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Abstract: In the presence of near stoichiometric amount of molecular
oxygen, various alkyl halides were converted to the corresponding
alcohols in high yields through aerobic radical reaction promoted by a
Buy(+-Bu)SnCl/NaBH3CN catalytic system. Isotope-labeled alcohols
were prepared with 180, and 170, without loss of the isotopic purities
of the starting oxygen gases.

Molecular oxygen has found wide applications in organic synthesis.
Molecular oxygen, whose solubility in most solvents is low,! is usually
used in a large excess regardless of the actual stoichiometry of the
reaction. Here we report our finding that an organotin chloride-
catalyzed conversion of alkyl halides into alcohols can be achieved most
efficiently with only a near stoichiometric amount of molecular oxygen
rather than excess. This stoichiometric aerobic reaction finds its utility
in an efficient synthesis of 180- and 170-labeled alcohols by the use of
180, and 170, gases. Since the current oxygen-isotope sources and
chemical reactions available for the preparation of oxygen-labeled
organic compounds are limited, the present reaction will provide a new
practical entry to the preparation of isotope-labeled alcohols.?

During the course of our studies on aerobic halide-to-alcohol
conversion, of which we reported a stoichiometric version previously (2
equiv of Bu3SnH and excess Q7),3-3 we found that the reaction (eq 1)
can be carried out best with near stoichiometric molecular oxygen (1-2
equiv diluted with Ny) in the presence of small amouts of AIBN (1
mol%) and BuzSnCl or Buy(~-Bu)SnCl (5 mol%), and a stoichiometric
amount of a reducing agent (NaBH3CN, 2 equiv).6.7 The use of a
limited amount of oxygen turned out to be especially important in
reducing the amount of AIBN# and the tin catalyst. The selection of the
reaction temperature (60 °C in BuOH) was also important.
Comparison data obtained for the reactions of secondary alkyl iodide 1a
are summarized in Table 1. Under continuous bubbling of air, the
reaction with 5 mol % of Bu3SnCl stopped before completion, giving,
after 16 h, only 34% of the desired alcohol (2a) together with 11% of
the reduction product (3a) (entry 1). Notably, the reaction under the
same conditions except for the use of an only near stoichiometric
amount of molecular oxygen (O2:N» = 1:4) led to complete conversion
of the halide and gave the alcohol in nearly quantitative yields (93 and
90% with 2.0 and 1.5 equiv of Oy, respectively; entries 2, 3).8

Table 1. Aerobic Conversion of PhCH,CH,CHIBu (1a) to
PhCH,CH,;CH(OH)Bu (2a) Promoted by Bu3;SnCl/NaBH3CN
Catalytic System*

convof  yield of yield of

entry 0,, equiv (condition) labc % 2a° % 3a° %
1 (bubling the air) 45 34 11
2 20(0;N,=1:4) 100 93 (92 7
3 1.5 (0N, = 1:4) 100 90 10

4 Reaction in +-BuOH (2 mL) at 60 °C for 16 h. 1a (0.5 mmol):NaBH;CN:
Bu3SnCLAIBN = 1:2:0.05:0.01. ? [2a/(1a+2a+3a)]x100 (%). © Determined by 'H
NMR of crude product. ¢ Value in parenthesis refers to isolated yield.

R3SnCI (5 mol %)

AIBN (1 moi %)
R—X + O, + NaBHsCN ———— R-OH + R-H (1)
+-BuOH, 60 °C

1a-f 2a-f 3a-f

In the present reaction, molecular oxygen would act not only as a source
of the oxgyen atom in the product but also as a radical initiator.? On the
other hand, it will kill the tin radical by forming inactive dead end
species such as R38n0SnR3.10 We speculate that the use of the smallest
possible amount of molecular oxygen does help preventing such side
reactions. The favorable ratio of the oxygenated product 2a against the
reduced product 3a as observed experimentally must crucially depend
on the higher reactivity of carbon radicals toward molecular oxygen!0
than toward the tin hydride.!!

Next, we examined the reaction of various alkyl halides with 1.5 equiv
of molecular oxygen at 60 °C in +#BuOH (eq 1 and Table 2). The
reaction is applicable to various alkyl halides including primary (1b,c),
secondary (1a) and tertiary (1f) alkyl iodides, and an allylic bromide,
giving the corresponding alcohols in good to excellent isolated yields.
Primary alkyl bromide 1d was also converted smoothly to alcohol 2¢ by
carrying out the reaction in the presence of Nal (in situ conversion of
bromide to iodide). Reaction of cinnamyl bromide (1e) took place with
complete retention of stereo- and regiochemical integrity of the starting
halide to give exclusively trans-cinnamyl alcohol. While both Bu3SnCl
and Buy(t-Bu)SnCl112.13 can be used as a tin catalyst, the latter is more
widely applicable and recommended for the reaction of primary alkyl
halides, where the formation of the reduction product 3 may be
problematic (entries 2 vs 4, 5 vs 6). Alternatively, the yield of the
primary alcohol can be dramatically increased by adding a small amount
of perfluorodecaline (3 equiv to the halide) to the reaction mixture
(entry 3). While perfluoroalkanes are often employed to increase the
oxygen solubility in the reaction mixture,!4 the effectiveness of the use
of only a small amount of this cosolvent is of particular interest.

Table 2. Aerobic Conversion of Alkyl Halides (1) to Alcohols (2)
(eq)®

yield of ratio of
time,h 2°% 2:3¢

entry alkyl halide (1) R,SnCl
1

1 Bu,(--Bu)SnCl 10 92 93:7
Ph/\)\Bu (1a) Bu(-Bu)Sn

29 CioHy-1(1b) Bu;SnCl 16 68 70:30
3 1b Bu;SnCl 14 93 93:7
4 ib Buy(+-Bu)SnCl 19 82 91:9
I O ~OMe
5 (1¢) BusSnCli 19 77 84:16
AcO™ “0Ac
A
6 107 Bu,(tBwSnCl 11 88 91:9

7° CpHy-Br(ld)  Buy(-Bw)SnCl 12 90 93:7

8 P "pr(le) Bu,(-BwSnCl 18 69 70:30
1

9 @ (1)  BusSaCl 18 94 94

10 1f Buy(t-Bu)SnCl 20 96 97:3

¢ Reaction in BuOH at 60 °C. 1 (0.25 M):NaBH3;CN:R;SnCLAIBN =
1:2:0.05:0.01. ? Isolated yield. ¢ Determined by 'H NMR of crude product. ¢3 equiv
of perfluodecaline was added. €2 equiv of Nal was added.

In the reaction of olefinic alkyl halides (1g), the intermediate carbon
radical formed by dehalogenation may undergo highly efficient
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carbocyclization before being quenched by molecular oxygen or the tin
hydride reagent (eq 2).

BuzSnCl (5 mol %) OH
o~ F~__OMe AIBN (1 mol %) G)\/\H/OMe (2)
m O3 (1.5 equiv) o)
I 1g NaBH3CN (2 equiv) 2g
tBuOH, 60 °C, 22 h 83%

Finally, the merit of the new synthetic protocol is demonstrated by the
efficient preparation of isotope labeled alcohols (eq 3). As shown in
Table 3, the reactions with near stoichiometric amounts of 180, (99
atom %) and 170, (55 atom %) gases proceeded as smoothly as with
160,, and the isotopic purity of the labeled alcohols was essentially the
same as those of the 130, and 170, gases, respectively, as determined by
their mass spectra.l5 As in entries 2 and 3, the mild reducing conditions
kept the ester group remain intact.

Table 3. Synthesis of Isotope-Labeled Alcohols 2-*O (eq 3)¢

isotopic purity,?

entry 1 *0O,? time, h 2-*Q yield, % atom %
180H
1 la 130 15 98 >95
2 Ph/\/kBu
a0 O ~OMe
18, o .,
2 e BO, 13, rone 88 >85
OAc
H70 O._ ~OMe
3 1c Y0, 13 80 55
AcO OAc
QAc
180H
44 1 180, 16 98 >93

&

@ Reaction in +-BuOH at 60 °C. 1 (0.25 M):NaBH3CN:Bu,(z-Bu)SnCL:AIBN =
1:2:0.05:0.01 unless otherwise noted. ? 180, with 99 atom % isotopic purity (2.0
equiv) and 170, with 55 atom % purity (1.5 equiv) were used. © Isolated yield. ¢
Determined by EI-Mass (GC) for 2a-130 and 2£-180 or by FAB-Mass (dir) for 2¢-150
and 2¢-170. ¢ Reaction with 3 equiv of NaBH;CN.

Buy(#Bu)SnCl (5 mol %)
AIBN (1 mol %)

R—l + *0, + NaBHCN R—*OH (3
+BuOH, 60 °C 18
1 180,: 99 atom % 2-18g
170,: 55 atom % 2-170

In summary, various alkyl halides have been efficiently converted to the
corresponding alcohols through the aerobic radical reaction promoted
by the Bup(r-Bu)SnCl/NaBH3CN catalytic system with minimum
loading of the tin catalyst and the oxidant. We suspect the limited
stoichiometry of moleculer oxygen may exert beneficial effects on many
other oxidation reactions which have been routinely carried out with
excess molecular oxygen, and it will also have an obvious merit when
incorporation of oxygen isotopes is intended.
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degassed by one freeze-thaw cycle.

needle whose tip is immersed into the reaction mixtare. The
reaction was carried out and worked up as described for the
preparation of unlabeled 2a to afford 95.2 mg (98%) of 2a-180.
Unlabeled alcohol was not detected by GC-Mass (EI).

Downloaded by: East Carolina University. Copyrighted material.



	˚ïOVEí£{õ•¹‘
	œÓ	eö1


