<sup>19</sup>F NMR STUDY OF FLUORINATED MONO- AND DIACYLHYDRAZINES

| I. | D. | Kalikhman, | E.   | N.   | Medvedeva,   | D. | F. | Kushnarev, | UDC | 543.422.25:541.6:542.951.1: |
|----|----|------------|------|------|--------------|----|----|------------|-----|-----------------------------|
| т. | I. | Yushmanova | , ai | nd ' | V. A. Lopyre | ev |    |            |     | 547.556.8                   |

The problem of the selective acylation of two nonequivalent nitrogen atoms in a substituted hydrazine is of practical and theoretical interest. The acetylation of methyl- [1] and other alkylhydrazines [2] has been studied the most. The data on the acylation of substituted hydrazines using perfluorocarboxylic acid derivatives is both limited and contradictory. For instance, the product of the acylation of methylhydrazine with ethyl trifluoroacetate has been erroneously described in [3] as 1-trifluoroacetyl-1-methylhydrazine.

We have shown [4] that methylhydrazine reacts with perfluorocarboxylic acid derivatives mainly at the unsubstituted nitrogen atom to form 1-acy1-2-methylhydrazines.

In the present work the structure and the conformational properties of NMe-, i-Pr-, and Ph-perfluoroacylhydrazines as well as of diacylhydrazines have been investigated using  $^{19}{\rm F}$  NMR. These compounds were prepared using the reaction

The structure and conformational properties of 1-acyl-2-methylhydrazines (IIe, g) have been investigated in [5]. The 1-acyl-1-methylhydrazines (Ie, g) were only successfully detected in amounts of 1% or less in the products of the acylation of methylhydrazine with anhydrides of perfluorocarboxylic acids (R = CF<sub>3</sub>, C<sub>3</sub>F<sub>7</sub>) in solvents of the amine type. Attempts to isolate them in a pure form were unsuccessful. The <sup>1</sup>H and <sup>19</sup>F NMR parameters of the isomers (I) were obtained from the spectra of a mixture of (I), (II), and (III) and are shown in Table 1. The isomers (I) and (II) of the MeN derivatives differ in the position of their MeN signals by more than 0.5 ppm [5]. However, there are no reliable differences in the <sup>1</sup>H NMR spectra of other N-acyl- and N-phenyl-acylhydrazines. In this case, the <sup>19</sup>F NMR spectraturn out to be the most informative (Table 2). With respect to their <sup>19</sup>F chemical shift values, N-isopropyl-and N-phenylhydrazines are similar to the N-methylhydrazides for which the structure (II) has been established. Consequently, these derivatives are also the 1,2-isomers. Additional confirmation is provided by an analysis of the <sup>19</sup>F chemical shifts of diacylhydrazines (III) (Table 3), where the perfluoroacyl groups at NH and NMe differ in their <sup>19</sup>F chemical shifts by 5-6, 0.7-1.0, and 0.5 ppm in the  $\alpha$ ,  $\beta$ , and  $\gamma$  positions, respectively. We were unable to detect the 1,1-isomer (I) in the products of the acylation of isopropyl- and phenylhydrazine.

TABLE 1.  $^{1}$ H and  $^{19}$ F NMR Parameters of RCONMeNH<sub>2</sub> Compounds (10% solutions in CDCl<sub>3</sub>)

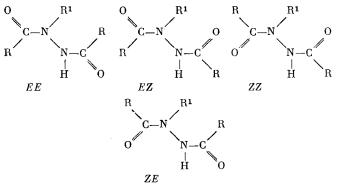
| Com-  |                               | Determent |              |              | ô, ppm         |                   | 4J <sub>HF</sub> , |
|-------|-------------------------------|-----------|--------------|--------------|----------------|-------------------|--------------------|
| pound | R                             | Rotamer   | Me           | CF3          | a-CF2          | β-CF <sub>2</sub> | Hz                 |
| (Ie)  | CF <sub>3</sub>               |           | 3,24<br>3,32 | 70,5         |                |                   | 1,2                |
| (Ig)  | C <sub>3</sub> F <sub>7</sub> |           | 3,18<br>3,25 | 81,9<br>82,3 | 111,1<br>118,8 | 124,7<br>127,2    | 1,0<br>1,2         |

Irkutsk Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2735-2739, December, 1980. Original article submitted December 6, 1979.

1911

|                       |                                   |                              | Com-                               |                                  | R=C                              | F <sub>13</sub>                  |                                      |
|-----------------------|-----------------------------------|------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|
| Rı                    | Compound                          | R=CF <sub>3</sub>            | pound                              | a-CF2                            | β-CF₂                            | γ-CF <sub>2</sub>                | $\mathbf{CF}_3$                      |
| H<br>Me<br>i-Pr<br>Ph | (II a)<br>(IIe)<br>(IIi)<br>(IIm) | 75,3<br>75,8<br>75,6<br>76,2 | (IId)<br>(II h)<br>(IJI)<br>(II p) | 120,2<br>119,8<br>119,6<br>120,8 | 124,2<br>124,2<br>124,8<br>124,5 | 128,2<br>128,1<br>128,2<br>128,1 | 83,0<br>82,9<br>82,9<br>82,9<br>82,9 |
|                       |                                   | R=                           | $C_2 F_5$                          | Compound                         |                                  | $R\!=\!C_3F_7$                   |                                      |
| R <sup>1</sup>        | Compound                          |                              | 1                                  | Compound                         |                                  |                                  |                                      |
|                       | ]                                 | $\alpha$ -CF <sub>2</sub>    | CF <sub>3</sub>                    |                                  | $\alpha$ -CF <sub>2</sub>        | $\beta \sim CF_2$                | $CF_3$                               |

TABLE 2. <sup>19</sup>F NMR Chemical Shifts of RCONHNHR<sup>1</sup> Compounds (10% solutions in DMSO)


TABLE 3.  $^{19}{\rm F}$  NMR Chemical Shifts of RCONHNR  $^1{\rm COR}$  Compounds (10% solutions on CDCl\_3)

|      | Popula-  | Compound | R=CF3                         | Com-    | R=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $C_2F_5$                       |
|------|----------|----------|-------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| R1   | tion, %  | Compound | CF <sub>3</sub>               | pound   | CF <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CF <sub>3</sub>                |
| н    | 100      | (IIIa)   | 75.9 & 75.9                   | (IIIb)  | 124,0 &124,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84,2 & 84,2                    |
| Me   | 80<br>20 | (IIIe)   | $72,7 \& 76,3 \\71,8 \& 76,1$ | (III f) | 118,9 &124,3<br>117,9 &124,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $83,3 \& 84,0 \\ 83,8 \& 84,2$ |
| i-Pr | 90<br>10 |          | 11,0 @10,1                    | (1111)  | $117,5 & 123,5 \\ 118,9 & 123,5 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,8 \\ 117,6 & 123,$ | 83,1 & 84,1<br>83,3 & 84,1     |
| Ph   | 60<br>40 | (III m)  | 72,4 & 75,9<br>69,0 & 75,6    | (IIIn)  | 119,2 &124,3<br>115,0 &124,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $83,3 \& 84,3 \\ 83,4 \& 84,3$ |

|                  | Popula-  | Com-    |                                    | $R = C_3 F_7$                                   |                            |
|------------------|----------|---------|------------------------------------|-------------------------------------------------|----------------------------|
| $\mathbf{R}^{i}$ | tion, %  | pound   | α-CF <sub>2</sub>                  | β-CF <sub>2</sub>                               | CF₃                        |
| Н                | 1 100    | (IIk)   | 121,5 & 121,5                      | 128,0 & 128,0                                   | 82,5 &82,5                 |
| Me               | 80<br>20 | (IIIg´) | 115,8 & 121,8<br>115,2 & 122,1     | $127,0 & 128,6 \\ 127,2 & 128,4 \\ \end{array}$ | 81,7 & 82,3<br>81,5 & 82,3 |
| i-Pr             | 90<br>10 | (IIIk)  | $115,6 \& 120,8 \\ 114,4 \& 121,2$ | 126,4 & 127,9<br>126,7 & 127,9                  | 81,1 & 81,7<br>81,0 & 81,7 |
| Ph               | 60<br>40 |         |                                    |                                                 | ,,                         |

Only a single group of signals is observed in the spectra of 1-acyl-2-methylhydrazines as well as in their isopropyl and phenyl analogs (IIi-p). Apparently, all the compounds (II) have the Z conformation, which is stabilized by intramolecular hydrogen bonds [6]. The conformation l assignment in (I) (see Table 1) was carried out on the basis of the well-known regularit s in the PMR spectrum of N,N-dimethyltrifluoroacetamide [7]. The signals due to MeN ina cisposition to the C = O group lie at stronger field than those for MeN in trans position and  ${}^{5}J_{\rm HF-cis} > {}^{5}J_{\rm HF-trans}$ .

Four conformers may be proposed for the diacylhydrazines (III) whick take account of the frozen rotation about the N-CO bond and free rotation about the N-N bond.



| TABLE 4. 1-Perfluoroacy1-2-alky1(pheny1)hydrazines RCONHNHR <sup>1</sup> (II) and 1,2-Di(perfluoroacy1)-1-alky1- |
|------------------------------------------------------------------------------------------------------------------|
| (pnenyl)hydrazines RCONNHCOR (III)                                                                               |
|                                                                                                                  |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | panoamo) . | Yield.     |                      | No contract of the state of the | БO   | Found, %    |           | Empirical                                                                   |              | Calculated, 껴 | d, <i>d</i> o |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|-----------|-----------------------------------------------------------------------------|--------------|---------------|---------------|-------|
| 85 a<br>132-133b         35,25<br>35,36         5,28<br>5,34         33,75<br>363         16,39<br>25,19         C <sub>6</sub> H <sub>6</sub> F <sub>8</sub> N <sub>5</sub> O         35,30<br>47,06         5,34<br>5,43           132-133b $77,22$<br>55,19 $25,19$<br>25,19 $27,24$<br>25,19 $27,12$<br>25,19 $27,12$<br>25,19 $27,12$<br>25,19 $27,16$<br>25,01 $2,62$<br>25,01 $2,62$<br>25,01 $2,62$<br>25,01 $2,62$<br>25,01 $2,62$<br>25,01 $2,62$<br>25,01 $2,62$<br>25,01 $2,62$<br>25,01 $2,62$<br>25,01 $2,74$<br>2,75 $4,12$<br>2,62 $2,74$<br>2,62 $4,12$<br>2,74 $2,13$<br>2,74 $4,12$<br>2,73 $2,13$<br>2,74 $4,12$<br>2,75 $2,13$<br>2,74 $2,12$<br>2,33 $3,13$<br>2,43 $2,12$<br>2,43 $3,13$<br>2,43 $2,12$<br>2,43 $3,13$<br>2,43 $2,12$<br>2,43 $3,13$<br>2,43 $2,12$<br>2,43 $3,13$<br>2,43 $2,12$<br>2,46 $2,17$<br>2,40 $2,17$<br>2,40 $2,12$<br>2,46 $2,12$<br>2,46 $2,12$<br>2,46 $2,12$<br>2,46 $2,12$<br>2,46 $2,12$<br>2,46 $1,12$<br>2,46 $1,12$<br>2, | Cutthound  | %          | ш <b>р, •</b> С      | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | п    | Fe          | z         | formula                                                                     | σ            | н             | Ēų            | Z     |
| 132-133b       47,22       3,63       28,16       13,66 $C_{6H}F_{F}N_{2}O$ 47,06       3,43 $61-62^{a}$ 23,19       2,49       49,62       14,50 $C_{6H}F_{F}N_{2}O$ 27,06       3,43 $71-62^{a}$ 23,126       2,49       49,62       14,50 $C_{6H}F_{F}N_{2}O$ 25,01       2,62 $71-80^{a}$ 33,262       2,78       37,38       10,66 $C_{6H}F_{F}N_{2}O$ 32,74       4,12 $75-76^{a}$ 33,63       2,38       10,66 $C_{6H}F_{F}N_{2}O$ 32,74       4,12 $775-76^{a}$ 33,66 $C_{3H}F_{F}N_{2}O$ 32,74       4,12       3,33 $129-130^{b}$ 39,60       2,33       49,46       10,31 $C_{7}H_{5}F_{7}N_{2}O$ 31,11       3,33 $129-130^{b}$ 39,60       2,33       43,86       9,31 $C_{10}H_{5}F_{7}N_{2}O$ 31,11       3,33 $129-130^{b}$ 39,60       2,33       43,86       7,24 $C_{6H}H_{7}F_{7}N_{2}O$ 34,77       2,30 $129-40^{b}$ 2,40       1,14       56,02       3,33 $C_{10}H_{6}F_{7}N_{2}O$ 36,62       1,73 $106^$                                                                                                                                                                                                                                                                     | (III)      | 82         | 85 ª                 | 35,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,28 | 33,75       | 16.39     | C <sub>5</sub> H <sub>9</sub> F <sub>3</sub> N <sub>2</sub> O               | 35,30        | 5,34          | 33,50         | 16,55 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (IIII)     | 97         | 132–133 <sup>b</sup> | 47,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,63 | 28,16       | 13,66     | $C_8H_7F_3N_2O$                                                             | 47,06        | 3,43          | 27,94         | 13,73 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (IIf)      | 64         | 61-62 a              | 25,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,49 | 49,62       | 14,50     | C4H5F5N2O                                                                   | 25,01        | 2,62          | 49,62         | 14,58 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ([II]):    | 77         | 79-80 a              | 32,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,04 | 43,04       | 12,75     | C6H3F3N2O                                                                   | 32,74        | 4,12          | 43,15         | 12,72 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (III)      | 79         | 118 <sup>b</sup>     | 42,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,78 | 37,38       | 11.06     | C <sub>9</sub> H <sub>7</sub> F <sub>5</sub> N <sub>2</sub> O               | 42,53        | 2,78          | 37,38         | 11,02 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (IIk)      | 68         | 75-76 a              | 31,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,53 | 49,46       | 10,31     | C <sub>7</sub> H <sub>9</sub> F <sub>7</sub> N <sub>2</sub> O               | 31,11        | 3,33          | 49,26         | 10,37 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (IIo)      | 91         | 129–130 <sup>D</sup> | 39,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,33 | 43,80       | 9,31      | $C_{10}H_7F_7N_2O$                                                          | 39,47        | 2,30          | 43,75         | 9,21  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (III)      | 76         | 68-69 a              | 24,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,31 | 62,96       | 7,24      | C <sub>8</sub> H <sub>5</sub> F <sub>13</sub> N <sub>2</sub> O              | 24,51        | 1,29          | 62,99         | 7.14  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (111)      | 72         | 71-72 a              | 26,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,73 | 60,68       | 7,09      | C <sub>9</sub> H <sub>7</sub> F <sub>13</sub> N <sub>2</sub> O              | 26,62        | 1,73          | 60,81         | 6,90  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (11p)      | 98         | 85-86 <sup>c</sup>   | 34.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,36 | 54,50       | 6.02      | C <sub>13</sub> H <sub>7</sub> <b>F</b> <sub>13</sub> N <sub>2</sub> O      | 34,38        | 1,55          | 54,38         | 6,17  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (III)      | 75         | 106 a.               | 40,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,12 | 39,87       | 9,32      | C10H6F6N2O2                                                                 | 40,01        | 2,02          | 37,98         | 9,33  |
| $ \begin{bmatrix} 61-62^{a} & 29,52 & 2,21 & 51,92 & 7,65 & C_{9}H_{8}F_{10}N_{2}O_{2} & 29,52 & 2,21 \\ 99d & 35,97 & 1,49 & 47,47 & 7,10 & C_{12}H_{8}F_{10}N_{2}O_{2} & 36,02 & 1,51 \\ 51-52^{e} & 24,64 & 1,04 & 60,96 & 6,38 & C_{9}H_{1}F_{1,1}N_{2}O_{2} & 26,66 & 0,91 \\ 51-52^{a} & 28,35 & 1,74 & 57,29 & 6,01 & C_{11}H_{8}F_{1,1}N_{2}O_{2} & 28,34 & 1,73 \\ From water From hexane. From benzene. Representation from ethanol by water. \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (IIIf)     | 52         | 39-40 <sup>b</sup>   | 24,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.14 | 56,02       | 8,34      | $C_7H_4F_{10}N_2O_2$                                                        | 24,87        | 1,19          | 56,19         | 8,28  |
| 99 d     35,97     1,49 $47,47$ 7,40 $C_{12}H_{e}F_{10}N_{2}O_{2}$ 36,02     1,51       51-52e     24,64     1,04     60,96     6,38 $C_{e}H_{e}F_{14}N_{2}O_{2}$ 24,66     0,91       51-52e     28,35     1,74     57,29     6,01 $C_{11}H_{e}F_{14}N_{2}O_{2}$ 28,34     1,73 $b$ $b$ $6,01$ $C_{11}H_{e}F_{14}N_{2}O_{2}$ 28,34     1,73 $b$ $b$ $b$ $b$ $b$ $b$ $b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (IIII)     | 97         | 61-62 <sup>a</sup>   | 29,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.21 | 51,92       | 7,65      | C <sub>9</sub> H <sub>8</sub> F <sub>10</sub> N <sub>2</sub> O <sub>2</sub> | 29,52        | 2,21          | 51,88         | 7,65  |
| $ \begin{bmatrix} 51-52^{\text{c}} & 24,64 & 1,04 & 60,96 & 6,38 & C_{\text{oH},\text{F}_1,\text{N}_2\text{O}_2} & 24,66 & 0,91 \\ 51-52^{\text{a}} & 28,35 & 1,74 & 57,29 & 6,01 & C_{11}\text{H}_6\text{F}_{1,1}\text{N}_2\text{O}_2 & 28,34 & 1,73 \\ \hline \\ \text{b} \\ \text{From water} \xrightarrow{\text{C}} \text{From hexane.} \stackrel{\text{d}}{\text{From benzene.}} \stackrel{\text{Renrecivitation from ethanol by water}}{} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (IIII)     | 82         | 99 d                 | 35,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,49 | 47,47       | 7,10      | C12H6F10N2O2                                                                | 36,02        | 1,51          | 47,48         | 7,00  |
| $ 51-52^{a} $ 28,35   1,74   57,29   6,01   C <sub>11</sub> H <sub>6</sub> F <sub>14</sub> N <sub>2</sub> O <sub>2</sub>   28,34   1,73   b From water From hexane, From benzene, Representation from ethanol by water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (IIIg)     | 92         | 51-52e               | 24,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,04 | 60,96       | 6,38      | C9H4F14N2O2                                                                 | 24,66        | 0,91          | 60,73         | 6,39  |
| b<br>From water, From hexane, From benzene, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (IIIK)     | 85         | 51-52 а              | 28,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,74 | 57,29       | 6,01      | $C_{11}H_8F_{14}N_2O_2$                                                     | 28,34        | 1,73          | 57,06         | 6,01  |
| From water, From hexane, From benzene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a          |            |                      | ر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ţ    |             | c         |                                                                             |              |               |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vacuum su  | blimation. | From water.          | From hex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5    | om benzene. | Reprecipi | tation from ethance                                                         | of hy water. |               |               |       |

Only a single group of signals (see Table 3) is observed in the <sup>19</sup>F NMR spectra of the diacylhydrazines with R = H (IIIa-c). This means that the EZ and ZE conformations with non-equivalent RCO groups may be precluded from further consideration. Of the symmetric conformations, it follows that preference should be given to the ZZ conformation in which the conditions for the intra- and intermolecular hydrogen bonding of the NH...O=C groups are more favorable. Two conformers are observed from the spectra of the N-substituted diacylhydrazines (IIIe-g, j, k, m, p). According to [5], the EZ conformer is the more populated and the ZZ conformer, the lesser populated. The population of the ZZ rotamer is reduced in 1,2-diacyl-l-isopropylhydrazines, while in the N-phenyl analogs it is increased in comparison with 1,2-diacyl-l-methylhydrazines. This difference is apparently due to the competing steric inter-actions between the R<sup>1</sup> group and the R and C=O groups.

## EXPERIMENTAL

The <sup>1</sup>H and <sup>19</sup>F NMR spectra were recorded on Tesla BS 487-C and Varian XL-100A spectrometers. <sup>19</sup>F Chemical shifts were measured with respect to a  $PhCF_3$  internal standard and are cited relative to CFCl<sub>3</sub>.

The purity of the preparations was controlled and the reaction mixtures were analyzed by means of thin-layer chromatography on Silufol UV-254 plates (chloroform:ethanol = 7:1 or buta-nol:water:AcOH = 4:5:1).

The compounds (II) were prepared by mixing equimolar amounts of the perfluorocarboxylic acid ester and the substituted hydrazine in absolute methanol. Compounds IIIa-c, e, g were prepared according to [5, 8] and IIe, h are described in [4]. Compounds IIIf, g, j, k, m, n were synthesized using the following technique.

Pyridine (0.02 mole) was added to a solution of 0.02 mole of hydrazide (II) in absolute dioxane or  $CHCl_3$  followed by the slow dropwise addition of a solution of 0.02 mole of the corresponding perfluoroacylchloride in the same solvent (the trifluoroacetyl fluoridewas passed into the solution in the form of a gas). The mixture was boiled for 7 h and then poured out into ice water. The precipitate was filtered off and washed with water.

The properties of the new compounds are presented in Table 4.

In searching for the optimal conditions for the synthesis of (I), substituted hydrazines were acylated with esters, amides, and the anhydrides and chloroanhydrides of perfluorocarboxylic acids. According to the NMR and gas-liquid chromatographic data, a mixture of (I) (1%), (II) (94%), and (III) (5%) was obtained when methylhydrazine was acylated with trifluoroacetic anhydride and perfluorobutyric anhydride under the conditions described in [1].

## CONCLUSIONS

It has been demonstrated by means of <sup>19</sup>F NMR that l-acyl-2-alkyl(phenyl)hydrazines are the main products of the monoacylation of alkyl- and phenylhydrazine with derivatives of perfluorocarboxylic acids. The preferred conformations with respect to the amide bond have been determined in mono- and di(perfluoroacyl)hydrazines.

## LITERATURE CITED

- 1. F. E. Condon, J. Org. Chen., 37, 3608 (1972).
- K. N. Zelenin, I. P. Bezhan, A. E. Drabkin, and E. N. Krotova, Zh. Org. Khim., <u>13</u>, 1585 (1977).
- 3. C. T. Pedersen, Acta Chem. Scand., 18, 2199 (1964).
- 4. E. N. Medvedeva, P. V. Makerov, I. D. Kalikhman, T. I. Yushmanova, and V. A. Lopyrev, Izv. Akad. Nauk SSSR, Ser. Khim., 1163 (1979).
- 5. I. D. Kalikhman, P. V. Makerov, E. N. Medvedeva, T. I. Yushmanova, and V. A. Lopyrev, Izv. Akad. Nauk SSSR, Ser. Khim., 1897 (1979).
- 6. E. V. Titov, A. P. Grekov, V. I. Rybachenko, and V. V. Shevchenko, Teor. Eksp. Khim., <u>4</u>, 742 (1968).
- 7. W. E. Stewart and T. H. Siddall, Chem. Rev., 70, 517 (1970).
- 8. H. Brown, M. Cheng, L. Parcell, and D. Pilipovich, J. Org. Chem., 26, 4407 (1961).