}$ (hexane at -20°). IR (KBr): $1700,1665,1618,1460,1450,1440,1408,1385,1340,1122$, $1065,1043,995 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.17(d, J=16.1,1 \mathrm{H}) ; 6.24(\mathrm{dm}, J=16.1,1 \mathrm{H}) ; 4.88(\mathrm{tm}, J=7.0$, $1 \mathrm{H}) ; 4.80(\mathrm{tm}, J=7.0,1 \mathrm{H}) ; 2.87$ (sept., $J=6.9,1 \mathrm{H}) ; 2.70-2.00(\mathrm{~m}, 10 \mathrm{H}) ; 1.62$ (br. $s, 3 \mathrm{H}) ; 1.46$ (br. $s, 3 \mathrm{H}) ; 1.34$ (br. $s, 3 \mathrm{H}) ; 1.14(d, J=6.9,6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 212.0(s) ; 203.6(s) ; 149.4$ (br. d); $136.9(s) ; 135.4$ $(s) ; 126.4(d) ; 125.6(d) ; 120.5(d) ; 54.6(s) ; 40.6(\mathrm{br} . t) ; 39.1(t) ; 38.9(d) ; 38.1(t) ; 31.9(t) ; 24.2(t) ; 22.0(\mathrm{br} . q) ;$
$18.4(2 q) ; 17.8(q) ; 15.7(q)$ MS: $302\left(15, M^{+}\right), 259$ (15), 231 (24), 213 (17), 191 (24), 179 (11), 175 (13), 164 (35), 153 (57), $151(27), 149(53), 139(46), 137(42), 135(36), 123(40), 121(50), 109(69), 107(56), 95(64), 93(41), 91(39), 81$ (50), 79 (37), 71 (48), 55 (51), 43 (100), 41 (39).
($2 \mathrm{RS}, 4 \mathrm{E}, 8 \mathrm{E}$)-2-(4-Methyl-3-oxopentyl)-2,5,9-trimethylcycloundeca-4,8-dien-1-one (7). Method: [49]. In a glove-box $\left(\mathrm{N}_{2}\right)$, a $10-\mathrm{ml}$ flask was charged with $82 \mathrm{mg}(0.271 \mathrm{mmol})$ of 39 and $380 \mathrm{mg}(0.194 \mathrm{mmol})$ of $\left(\mathrm{Ph}_{3} \mathrm{PCuH}_{6}\right.$ (Fluka, purum). To this mixture were added 5 ml of degassed toluene, saturated with $\mathrm{H}_{2} \mathrm{O}$, and 0.35 ml of 1 m aq. $\mathrm{Bu}_{4} \mathrm{~N}\left(\mathrm{HSO}_{4}\right)$. After stirring for 1 h at 25°, additional 195 mg of $\left(\mathrm{Ph}_{3} \mathrm{PCuH}\right)_{6}$ were added, and stirring was continued for 16 h . The resulting mixture was diluted with 100 ml of hexane $/ \mathrm{Et}_{2} \mathrm{O} 1: 2$, filtered through Celite ${ }^{*}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Most of the $\mathrm{Ph}_{3} \mathrm{P}$ was removed by crystallization and the mother liquor chromatographed (silica gel, $\mathrm{Et}_{2} \mathrm{O}$ /hexane $3: 17$): $73 \mathrm{mg}\left(88 \%\right.$) of 7 . Colorless crystals. M.p. 76.5° (hexane at -20°). IR (KBr): 1707, 1695, 1665 (sh), 1640 (sh), 1462, 1450, 1440, 1408, 1385, 1370, 1350, 1085, 812, 550. ${ }^{1} \mathrm{H}$-NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.82-4.70(m, 2 \mathrm{H}) ; 2.80-1.95(m, 13 \mathrm{H}$, incl. $2.59($ sept., $J=6.9,1 \mathrm{H})$); 1.75-1.48 ($m, 2 \mathrm{H}$); $1.59(\mathrm{br}$. $s, 3 \mathrm{H}$) 1.43 (br. $s, 3 \mathrm{H}) ; 1.21$ (br. $s, 3 \mathrm{H}) ; 1.08(d, J=6.9 .6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 215.2(s) ; 214.1(s) ;$ $135.7(s) ; 135.5(s) ; 125.5(d) ; 121.5(d) ; 51.2(s) ; 40.9(d) ; 39.4$ (br. $t) ; 39.1(t) ; 35.7(t) ; 32.5$ (br. $t) ; 32.0(t) ; 24.2$ $(t) ; 20.7(q) ; 18.3(2 q) ; 17.6(q) ; 15.7(q) ; 1 t$ not detected. MS: $304\left(23, M^{+}\right), 286(16), 236(53), 219(14), 218$ (18), $205(14), 187(15), 177(17), 165(16), 159(20), 151(62), 137(39), 135(67), 127(41), 125(64), 123(49), 121(32), 109$ (73), 107 (54), 97 (34), 95 (64), 93 (52), 81 (56), 79 (27), 71 (62), 69 (46), 67 (50), 55 (51), 43 (100), 41 (43).
2. Resolution of Diol 35. To a suspension of 546 mg (2.29 mmol) of the less polar diol 35 in 6 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added 1.5 ml (4.8 mmol) of pentaisopropylguanidine (Merck; 'zur Synthese') and 1 ml of pyridine. To the resulting clear soln. were added $1.52 \mathrm{~g}(7.0 \mathrm{mmol})$ of (-)-camphanoyl chloride (Fhuka, ChiraSelect), and stirring at 25° was continued for 15 h . The solvent was evaporated and the residue chromatographed (silica gel, hexane $/ \mathrm{AcOEt} / \mathrm{Et}_{2} \mathrm{O}$ $13: 4: 3): 645 \mathrm{mg}(47 \%)$ of the apolar component (-) -40 and $620 \mathrm{mg}(45 \%)$ of the more polar diastereoisomer $(+)-41$ after recrystallization and repeated chromatography of the mother liquors.

Data of (-)-40: M.p. $171-172^{\circ}\left(\mathrm{MeOAc} / \mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}=-10.2\left(c=3.44, \mathrm{CHCl}_{3}\right)$. IR (KBr): 1790, 1750, 1730, $1465,1450,1392,1380,1360,1335,1312,1265,1170,1130,1100,1065,1055,970,930 .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 5.49(d, J=8.9,1 \mathrm{H}) ; 5.08(m, 1 \mathrm{H}) ; 5.03(m, 1 \mathrm{H}) ; 4.19(d, J=11.2,1 \mathrm{H}) ; 4.17(d, J=11.2,1 \mathrm{H})$; $2.54-2.42(m, 2 \mathrm{H}) ; 2.35(m, 1 \mathrm{H}) ; 2.23-1.91(\mathrm{~m}, 11 \mathrm{H}) ; 1.76-1.61(m, 3 \mathrm{H}) ; 1.60(\mathrm{br} . s, 3 \mathrm{H}) ; 1.48$ (br. $s, 3 \mathrm{H}) ; 1.45$ $(m, 1 \mathrm{H}) ; 1.12(s, 6 \mathrm{H}) ; 1.10(s, 3 \mathrm{H}) ; 1.09(s, 3 \mathrm{H}) ; 1.08(s, 3 \mathrm{H}) ; 0.98(s, 3 \mathrm{H}) ; 0.96(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 178.4(\mathrm{~s}) ; 178.2(\mathrm{~s}) ; 168.3(\mathrm{~s}) ; 167.6(\mathrm{~s}) ; 136.8(\mathrm{~s}) ; 135.5(\mathrm{~s}) ; 125.4(\mathrm{~d}) ; 120.6(\mathrm{~d}) ; 91.3(\mathrm{~s}) ; 91.1(\mathrm{~s}) ; 78.5(\mathrm{~d}) ;$ $69.6(t) ; 54.9(s) ; 54.8(s) ; 54.2(s) ; 54.1(s) ; 41.4(s) ; 39.2(t) ; 34.9(t) ; 34.5(t) ; 31.0(t) ; 30.6(t) ; 30.1(t) ; 28.92(t) ;$ $28.91(\mathrm{t}) ; 25.1(\mathrm{t}): 20.7(\mathrm{q}) ; 17.7(q) ; 16.9(\mathrm{q}) ; 16.8(2 q) ; 16.7(\mathrm{q}) ; 15.9(\mathrm{q}) ; 9.70(\mathrm{q}) ; 9.69(q)$. MS: $598\left(6, M^{+}\right), 417$ (3), $400(37), 372(16), 202(87), 189(70), 187(49), 173(26), 161(59), 159$ (30), $147(35), 135(40), 133(53), 122(89)$, 119 (49), 109 (66), $107(51), 105(31), 95(40), 93(53), 83$ (100), $79(26), 71(62), 69(26), 67(32), 55(55), 43(22), 41$ (28). Anal. calc. for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{8}$ (598.78): C 70.21, H 8.42; found: $\mathrm{C} 70.23, \mathrm{H} 8.44$.

Data of $(+)-41$: M.p. $142.5-143.5^{\circ}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .[\alpha]_{\mathrm{D}}=+4.7\left(c=3.35, \mathrm{CHCl}_{3}\right)$. IR $(\mathrm{KBr}): 1790,1750$, $1730,1465,1450,1398,1388,1380,1335,1318,1270,1265,1170,1155,1130,1110,1100,1065,965,930 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.48(d, J=8.8,1 \mathrm{H}) ; 5.06(m, 2 \mathrm{H}) ; 4.21(d, J=11.2,1 \mathrm{H}) ; 4.08(d, J=11.2,1 \mathrm{H}) ; 2.56-2.45$ $(m, 2 \mathrm{H}) ; 2.32(\mathrm{~m}, \mathrm{l} \mathrm{H}) ; 2.22-1.93(\mathrm{~m}, 11 \mathrm{H}) ; 1.76-1.63(\mathrm{~m}, 4 \mathrm{H}) ; 1.60(\mathrm{br} . s, 3 \mathrm{H}) ; 1.48(\mathrm{br} . s, 3 \mathrm{H}) ; 1.12(\mathrm{~s}, 6 \mathrm{H}) ; 1.10$ $(s, 3 \mathrm{H}) ; 1.08(s, 3 \mathrm{H}) ; 1.06(s, 3 \mathrm{H}) ; 0.99(s, 3 \mathrm{H}) ; 0.98(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 178.16(s) ; 178.14(s) ;$ $167.99(s) ; 167.72(s) ; 137.0(s) ; 135.4(s) ; 125.6(d) ; 120.5(d) ; 91.24(s) ; 91.17(s) ; 78.2(d) ; 69.9(t) ; 54.87(s) ;$ $54.84(s) ; 54.2(s) ; 54.1(s) ; 41.2(s) ; 39.2(t) ; 34.8(2 t) ; 31.1(t) ; 30.7(t) ; 30.6(t) ; 29.1(t) ; 28.9(t) ; 25.1(t) ; 21.1(q) ;$ $17.8(q) ; 17.0(q) ; 16.89(q) ; 16.86(q) ; 16.79(q) ; 15.8(q) ; 9.70(q) ; 9.64(q)$. Anal. calc. for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{8}(598.78)$: C 70.21, H 8.42; found: C 69.86, H 8.39.

Less Polar Diastereoisomer (-)-35. To a soln. of $595 \mathrm{mg}(0.994 \mathrm{mmol})$ of $(-)-40 \mathrm{in} 37 \mathrm{ml}$ of THF were added 1.07 g of [18]crown-6 (Fluka, purum) and $437 \mathrm{mg}(7.8 \mathrm{mmol})$ of KOH at 25°. After stirring for 10 h , the mixture was diluted with 200 ml of $\mathrm{Et}_{2} \mathrm{O}$ and washed twice with cold aq. 1 N KOH and 5 times with sat. aq. KCl soln. Drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation gave $231 \mathrm{mg}(97 \%)$ of $(-)-35$. Colorless crystals. M.p. $164^{\circ}\left(\mathrm{Et}_{2} \mathrm{O}\right) \cdot[\alpha]_{D}=-5.2$ $\left(c=1.74, \mathrm{CHCl}_{3}\right)$. IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and MS: as for (\pm)- $\mathbf{3 5}$ (see above).
3. Isolation of (-)-3 and (-)-4 from Sordaria araneosa CAIN. A neutral fraction of a mycelium extract of S araneosa Cain^{13}) weighing 700 g was extracted for 16 h at 25° with 11 of hexane containing 0.5% of pyridine. The resulting suspension was filtered through Celite and passed twice through a $7-\mathrm{cm}$ column of silica gel (hexane). The resulting colorless oil (145 g) was distilled in $30-\mathrm{ml}$ portions at $200^{\circ} / 0.1$ Torr and again at $150^{\circ} / 0.1$ Torr. The

[^6]doubly distilled material (18 g) was chromatographed (silica gel, hexane) to give 6.9 g of pure (-)-cycloaraneosene $((-)-3)$ and a crop of 1.02 g containing $c a .60 \%$ of (-)-4 (GC evidence). Repeated chromatography (10% $\mathrm{AgNO}_{3} /$ silica gel, hexane $/ \mathrm{Et}_{2} \mathrm{O} 9: 1 \rightarrow 3: 1$) finally furnished 326 mg of more than 99.5% pure (-)- δ-araneosene ((-)-4).

Data of (-)-4: Waxy crystals. M.p. $62^{\circ} .[\alpha]_{\mathrm{D}}=-127.6(c=3.04$, hexane). IR (KBr): $3050(\mathrm{sh}), 3020(\mathrm{sh})$, 2960, 2940, 2920, 2860, 2850, 2820, 1665, 1642, 1450, 1380, 1370, 1360, 1200, 1180, 1110, 830, 800, 545, 490. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.77$ (br. $\left.d d, J=10.9,5.0,1 \mathrm{H}\right) ; 4.56(\mathrm{~m}, 1 \mathrm{H}) ; 2.76($ sept., $J=6.8,1 \mathrm{H}) ; 2.29-2.14$ ($m, 5 \mathrm{H}$); 2.09-1.89 ($m, 5 \mathrm{H}$); 1.80-1.71 ($m, 3 \mathrm{H}$); 1.52 (br. $s, 3 \mathrm{H}$); $1.49(\mathrm{~m}, 1 \mathrm{H}) ; 1.37$ (br. $s, 3 \mathrm{H}$); $1.09(d, J=6.8$, $3 \mathrm{H}) ; 0.94(d, J=6.8,3 \mathrm{H}) ; 0.91(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 143.7(s) ; 138.8(s) ; 137.8(s) ; 129.2(s) ;$ $127.5(d) ; 124.8(d) ; 51.5(s) ; 40.9(t) ; 38.2(t) ; 37.1(t) ; 34.7(t) ; 27.6(d) ; 27.4(q) ; 27.1(t) ; 26.1(t) ; 21.8(t) ; 21.4$ (q); $20.8(q) ; 16.8(q) ; 15.7(q)$. MS: $272\left(38, M^{+}\right), 257(7), 229(21), 189(19), 175(13), 161(36), 147(11), 135(100)$, $121(41), 119(16), 107(21), 105(16), 95(12), 93(25), 91(18), 81(12), 79(13), 77(10), 55(12), 41(14)$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{32}$ (272.48): C 88.16, H 11.84; found: C $87.87, \mathrm{H} 11.88$.

Data of $(-)-3$: Colorless oil. $[\alpha]_{\mathrm{D}}=-51.1(c=8.0$, hexane $)$. IR $\left(\mathrm{CCl}_{4}\right): 3065,2955,2930,2900,2860,2840$, $1635,1455,1378,1200,1182,1100,880 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 4.79(d, J=1.8,1 \mathrm{H}) ; 4.69($ br. $s, 1 \mathrm{H}) ; 2.61$ $($ sept., $J=6.8,1 \mathrm{H}) ; 2.43(d d d t, J=14.0,6.0,5.0,1.5,1 \mathrm{H}) ; 2.29(d d d d, J=13.0,6.0,4.5,1.5,1 \mathrm{H}) ; 2.19-2.06(\mathrm{~m}$, $4 \mathrm{H}) ; 2.02($ sext. $d, J=7.0,2.2,1 \mathrm{H}) ; 1.89-1.77(\mathrm{~m}, 3 \mathrm{H}) ; 1.61-1.23(\mathrm{~m}, 7 \mathrm{H}) ; 0.98(d, J=6.8,3 \mathrm{H}) ; 0.90(d, J=6.8$, $3 \mathrm{H}) ; 0.88(s, 3 \mathrm{H}) ; 0.82(d, J=7.0,3 \mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 4.93(d, J=1.8,1 \mathrm{H}) ; 4.83$ (br. $\left.s, 1 \mathrm{H}\right) ; 2.60$ $($ sept., $J=6.8,1 \mathrm{H}) ; 2.39(d t t, J=14.0,5.5,1.5,1 \mathrm{H}) ; 2.23(d t d, J=13.0,5.5,1.0,1 \mathrm{H}) ; 2.21-2.14(m, 3 \mathrm{H}) ; 2.08(d t$, $J=10.0,8.0,1 \mathrm{H}) ; 2.00($ sext. $d, J=7.0,2.4,1 \mathrm{H}) ; 1.93-1.76(m, 3 \mathrm{H}) ; 1.69(d t, J=12.3,9.2,1 \mathrm{H}) ; 1.64-1.60(m$, $2 \mathrm{H}) ; 1.55(d d, J=14.6,1.7,1 \mathrm{H}) ; 1.48(d d d, J=12.3,7.5,2.9,1 \mathrm{H}) ; 1.40(d d, J=14.6,8.0,1 \mathrm{H}) ; 1.29(m, 1 \mathrm{H}) ; 1.03$ $(d, J=6.8,3 \mathrm{H}) ; 0.97(s, 3 \mathrm{H}) ; 0.94(d, J=6.8,3 \mathrm{H}) ; 0.82(d, J=7.0,3 \mathrm{H})$. NOE $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: irrad. at 1.40 $\left(\mathrm{H}_{\beta}-\mathrm{C}(1)\right) \rightarrow 5$ signals at $2.08(\mathrm{H}-\mathrm{C}(6)), 1.59(\mathrm{H}-\mathrm{C}(2)), 1.55\left(\mathrm{H}_{\alpha}-\mathrm{C}(1)\right), 0.97\left(\mathrm{CH}_{3}(19)\right), 0.82\left(\mathrm{CH}_{3}(17)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 155.7(s) ; 142.2(s) ; 138.7(s) ; 110.4(t) ; 50.7(s) ; 49.2(d) ; 47.1(d) ; 40.4(t) ; 39.1(d) ; 36.0(t) ;$ $35.8(t) ; 33.0(t) ; 31.7(t) ; 27.4(d) ; 27.1(t) ; 26.8(q) ; 24.1(t) ; 21.3(q) ; 21.2(q) ; 16.3(q) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): 155.7(s) ; 142.5(s) ; 139.1(s) ; 110.8(t) ; 51.0(s) ; 49.4(d) ; 47.7(d) ; 41.1(t) ; 39.7(d) ; 36.6(t) ; 36.2(t) ; 33.5$ $(t) ; 32.2(t) ; 27.8(d) ; 27.4(t) ; 27.2(q) ; 24.2(t) ; 21.5(q) ; 21.3(q) ; 16.4(q) . \operatorname{HETCOR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 110.8 / 4.93,4.83$; $49.4 / 2.08 ; 47.7 / 1.59,41.1 / 1.55,1.40 ; 39.7 / 2.00 ; 36.6 / 2.26,2.17 ; 33.5 / 1.80,1.29 ; 32.2 / 1.90,1.62 ; 27.8 / 2.60 ; 27.4 /$ $2.23,2.17 ; 27.2 / 0.97 ; 24.2 / 2.39,1.82 ; 21.5 / 1.03 ; 21.3 / 0.94 ; 16.4 / 0.82$. MS: $272\left(45, M^{+}\right), 257(47), 244(13), 229$ (100), $216(17), 187(10), 175(37), 161(31), 147(25), 135(62), 121(43), 119(28), 107(34), 105(32), 95(34), 93(36)$, 91 (39), 81 (27), 79 (28), 77 (20), $55(26), 41$ (29). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{32}$ (272.48): C 88.16, H 11.84 ; found: C 87.88 , H 11.98 .

An earlier investigation following a similar protocol had led to the isolation of $(-)-3$ and $(-)$ - β-araneosene $((-)-5)[6] .(-)-5:[\alpha]_{D}=-102\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR (film): 3050, 1660, 1387, 1375, 910, 892, 879, 855, 832. ${ }^{1} \mathrm{H}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{CDCl}): 5.25$ (br. $\left.d d, J=10.9,5.0,1 \mathrm{H}\right) ; 4.90(\mathrm{~m}, 1 \mathrm{H}) ; 2.09-1.89(\mathrm{~m}, 15 \mathrm{H}) ; 1.67-1.62(\mathrm{~m}$, $9 \mathrm{H}) ; 1.46(\mathrm{br} . s, 3 \mathrm{H}) ; 1.14(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(25 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 142.6(s) ; 134.7(\mathrm{~s}) ; 132.4(\mathrm{~s}) ; 129.4(\mathrm{~d}) ; 126.1(d) ;$ $122.0(\mathrm{~s}) ; 48.5(\mathrm{~s}) ; 42.1(\mathrm{~d}) ; 40.3(t) ; 40.0(t) ; 38.8(t) ; 38.3(t) ; 28.3(t) ; 27.9(t) ; 24.4(t) ; 23.7(q) ; 21.7(q) ; 21.3(q) ;$ $16.3(q) ; 15.3(q)$. MS: $272\left(12, M^{+}\right), 229(14), 189(22), 161(32), 136(87), 135(63) 121(100) 107(47), 93(41)$ Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{32}$ (272.48): C 88.16, H 11.84; found: C $88.00, \mathrm{H} 12.09$.

REFERENCES

[1] L. Jenny, Ph. D. Thesis, ETH Zürich, No. 10920, 1994.
[2] D. Hauser, H.P. Sigg, Helv. Chim. Acta 1971, 54, 1178.
[3] A. M. Spichtig, A. Vasella, Helv. Chim. Acta 1971, 54, 1191.
[4] A. Vasella, Ph.D. Thesis, ETH Zürich, No. 4814, 1972.
[5] O. Mills (Department of Chemistry, University of Manchester, UK), unpublished results.
[6] H.-J. Borschberg, Ph. D. Thesis, ETH Zürich, No. 5578, 1975.
[7] N. Kato, H. Takeshita, S. Tanaka, Chem. Lett. 1986, 1989.
[8] R.P. Robinson, L. N. Mander, J. Org. Chem. 1991, 56, 3595; N. Kato, X. Wu, H. Takeshita, Chem. Express 1991, 6, 687.
[9] N. Kato, S. Kusakabe X. Wu, M. Kamitamari, H. Takeshita, J. Chem. Soc., Chem. Commun 1993, 1002.
[10] L. Ruzicka, Experientia 1953, 9. 357.
[11] T. Rios, L. Quijano, J. Calderon, J. Chem. Soc., Chem. Commun. 1974, 728.
[12] C. Ireland, D. J. Faulkner, J. Finer, J. Clardy, J. Am. Chem. Soc. 1976, 98, 4664.
[13] a) C. Ireland, D.J. Faulkner, J. Org. Chem. 1977, 42, 3157; b) H. H. Sun, W. Fenical, Phytochemistry 1979, 18, $340 ;$ c) W. Fenical, H. L. Sleeper, V. J. Paul, M. O. Stallard, H. H. Sun, Pure Appl. Chem. 1979, 5I, 1865; d) V. Amico, G. Oriente, M. Piattelli, C. Tringali, E. Fattorusso, S. Magno, L. Mayol, Tetrahedron 1980, 36, 1409 ; e) V. Amico, R. Currenti, G. Oriente, M. Piattelli, C. Tringali, Phytochemistry 1981, 20,848 ; f) S. A. Look, W. Fenical, J. Org. Chem. 1982, 47, 4129; g) A. G. González, J.D. Martín, M. Norte, R. Pérez, V. Weyler, S. Rafii, J. Clardy, Tetrahedron Lett. 1983, 24, 1075; h) C. Tringali, M. Piattelli, G. Nicolosi, Tetrahedron 1984, 40,$799 ;$ i) S. De Rosa, S. De Stefano, S. Macura, E. Trivellone, N. Zavodnik, ibid. 1984, 40, 4991; k) A. Matsuo, K. Uohama, S. Hayashi, J.D. Connolly, Chem. Lett. 1984, 599; 1) M. Kobayashi, B. W. Son, T. Fujiwara, Y. Kyogoku, I. Kitagawa, Tetrahedron Lett. 1984, 25, 5543; m) C. Tringali, G. Nicolosi, M. Piattelli, C. Rocco, Phytochemistry 1984, 23, 1681 ; n) C. Tringali, G. Oriente, M. Piattelli, G. Nicolosi, J. Nat. Prod. 1984, 47, 615; o) A. Matsuo, K-i. Yoshida, K. Uohama, S. Hayashi, J. D. Connolly, G. A. Sim, Chem. Lett. 1985, 935 ; p) C. Tringali, G. Oriente, G. Nicolosi, J. Nat. Prod. 1985, 48, 484; q) S. Huneck, G. A. Baxter, A. F. Cameron, J. D. Connolly, L. J. Harrison, W. R. Phillips, D. S. Rycroft, G. A. Sim, J. Chem. Soc., Perkin Trans. 1 1986, 809 ; r) C. B. Rao, K. C. Pullaiah, R. K. Surapaneni, B. W. Sullivan, K. F. Albizati, D. J. Faulkner, H. Cun-heng, J. Clardy, J. Org. Chem. 1986, 51, 2736; s) M. Kobayashi, B. W. Son, Y. Kyogoku, I. Kitagawa, Chem. Pharm. Bull. 1986, 34, 2306; t) J.D. Connolly, G. A. Sim, A. Matsuo, Acta Crystallogr., Sect. C 1987, 43, 1422; u) K. Mori, K. Iguchi, N. Yamada, Y. Yamada, Y. Inouye, Tetrahedron Lett. 1987, 28 , 5673 ; v) A. G. González, F. Cataldo, J. Fernández, M. Norte, J. Nat. Prod. 1987, 50, 1158; w) K. Mori, K. Iguchi, N. Yamada, Y. Yamada, Y. Inouye, Chem. Pharm. Bull. 1988, 36, 2840; x) A. Matsuo, K.-I. Kamio, K. Uohama, K.-I. Yoshida, J. D. Connolly, G. A. Sim, Phytochemistry 1988, 27, 1157; y) Y. Asakawa, X. Lin, M. Tori, K. Kondo, ibid. 1990, 29, 2597; z) A. D. Wright, G. M. König, O. Sticher, Tetrahedron 1990, 46, 3851 ; aa) J. Cáceres, M. E. Rivera, A.D. Rodríguez, ibid. 1990, 46, 341 ; ab) A. D. Wright, J.C. Coll, I. R. Price, J. Nat. Prod. 1990, 53, 854; ac) J. Su, Y. Zhong, K. Shi, Q. Cheng, J. K. Snyder, S. Hu, Y. Huang, J. Org. Chem. 1991, 56, 2337; ad) J. Shin, W. Fenical, ibid. 1991, 56, 3392; ae) C. B. Rao, G. Trimurtulu, D.V. Rao S.C. Bobzin, D. M. Kushlan, D. J. Faulkner, Phytochemistry 1991, 30, 1971; af) G. M. König, A.D. Wright, O. Sticher, ibid. 1991, 30, 3679; ag) J.-Y. Su, Y.-L. Zhong, L.-M. Zeng, Chinese J. Chem. 1992, 10, 155; ah) C. Subrahmanyan, C. V. Rao, V. Anjaneyulu, P. Satyanarayana, P. V. Subba Rao, R. S. Ward, A. Pelter, Tetrahedron 1992, 48, 3111; ai) K. M. Mohamed, K. Ohtani, R. Kasai, K. Yamasaki, Phytochemistry 1994, 37, 495; ak) C. B. Rao, G. Trimurtulu, C. Seedhara, D. V. Rao, S. Bobzin, D. J. Faulker, ibid. 1994, 37, 509.
[14] H. Yamamoto, H. Nozaki, S. Hashimoto, A. Itoh, Y. Kitagawa, J. Am. Chem. Soc. 1977, 99, 3864.
[15] B.M. Trost, Angew. Chem. 1989, 101, 1199.
[16] P. A. Grieco, A. Yoshikoshi, N. Miyashita, J. Org. Chem. 1977, 42, 3772.
[17] K. B. Sharpless, T. R. Verhoeven, Aldrichim. Acta 1979, 12, 63.
[18] H. Shirahama, T. Matsumoto, T. Ohtsuka, K. Hayano, B. R. Chhabra, Chem. Lett. 1981, 1703.
[19] E. J. Corey, K. Achiwa, J.A. Katzenelienbogen, J. Am. Chem. Soc. 1969, 91, 4318; E.J. Corey, J. A. Katzencllenbogen, J. Org. Chem. 1972, 37, 1441.
[20] R. Iriye, T. Uno, I. Ohwa, A. Konishi, Agric. Biol. Chem. 1990, 54, 1841.
[21] V. A. Kurkin. G. G. Zapesochnaya, A. N. Shchavlinskii, Chem. Nat. Cpd. (Engl. Transl.) 1986, 21, 593; V. A. Kurkin, G. G. Zapesochnaya, ibid. 1987, 22, 607.
[22] J. E. McMurry, J. R. Matz, K. L. Kees, Tetrahedron 1987, 43, 5489.
[23] E.J. Corey, C. U. Kim, M. Takeda, Tetrahedron Lett. 1972, 4339.
[24] M. Stiles, D. Wolf, G. V. Hudson, J. Am. Chem. Soc. 1959, 81, 628.
[25] L. Weiler, S. N. Huckin, J. Am. Chem. Soc. 1974, 96, 1082.
[26] a) R. M. Kellogg, B. J. Van Keulen, O. Piepers, J. Chem. Soc., Chem. Commun. 1979, 285; b) R. M. Kellogg, W.H. Kruizinga, ibid. 1979, 286; c) R. M. Kellogg, J. Buter, ibid. 1980, 466; d) R.M. Kellogg, W. H. Kruizinga, J. Am. Chem. Soc. 1981, 103, 5183; e) R. M. Kellogg, J. Buter, J. Org. Chem. 1981, 46, 4481; f) R. M. Kellogg, W. H. Kruizinga, G. Dijkstra, ibid. 1987, 52, 4230.
[27] K. Ziegler, 'Houben-Weyl', Thieme, Stuttgart, 1955, Vol. IV/2, p. 733; L. Mandolini, in ‘Advances in Physical Organic Chemistry', Eds. V. Gold and D. Bethell, Academic Press, New York, 1986, Vol. 22, pp. 1-111.
[28] a) L. Mandolini, C. Galli, M. Crescenzi, J. Phes. Org. Chem. 1990, 3, 428; b) L. Mandolini, C. Galli, J. Org. Chem. 1991, 56, 3045.
[29] a) P. Deslongchamps, R. Pitteloud, A. Marinier, K. Bättig, Tetrahedron Lett. 1987, 28, 5253; b) P. Deslongchamps, Aldrichim. Acta 1991, 24, 43.
[30] M. Hesse, S. Bienz, Helv. Chim. Acta 1987, 70, 2146.
[31] Y. Tsuda, Y. Sakai, Synthesis 1981, 119.
[32] M. Pfau, G. Revial, A. Guigant, J. D'Angelo, J. Am. Chem. Soc. 1985, 107, 273.
[33] H. Weingarten, J.P. Chupp, W. A. White, J. Org. Chem. 1967, 32, 3246.
[34] J. C. Pommier, C. Stetin, B. DeJeso, Synth. Commun. 1982, 12, 495.
[35] J. K. Whitesell, M. A. Whitesell, J. Org. Chem. 1977, 42, 377.
[36] D. Enders, in 'Asymmetric Synthesis', Ed. J. D. Morrison, Academic Press, Orlando, 1984, Vol. 3, pp. 275339.
[37] D. Seebach, Angew. Chem. 1988, 100, 1685.
[38] W. Wieringa, H. I. Skulnik, J. Org, Chem. 1979, 44, 310,
[39] R. E. Ireland, D. M. Obrecht, Helv. Chim. Acta 1986, 69, 1273.
[40] R. J. Linderman,, D. M. Graves, J. Org. Chem. 1989, 54, 661.
[41] J.C. Martin, D. B. Dess, J. Org. Chem. 1983, $48,4155$.
[42] J. E. McMurry, T. Lectka, J. G. Rico, J. Org. Chem. 1989, 54, 3748.
[43] M. Diggelmann, Ph. D. Thesis, ETH Zürich, No.9732, 1992.
[44] H. Gerlach, Helv. Chim. Acta 1977, 60, 3039.
[45] P.L. Fuchs, T.F. Braish, Synth. Commun. 1986, 16, 111.
[46] R. E. Ireland, D. C. Muchmore, U. Hengartner, J. Am. Chem. Soc. 1972, 94, 5098.
[47] E. Winterfeldt, Synthesis 1975, 617.
[48] F. Vögtle, P. Mayenfels, F. Luppertz, Synthesis 1984, 580.
[49] J. M. Stryker, W.S. Mahoney, D. M. Brestensky, J. Am. Chem. Soc. 1988, 110, 291.
[50] R. E. Dohner, A. H. Wachter, W. Simon, Helv. Chim. Acta 1967, 50, 2199.

[^0]: ${ }^{1}$) Part of the Ph. D. thesis of L.J. [1].

[^1]: ${ }^{2}$) This concept formed the basis of successful model syntheses of this skeleton [8] and for a recent total synthesis of the methyl ester of $(-)-1$ [9].
 ${ }^{3}$) At the time of our earlier investigations (1974), there was no precedent for this bicyclic skeleton within the diterpene class of natural products, the only analogous case being represented by the sesterterpene albolineol [11], and we suggested to name this framework 'araneosene' [6]. This proposal gained no acceptance, however, and the corresponding saturated skeleton was baptized 'dolabellane' shortly afterwards [12]. A wide variety of natural products endowed with this skeleton has since been isolated from natural - mostly marine - sources [13]
 ${ }^{4}$) The same structure was proposed later by Shin and Fenical [13u] for a metabolite isolated from the Caribbean gorgonian Eunicea laciniata Duchassaing and Michelotti (for a discussion, see below).

[^2]: ${ }^{5}$) This compound was synthesized before by Yamamoto et al. [14] who followed a similar strategy, but used a Pd^{0}-catalyzed cyclization to construct the 11 -membered macrocycle. Since this method is known to cause olefin isomerization [15] which we wanted to avoid under all circumstances, we took recourse to an alternative cyclization procedure.

[^3]: ${ }^{6}$) This compound was described before in two communications lacking experimental detail and spectroscopic data [19].
 ${ }^{7}$) For a precedent, see [22].
 ${ }^{8}$) Cleavage with MgCl_{2} in HMPA (hexamethylphoshoric triamide) at $140-150^{\circ}$ [31] produced 22 in 82% yield. However, in contrast to Hesse's method, the isolated product was contaminated with some 20% of an undesired (E, Z)-double-bond isomer.

[^4]: ${ }^{9}$) The authors would like to thank Dr. M. Diggelmann [43] for reagents and his advice concerning some of the intricacies of this reaction.
 ${ }^{10}$) The reduction of 20 was reported to produce a single diastereoisomer (m.p. 128°) in 96% yield [14]. Our diols melted at 117.5° and 134.5°, respectively, and a comparison of the reported ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data with the present values clearly shows that the earlier workers also must have had obtained a mixture 35 and 35^{\prime}, which - in addition - was contaminated with some undefined impurities.
 ${ }^{11}$) For a successful application of CsOH to bring about aldol condensations, see [48].

[^5]: ${ }^{12}$) The task to determine the position and geometry of trisubstituted double bonds within medium-sized rings by NMR methods is far from trivial due to unpredictable shielding effects. In our case, the intermediates in both syntheses were exposed only one time to (very mild!) acidic conditions (step e) in Scheme 3 and step f) in Scheme 4). In both cases, the configuration of the resulting acyclic (!) products 18 and 29, respectively, was shown by ${ }^{13} \mathrm{C}-\mathrm{NMR}$ to be unaltered, i.e. (E, E).

[^6]: ${ }^{13}$) This and other samples were gratifyingly provided to Prof. D. Arigoni, Laboratorium für Organische Chemie, ETHZ, ca. 30 years ago by Drs. D. Hatser and H. P. Sigg (Sandoz AG, Basel).

