STEREOSPECIFIC VINYL SUBSTITUTIONS OCCURRING

BY FREE RADICAL ADDITION-ELIMINATION

GLEN A RUSSELL* and PREECHA NGOVIWATCHAI

Department of Chemistry Iowa State University Ames, Iowa 50011

Summary: The free radical chain reaction between cyclohexyl-HgCl and (\underline{E}) or (\underline{Z}) Me0₂CCH=CHSnBu₃, Me0₂CCH=CHI, or ClCH=CHHgCl forms Me0₂CCH=CHC₆H₁₁ or ClCH=CHC₆H₁₁ in a stereospecific manner with retention of stereochemistry.

We have found that vinylic free radical substitution proceeding by an additionelimination mechanism can proceed in a stereospecific manner although the selectivity in forming (Z)-1.2-disubstituted alkenes from a (Z)-precursor is sometimes low. The (E)- and (Z)-isomers of 1-3 have been studied in Reaction 1 proceeding according to the chain reaction of Scheme 1.^{1,2} Results listed in Table 1 were obtained from starting materials with the following isomeric purities: (Z)-1, 98% (GLPC); (E)-1, 98% (GLPC); (Z)-2, 97% (GLPC); (E)-2, >99% (GLPC); (Z)-3, 75% (¹H NMR); (E)-3, >98% (¹H NMR).

XCH=CHZ

0-Y

1,	$X = MeO_2C, Z = (\underline{n}-Bu)_3Sn^3$	4 , R-HgCl
2,	$x = Me0_2C, Z = 1^4$	5, PhS-HgSPh; 6, PhS-SPh
3,	X = C1, Z = HgC15	7, PhSO ₂ -Cl

 $(\underline{E},\underline{Z})$ -XCH=CHZ + Q-Y \xrightarrow{hv} $(\underline{E},\underline{Z})$ -XCH=CHQ + Y-Z (1)

It is clear from Table 1 that the reactions of 1-3 with Q = cyclo- C_6H_{11} are stereospecific and that a higher specificity is observed for Z = I than for $Z = (\underline{n}-Bu)_3Sn$. Isomerization of 1-3 as well as isomerization of the resulting vinyl sulfides under the reaction conditions (sunlamp or 350 nm irradiation in PhH or Me₂SO) was a contributing factor to the stereoselectivities observed, particularly with the (\underline{Z}) -reactants. Reaction of (\underline{E}) and $(\underline{Z})-2$ with cyclo-C₆H₁₁HgCl for 0.5 h with sunlamp irradiation yielded substitution products with (E)/(Z) = 33 and 0.2 while recovered starting material had $(\underline{E})/(\underline{Z})$ = 39 and 0.1, respectively.

Scheme 1

The elimination of Z[•] (Scheme 1) is apparently faster for Z = I or HgCl than for Z = Bu₃Sn. Thus, with Q = Me₃C[•] or PhS[•], stereospecificity was not observed with 1 but was observed with 2 and 3. Elimination of Z = I, HgCl or SnBu₃ with Q = 2°-alkyl must be faster than the equilibrium between 8 and 9. With R = Me₃C the 8 \rightarrow 9 interconversion was slower than the ρ -elimination of Z = I or HgCl, but with Z = Bu₃Sn only (<u>E</u>)-<u>t</u>-BuCH=CHCO₂Me was observed. Reaction of (<u>E</u>) or (<u>Z</u>)-1 with PhSO₂[•] (from PhSO₂cl) also gave only the

(<u>E</u>)-product. With a bulky R group (<u>t</u>-Bu, PhSO₂) and with Z = Bu₃Sn and X = MeO₂C, conformation 8b is apparently bypassed because of steric considerations and elimination only occurs from the more stable 9b.

Reactant	QY(equiv.)	Conditions ^a	Product (%)
(E)-1	cyclo-C ₆ H ₁₁ HgCl (5)	PhH, SL, 2 h	20, $E/Z = 36^{b}$
$\frac{-}{(\underline{Z})-1}$	cyclo-C ₆ H ₁₁ HgCl (5)	PhH, SL, 2 h	34, $E/Z = 2.5^{C}$
(<u>E</u>)-1	cyclo-C ₆ H ₁₁ HgCl (1.5)	PhH/Me ₂ SO, UV, 5 h	66, $E/Z = 23$
$\left(\frac{Z}{2}\right)$ -1	cyclo-C ₆ H ₁₁ HgCl (1.5)	PhH/Me ₂ SO, UV, 5 h	70, $E/Z = 2.1$
(<u>E</u>)-1	Me ₃ CHgCl (1.6)	PhH, UV, 5 h	36, E/Z > 50
(<u>Z</u>)-1	Me ₃ CHgCl (1.6)	PhH, UV, 5 h	49, $E/Z > 50$
(<u>E</u>)-2	i-PrHgCl (1.6)	PhH, SL, 4 h	36, E/Z = 30
(<u>Z</u>)-2	i-PrHgCl (1.6)	PhH, SL, 6 h	35, E/Z = 0.5
<u>(Z</u>)-2	<u>i</u> -PrHgCl (1.6)	PhH, UV, 23 h	45, E/Z = 0.5
(<u>E</u>)-2	 cyclo-C ₆ H ₁₁ HgCl (5)	PhH/Me ₂ SO, SL, 0.5 h	E/Z = 33
(<u>Z</u>)-2	cyclo-C ₆ H ₁₁ HgCl (5)	PhH/Me2SO, SL, 0.5 h	E/Z = 0.2
(<u>E</u>)-2	cyclo-C ₆ H ₁₁ HgCl (5)	PhH/Me ₂ SO, SL, 6 h	34, E/Z = 20
(<u>Z</u>)-2	cyclo-C ₆ H ₁₁ HgCl (5)	PhH/Me_2SO , SL, 6 h	45, E/Z = 0.9
(E)-2	Me ₃ CHgCl (5)	PhH, SL, 6 h	43, E/Z > 50
(Z)-2	Me ₃ CHgCl (5)	PhH, SL, 6 h	41, $E/Z = 0.1$
(E)-3	cyclo-C ₆ H ₁₁ HgCl (1.2)	Me ₂ SO, UV, 10 h	28, E/Z = 4.3
(Z)-3 ^d	$cyclo-C_{6}H_{11}HgCl (1.2)$	Me ₂ SO, UV, 10 h	$39, \frac{E/Z}{E} = 0.7$
(<u>E</u>)-3	Me ₃ CHgCl (1.2)	Me ₂ SO, UV, 10 h	33, $E/Z = 5.6$
(<u>Z</u>)-3 ^d	Me ₃ CHgCl (1.2)	Me ₂ SO, UV, 10 h	44, $E/Z = 2.7$
(<u>E</u>)-1	PhSSPh (1.6)	PhH, UV, 8 h	79, $E/Z = 3.8$ (8 h)
-			 8.9 (5 min)
(<u>Z</u>)-1	PhSSPh (1.6)	PhH, UV, 8 h	91, $E/Z = 3.7$
<u>(E</u>)-1	PhS0 ₂ C1 (1.6)	PhH, UV, 10 h	68, <u>E/Z</u> > 50
(Z)-1	PhS0 ₂ Cl (1.6)	PhH, UV, 10 h	76, $E/Z > 50$
(E)-2	Hg(SPn) ₂ (1.6)	PhH/Me ₂ SO, SL, 1 h	19, $E/Z = 4.8^{e}$
(E)-2	$Hg(SPh)_{2}^{2}$ (1.6)	$PhH/Me_{2}SO, UV, 6 h$	60, $E/Z = 3.5$
(Z)-2	$Hg(SPh)_{2}^{-}(1.6)$	$PhH/Me_{2}SO$, SL, 1 h	10, $E/Z = 1.9^{f}$
(<u>Z</u>)-2	Hg(SPh), (1.6)	$PhH/Me_{2}SO, UV, 6 h$	69, $E/Z = 3.6$
(E)-3	PhSSPh (1.2)	Me ₂ SO, SL, 0.5 h	X = C1; 14, E/Z = 3.4
-		-	X = SPh; 56, <u>E/Z</u> = 0.9
(<u>E</u>)-3	PhSSPh (0.5)	Me ₂ SO, UV, 6 h	X = C1; 20, E/Z = 2.5
-		-	X = SPh; 40, E/Z = 0.6
(<u>Z</u>)-3 ^d	PhSSPh (0.5)	Me ₂ SO, UV, 6 h	X = Cl; 16, <u>E/7</u> = 0.9
		-	X ≈ SPh; 32, <u>E/Z</u> = 0.7
(<u>E</u>)-3	PhSSPh (1.2)	Me ₂ SO, UV, 6 h	X = SPh; 81, <u>E/Z</u> = 0.7
(<u>Z</u>)-3 ^d	PhSSPh (1.2)	Me ₂ SO, UV, 6 h	X = SPh; 81, <u>E/Z</u> = 0.8

Table 1. XCH=CHZ + QY \xrightarrow{hv} XCH=CHQ + YZ

$(\underline{Z}) - C_2 H_2 C_2$	сусіо-С ₆ н ₁₁ ндСі ((0.5) N	Me ₂ SO, UV,	20 h ⁹	70, <u>E/Z</u> = 0.8
(<u>Z</u>)-C ₂ H ₂ Cl ₂	сусlo-С _б Н ₁₁ НgCl ((1.0) N	Me₂SO, UV,	20 h ^g	45, E/Z = 0.7
(<u>Z</u>)-C ₂ H ₂ Cl ₂	Me ₃ CHgCl (1.0)	١	Me ₂ SO, UV,	20 h ^g	42, $E/Z > 50$
$(\underline{Z}) - C_2 H_2 Cl_2$	(PhS) ₂ Hg (0.2)	N	le₂SO, UV,	20 h ^g	X = C1; 5, E/Z = 0.4
					X = PhS; 81, E/Z = 0.5
(<u>E</u>)-C ₂ H ₂ Cl ₂	сусlo-С ₆ Н ₁₁ НgCl ((0.5) N	∕e ₂ SO, UV,	20 h ^g	63, $E/Z = 0.7$
(<u>E</u>)-C ₂ H ₂ Cl ₂	Me ₃ CHgCl (0.3)	М	1e ₂ SO, UV,	20 h ⁹	75, <u>E/Z</u> > 50
(<u>E</u>)-C ₂ H ₂ Cl ₂	(PhS) ₂ Hg (0.2)	Ν	4e ₂ SO, UV,	20 h ^g	X = C1; 14, E/Z = 0.4
					X = PhS; 84, E/Z = 0.5

^a1 mmol of substrate in 10 mL of solvent was irradiated under N $_2$ in a Pyrex tube; SL = 275 W sunlamp ca. 20 cm from reaction flask; UV = 350 nm Rayonet reactor. ^DRecovered 1 (75%) had E/Z = 10. ^CRecovered 1 (47%) had E/Z = 0.1. ^dStarting material had Z/E = 3.0. ^eRecovered 2 had E/Z = 66. ^fRecovered 2 had E/Z = 0.2. ^g2-5 mmol of $C_2H_2Cl_2$ in 5 mL Me₂SO.

Reaction of 3 with PhSSPh demonstrated that chlorine can also serve as a leaving group in Scheme 1. Reaction of (E) or (Z)-1,2-dichloroethylene with (PhS)₂Hg with photostimulation yielded a mixture of (E) and (Z)-PhSCH=CHSPh with no stereospecificity (E/Z = 0.5). Alkylmercurials also underwent a photostimulated reaction with ClCH=CHCl but with replacement of only one of the chlorine atoms. The lack of stereospecificity observed for free radical substitutions in $C_{2}H_{2}Cl_{2}$ is consistent with Cl^{*} being a poorer leaving group than I*, HgCl or Bu_3Sn^* . PhSCH=CHCl is obviously much more reactive than $C_2H_2Cl_2$ towards PhS* and should be a good substrate for other substitution reactions proceeding by Scheme 1.

Stereospecificity has been previously reported in Reaction 2 with Z = Br^6 or $SOPh^7$ but not with Z = SPh or $SO_2Ph.^8$

$$Bu_2Sn \cdot + MeCH(Br) - CH(Z)Me - Bu_2SnBr + MeCH=CHMe + Z \cdot (2)$$

Acknowledgment: This work was supported by grants CHE-8119343 and CHE-8415450 from the National Science Foundation.

References:

- 1. 2.
- 3.
- 4.
- Russell, G. A.; Hershberger, J. J. Am. Chem. Soc. 1980, 102, 7603. Russell, G. A.; Tashtoush, H.; Ngoviwatchai, P. J. Am. Chem. Soc. 1984, 106, 4622. Seitz, D. E.; Lee, S.-H. <u>Tetrahedron Lett</u>. 1981, 22, 4909. Biougne, J.; Theron, F. <u>C. R. Acad. Sci.</u> 1971, 272, 858. Markarova, L. G.; Nesmeyanov, A. N. In "Method of Elemento Organic Chemistry"; Nesterdam 5. Nesmeyanov, A. N.; Kocheskov, K. A. Eds.; North Holland Publishing Co.: Amsterdam, 1967; p. 204.
- 6. Strunk, R. J.; DiGiacomo, P. M.; Aso, K.; Kuivila, H. G. J. Am. Chem. Soc. 1970, 92, 2849.
- Boothe, T. E.; Greene, J. L.; Shevlin, P. B.; Wilcott, M. R.; Inners, R. R.; Cornelis, A. J. Am. Chem. Soc. 1978, 100, 3874.
 Boothe, T. E.; Greene, J. L.; Shevlin, P. B. J. Am. Chem. Soc. 1976, 98, 951; Boothe, T. E.; Greene, J. L.; Shevlin, P. B. J. Org. Chem. 1980, 45, 794.

(Received in USA 29 May 1985)