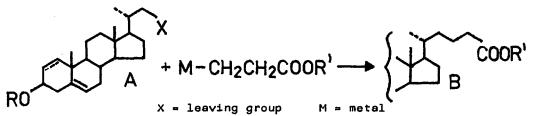
A NICKELACYCLE AS PROPIONIC ACID EQUIVALENT FOR CARBON-CARBON COUPLING REACTIONS; APPLICATION TO THE SYNTHESIS OF C₂₅ STEROID CARBOXYLIC ACIDS


Bruno Schönecker^{a,+}, Dirk Walther^{b,+}, Reinald Fischer^b, Bernd Nestler^b, Gabriele Bräunlich^b, Hermann Eibisch^a, Peter Droescher^c

a Central Institute of Microbiology and Experimental Therapy,

- Academy of Sciences of the GDR, DDR-6900, Jena
- b Department of Chemistry, Friedrich Schiller University, DDR-6900,Jena c Division of Research and Development, VEB Jenapharm, DDR-6900,Jena

<u>Summary:</u> B-Substituted propionic acids are prepared in good yields by carbon-carbon coupling reaction of the nickelacycle <u>1</u> with organic iodides and anhydrous manganese(II) iodide. This new reaction is used to the synthesis of C₂₅ steroid carboxylic acids from C₂₂ steroid iodides.

In our synthetic work on vitamin- D_3 metabolites and analogs we became interested in a facile method of synthesising C_{25} steroids with a carboxylic acid function (B), starting with the C_{22} steroids (A) after the following scheme:

The yields of the alkylation reactions of the known propionate homoenolate C_3 building blocks were unsatisfactory for our aim. Furthermore, the synthesis of the C_3 equivalents in some cases is cumbersome.¹ Unfortunately, the recently described zinc propionate homoenolates, possessing a great synthetic potential, cannot be alkylated.^{2,3} Therefore, also in connection with our interest in the reactivity of nickel complexes, we have investigated the alkylation of the nickelacycle <u>1</u>. This complex can be prepared from succinic anhydride and (α, α ¹-dipyridyl)-(cycloocta-1,5-diene)nickel⁴ or directly from nickel acetylacetonate, triethyl aluminium and succinic anhydride.⁴

In a first attempt methyl iodide and <u>1</u> were heated in methanol. After acidic hydrolysis and esterification with ethanol ethyl butyrate was detected by GC.

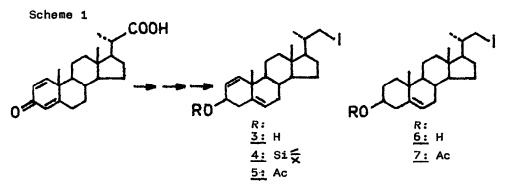
$$\frac{CH_2 - CH_2}{I} \sim \frac{Ni(dipy) + CH_3!}{I} \sim \frac{[I - Ni - OOCCH_2CH_2CH_3]}{I}$$

$$\frac{HCL/H_2O}{I} [HOOCCH_2CH_2CH_3] \xrightarrow{EtOH/H^+} EtOOCCH_2CH_2CH_3$$

Use of methyl p-toluenesulfonate instead of methyl iodide provided only a small amount of ethyl butyrate.

In order to prove the generality of the alkylation reaction of $\underline{1}$ some other organic iodides were used (Table 1). As an example for a secondary iodide cyclohexyl iodide (2.6 mmol) in DMF (50 ml) was shaken with $\underline{1}$ (2.6 mmol) for 8 hours in a dry argon atmosphere. After hydrolysis with diluted hydrochloric acid the resulting 3-cyclohexyl propionic acid⁵ was isolated by extraction with ether and NaHCO₃ solution (0.55 mmol $\approx 22\%$ yield). We tried to increase the yield by addition of equimolar amounts of an anhydrous metal salt. With manganese(II) iodide, the yield rose to 69%.The analogous reaction of cyclohexyl bromide with MnI₂ and $\underline{1}$ gave only a small amount of the desired acid.

The reaction of ethyl iodide (entry 3) is remarkable in view of the nearly quantitative yield of valeric acid. This result suggests that a possible ß-hydride elimination does not take place.


Iodobenzene does not react, this might be a hint to the necessity of an iodine bond to a ${\rm sp}^3$ carbon atom.

entry	halide	product	yield [%]
1	\bigcirc -i	Стоон	69
2	\bigvee (without MnI ₂)		22
3	\sim		> 90 ^b
4	\sum	CODEt ⁶	88 [°]
5		no reaction	-

Table 1. Synthesis of 3-substituted propionic acids from organic iodides and (dipy) $Ni(CH_2CH_2COO)$ (1)/MnI₂^a)

a standard conditions: equimolar amounts of R-I, <u>1</u> and MnI₂, DMF, r.t. b GC determination c esterification with EtOH/H₂SO₄

The steroid iodides necessary for our further investigations were prepared from the $\rm C_{22}$ acid $\underline{2}_{\bullet}^{\,\,7}$

For the complete reaction of the steroid iodides with <u>1</u> a slight excess of <u>1</u> and MnI_2 was used. The expected acids or their methyl esters (after reaction with diazomethane) were obtained in good yields (Scheme 2 and Table 2).⁸

Interestingly, some additional functions in the steroid molecule are stable under the reaction conditions (hydroxyl or ester groups, even an allylic hydroxyl group and the silylated derivative). In contrast, the allylic acetate in compound 5 is not inert.

Scheme 2

R0 3.4.6.7

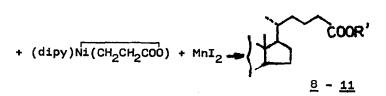


Table 2

entry	steroio iodide	d mp (°C)	product	substit R	uent R'	yield (%)	mp (°C)
1	3	142-147	8	H, 4 ¹	CHz	79	103-105
2	<u>4</u>	193-194	2	S1 €,4 1	CH ₃	88	104-110
3	<u>6</u>	172-174	<u>10</u>	н	H1Q	78	204-206
4	<u>7</u>	170-174	<u>11</u>	Ac	сн311	91	106-110

Unlike earlier methods¹⁰⁻¹³ C_{25} steroid carboxylic acids are now available in a one-pot procedure from C_{22} steroids. The compounds are useful for the preparation of 25,25-dialkyl-25-hydroxy compounds,^{12,13} intermediates for the synthesis of analogs of vitamin-D₃ metabolites with a good dissociation between calcium regulating and cell differentiation effect.¹³

REFERENCES AND NOTES

- 1. J.C. Stowell, Chem. Rev. 1984, 84, 409
- E. Nakamura, S. Aoki, K. Sekiya, H. Oshino and I. Kuwajima, J. Am. Chem. Soc. 1987, 109, 8056
 After completion of our work the reaction of ethyl acrylate with
- 3. After completion of our work the reaction of ethyl acrylate with alkyl halides and a nickel⁰ catalyst, giving saturated ethyl esters, has been described (R. Sustmann, P. Popp and P. Holl, Tetrahedron Lett. 1989, 30, 689).
- Lett. 1989, <u>30</u>, 689). 4. E. Uhlig, G. Fehske and B. Nestler, Z. anorg. allgem. Chemie 1980, <u>465</u>, 141; D. Walther, R. Fischer, unpublished results
- 5. G.S. Hiers and R. Adams, J. Am. Chem. Soc. 1926, 48, 2385: mp. 15 16 °C. The structure was confirmed by ¹H-NMR and ¹³C-NMR spectra.
- 6. W. Poetsch, Liebigs Ann. Chem. 1883, 218, 56: bp. 181,5–182,5°C. 7. B. Schönecker, P. Droescher, C. Müller and U. Hauschild, DD 242 409
- 7. B. Schönecker, P. Droescher, C. Miller and G. Hauschild, DD 242 403 and DD 251 139; H.-J. Siemann, S. Ring, B. Schönecker and M. Rau, DD 261 790 and unpublished results. The structures of the new compounds were established by ¹H-NMR spectroscopy and combustion analytical data. As an example for the 22-iodides the spectrum of 4 is given (100 MHz, CDCl₃): 0,08 (s, 6H, SiCH₃), 0,73 (s, 3H, 18-H), 0,90 (s, 9H, tert. Bu), 1,06 (d, J = 6 Hz, 3H, 21-H), 1,08 (s, 3H, 19-H), 3,09-3,39 (m, 2H, CH₂I), 4,1-4,3 (m, 1H, 30-H), 5,38 (m, 1H, 6-H), 5,46 (d,J= 10 Hz,1H;1-H) and 5,71 (dd, J₁ = 10 Hz, J₂ = 2 Hz, 1H, 2-H), AB system.
- 8. Standard procedure: Steroid iodide (1-2 mmol), DMF (10-20 ml), 1 (1,6 mmol per mmol steroid), and MnI₂ (1,3 mmol per mmol steroid) were stirred at r.t. for 48 h⁹ or treated with ultrasound (cleaner) for 5 h in a dry argon atmosphere. The solvent was removed by distillation <u>in vacuo</u>. The residue was treated with diluted hydrochloric acid and diethyl ether. After washing the ether solution with water the steroid acid can be isolated or esterificated with CH₂N₂. Recrystallization provided pure products. ¹H-NMR of <u>9</u>: (100 MHz, CDCl₃) 0,08 (s, 6H, SiCH₃), 0,68 (s, 3H, 18-H), 0,90 (s, 9H, t-Bu), 0,93 (d, J = 7 Hz, 2H, 21-H), 1,08 (s, 3H, 19-H), 3,66 (s, 3H, COCCH₃), the further downfield signals are practically identical with those of compound 4.
- identical with those of compound 4. 9. In some cases a small amount of a 20-methylene steroid, formed by elimination, could be isolated after chromatography. By using ultrasound these compounds could not be detected.
- 10. E.T. Kaiser, DE-OS 28 30 019: mp. 213-214°C.
- 11. J.A. Campbell, D.M. Squires and J.C. Babcock, Steroids 1969, <u>13</u>, 567: mp. 110–112,5^oC.
- 12. H. Sai, S. Takatsuto, N. Hara and N. Ikekawa, Chem. Pharm. Bull. 1985, <u>33</u>, 878.
- 13. T. Eguchi, H. Sai, S. Takatsuto, N. Hara and N. Ikekawa, Chem. Pharm. Bull. 1988, <u>36</u>, 2303.

(Received in Germany 2 November 1989)