Organometallic Chemistry

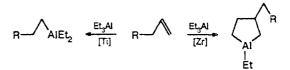
$(\eta^5-C_5H_5)_2$ TiCl₂-Catalyzed hydroalumination of α -olefins with Et₃Al

A. G. Ibragimov, * I. V. Zagrebel'naya, K. G. Satenov, L. M. Khalilov, and U. M. Dzhemilev

Institute of Petrochemistry and Catalysis, Academy of Sciences of the Republic of Bashkortostan, 141 prosp. Oktyabrya, 450075 Ufa, Russian Federation. Fax: +7 (347 2) 31 2750. E-mail: root@ink.bashkiria.su

A preparative method for the synthesis of (alkyl)diethylalanes from α -olefins and Et₃Al catalyzed by Cp₂TiCl₂ (Cp = η^5 -C₅H₅) is proposed.

Key words: organoaluminum compounds, hydroalumination, catalysts, olefins, titanium complexes.

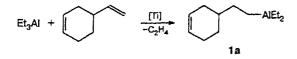

It is known that Buⁱ₃Al ¹ or Buⁱ₂AlCl ²⁻⁴ with catalytic amounts of Cp₂ZrCl₂ are presently used, as a rule, for hydroalumination of olefins by "hydride-free" hydrometallating reagents. Unlike these reagents, Et₃Al hydroaluminates⁵ α -olefins to give (alkyl)diethylalanes (70 °C, 16 h) in yields not higher than 1%, whereas in the presence of Cp₂ZrCl₂ as the catalyst, the reaction in CH₂Cl₂ results⁶ in a mixture of organoaluminum compounds (OAC), which are the products of hydro- and carboalumination and β -ethylation of the starting α -olefins in the \sim 1 : 2 : 1 ratio, respectively.

It has been recently shown⁷ that Et_3Al hydroaluminates disubstituted acetylenes in the presence of Cp_2TiCl_2 under mild conditions (22-23 °C) to give the corresponding alkenylalanes in sufficiently high yields (75-90%).

In a continuation of these studies and in order to extend the application of Et_3Al as the "hydride-free" hydrometallating reagent and to develop a preparative synthesis of previously difficultly accessible (alkyl)diethylalanes, we studied hydroalumination of mono- and disub-

stituted olefins by Et_3Al involving complex catalysts based on Ti and Zr compounds, which exhibit the maximum activity and selectivity in similar reactions.⁸⁻¹¹

Preliminary experiments have shown that only the Cp_2TiCl_2 catalyst (5 mol.%) gives the highest yields of products of hydroalumination of olefins by triethylaluminum; therefore, subsequent experiments were carried out using this catalyst. Unlike previous results,⁶ zirconium complexes, for example, Cp_2ZrCl_2 , direct the reaction in hydrocarbon solvents to the formation of alumacyclopentanes.¹²⁻¹⁴



 α -Olefins and cyclic and acyclic unsaturated compounds containing the disubstituted double bond were chosen as the starting objects of the study. For example,

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 712-715, April, 1998.

1066-5285/98/4704-0691 \$20.00 © 1998 Plenum Publishing Corporation

the reaction of Et_3Al with 4-vinylcyclohexene (VCH) affords diethyl[(2-(cyclohex-3-enyl)ethyl]alane (1a) in ~80% yield. The reaction is accompanied by liberation of an equimolar amount of ethylene.

The study of the effect of the solvent nature on the hydroalumination of VCH established that in halogencontaining (1,2-dichloroethane, CH₂Cl₂, and CCl₄) and ether-type (THF, Et₂O) solvents, the yield of 1a does not exceed 10%, whereas in a hydrocarbon medium (hexane, cyclohexane, benzene, and toluene), hydroalumination proceeds with 40–65% yields. When the two-component catalyst Cp₂TiCl₂-Buⁱ₂AlH (1: 2, 5 mol.%) is used, the yield of 1a reaches ~90%. The replacement of Cp₂TiCl₂ by titanium alkoxides (Ti(OBuⁿ)₄ or Ti(OPrⁱ)₄) results in a decrease in the yield of 1a to 15–20%. In an excess of Et₃Al (olefin : Et₃Al \approx 1 : 1.2), the hydroalumination of VCH occurs with higher yields of 1a.

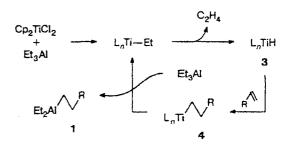
For VCH : Et_3Al ratios equal to 2 : 1 and 3 : 1, the yields of 1a calculated per olefin consumed are 64 and 32%, respectively, which indicates that only one ethyl group of the starting Et_3Al participates in the hydroalumination. Hydroalumination of oct-1-ene, dodec-1-ene, hexadec-1-ene, styrene, 1-allylnaphthalene, triethylvinylsilane, and triethoxyvinylsilane under the conditions established gave the corresponding higher OAC 1b-h. Monodeuterated compounds 2a-h are the products of their deuterolysis.

$$Et_{3}AI + R \xrightarrow{[Ti]} Et_{2}AJ \xrightarrow{R} \underline{D_{3}O^{+}} D \xrightarrow{R} D$$

$$1a-h \qquad 2a-h$$

a: $R = \bigcirc (-80\%)$; b: $R = C_6H_{13}$ (-90%); c: $R = C_{10}H_{21}$ (-75%); d: $R = C_{14}H_{29}$ (-65%); e: R = Ph (-60%); f: $R = \bigcirc (-55\%)$; CH_2 g: $R = Et_3Si$ (-75%); h: $R = (EtO)_3Si$ (-50%)

The ¹³C NMR spectra of (alkyl)diethylalanes **1b**-d (Table 1) contain two broadened signals in the upfield region at δ 0.7-0.8 and δ 9-10 corresponding to the C atoms of the ethyl and *n*-alkyl groups directly bound to the Al atom. In the deuterated product **2d**, the region of signals of the Me groups contains a signal at δ -14 (a weak triplet with ${}^{1}J_{C-D} \approx 19$ Hz) belonging to the deuteromethyl group with the isotope effect of chemical shifts of 0.24 ppm.


We failed to involve disubstituted olefins with the nonactivated double bond (cyclohexene, cyclooctene, and hex-2-ene) in hydroalumination. Hydroalumination of functionally substituted O-, N-, and S-containing α -olefins, for example, 1-methoxyocta-(2*E*,7)-diene,

with low yields and considerably lower selectivity. Based on the published data¹ and our experimental results, we can suggest that the catalytic cycle of hydroalumination includes the generation (under the reaction conditions) of active titanium hydride complexes (3), which hydrometallate the starting α -olefins to form alkyltitanium complexes (4), and their transmetallation under the action of Et₃Al results in the target products 1 according to Scheme 1.

1-phenoxyocta-(2E,7)-diene, diethylocta-(2E,7)-dienyl-

amine, and *n*-butylocta-(2E,7)-dienyl sulfide, occurred

Scheme 1

An attempt to hydroaluminate α -olefins by higher trialkylalanes, for example, tris(*n*-octyl)aluminum, was unsuccessful. Perhaps, this is related to the fact that, according to Scheme 1, the formation of a hydride complex 3 requires an olefin molecule to be removed from the coordination sphere of titanium, which is difficult in the case of titanium *n*-octyl complex. Under these conditions, the starting α -olefin that did not enter the reaction isomerizes under the action of low-valence titanium complexes to form less reactive disubstituted olefins.

Thus, the $Et_3Al-Cp_2TiCl_2$ reagent hydroaluminates successfully α -olefins and allows preparation of earlier difficultly accessible diethylalkylalanes with a sufficiently high selectivity.

Experimental

The reactions were carried out in an atmosphere of dry argon. GLC analysis was performed on a Chrom-41 chromatograph using He as the carrier gas, column 1200×3 mm, 5% SE-30 or 15% PEG-6000 on Chromaton N-AW, and flameionization detector. GLC analysis of organosilicon compounds was performed under similar conditions, but with a katharometer as the detector. The ¹³C NMR spectra of (alkyl)diethylalanes 1 and deuterolysis products 2 were recorded on a JEOL FX-90 Q spectrometer (22.5 MHz) in regimes with complete and partial

7 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1	$\int_{10}^{9} \int_{8}^{7} \int_{6}^{5} \int_{4}^{3} A[$	$ \underbrace{ \begin{smallmatrix} 13 & 11 & 9 & 7 & 5 & 3 \\ 14 & 12 & 10 & 8 & 6 & 4 & 2 & 1 \\ 14 & 12 & 10 & 8 & 6 & 4 & 2 & 1 \\ \end{smallmatrix} $	17 15 13 11 9 7 5 3 18 16 14 12 10 8 6 4	
, 1a	1b	1c	1d	
$\int_{9}^{6} \int_{10}^{4} A_{1}^{4}$	11 /3 1f	$-\frac{1}{1} \qquad \begin{pmatrix} 6 \\ 5 \end{pmatrix}_{3} Si \bigwedge_{3} A[$	1h 2	
$\sum_{k=6}^{7} \sum_{k=4}^{5} \sum_{j=1}^{3} \sum_{l=10}^{1} D \sum_{l=10}^{11-9}$		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$\frac{2}{1} D = \frac{6}{9} \frac{5}{10} \frac{4}{12} \frac{1}{12}$ $\frac{2}{9} \frac{1}{10} \frac{1}{11} \frac{1}{12}$ $\frac{2}{10} \frac{1}{11} \frac{1}{12}$	$\begin{pmatrix} 4 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$

Table 1. ¹³C NMR spectra of (alkyl)diethylalanes 1 and products of deuterolysis of 2 (δ)

Com- pound	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15	C-16
12	8.86	0.68	8.90	28.83	38.59	32.47	127.35	129.10	25.84	31.95						
	q	br.t	br.t	t	d	t	đ	d	t	t						
16	8.86	0.68	9.38	25.71	36.50	30.00	29.81	32.54	23.24	14.33						
	q	br.t	br.t	t	t	t	t	t	t	q						
15	8.86	0.68	9.84	25.71	36.11	30.26	29.94	29.94		29.94	29.94	33.19	23.17	14.33		
	q	br.t	br.t	t	t	t	t	t	t	t		t	t	q		
1d*	8.80	0.74	9.90	25.71	36.11				30.2	26 (t, C	-6C-1	4)			29.94	32.47
	q	br.t	br.t	t	t										t	t
le	8.93	0.74	11.32	32.02	147.18	128.65	128.00	125.72	128.00	128.65						
	q	br.t	t	t	\$	d	d	d	d	d						
1f	9.51	1.39	12.18	28.25	38.78	140.42	134.24	127.54	124.23	125.92	128.72	131.71	128.00	123.77	128.72	
	q	t	t	t	t	s	s	đ	d	d	đ	s	d	d	ď	
1g	8.80	0.87	8.28	5.10	3.67	7.50										
0	q	br.t	br.t	t	t	q										
lh	8.66	1.00	9.30	5.23	59.27	18.36										
	q	br.t	br.t	t	t	q										
2b	14.00**	23.04	31.89	29.81	29.81	31.89	23.04	14.29								
	td	t	t	t	t	t	ŧ									
2c	13.89**	22.87	32.17	29.89	29.6	63 (t, C-	-5-C-8)	29.89	32.17	22.87	14.15				
	td	td	t	t					t	t	t	q				
2d	13.96**	22.76	32.06	29.46			29.8	37 (t, C-	t 5C-1	2)			29.46	32.06	22.76	14.18
	td	td	t	τ									t	t	t	q
2e	15.32**	28.91	144.28	127.89	128.34	125.68	128.34	127.89								-
	td	t	S	d	d	d	d	d								
2f	13.96**	23.84	35.09	138.68	133.74	127.24	123.99	125.68	128.80	132.12	128.34	123.53	128.47			
	td	t	t	s	s	t	t	t	d	s	d	d	d			
2g	7.44***	3.28	3.67	7.63												
	td	t	t	q												

* The ¹³C NMR spectrum also contains the following signals (8): 23.17 (t, C-17) and 14.33 (q, C-18). ** $J_{C-D} = 19$ Hz. *** $J_{C-D} = 19.1$ Hz.

proton decoupling. Dilute solutions in anhydrous Et_2O with addition of C_6D_6 for internal field stabilization were used. SiMe₄ was used as the internal standard. Solutions of OAC were sealed under argon.

Synthesis of (alkyl)diethylalanes 1a—h. An olefin (10 mmol) and Cp₂TiCl₂ (0.5 mmol) were placed in a 50-mL reactor in an atmosphere of dry argon at -5-0 °C. Et₃Al (12 mmol) was added dropwise to the mixture, the temperature was increased to 30-35 °C, and the mixture was stirred for 8 h. The reaction with (triethoxy)vinylsilane was carried out with a fourfold

excess of Et₃Al. Deuterolysis of OAC 1 was performed by treatment with 20% DCl in D_2O at -5 °C followed by stirring of the reaction mixture at ~20 °C for ~2 h. Yields of 1 were determined by GLC of the hydrolysis or deuterolysis products.

References

1. E. Negishi and T. Yoshida, Tetrahedron Lett., 1980, 21, 1501.

- U. M. Dzhemilev, A. G. Ibragimov, O. S. Vostrikova, G. A. Tolstikov, and L. M. Zelenova, *Izv. Akad. Nauk* SSSR, Ser. Khim., 1981, 476 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, 30 (Engl. Transl.)].
- U. M. Dzhemilev, A. G. Ibragimov, O. S. Vostrikova, E. V. Vasil'eva, and G. A. Tolstikov, *Izv. Akad. Nauk* SSSR, Ser. Khim., 1987, 1089 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 1004 (Engl. Transl.)].
- 4. A. G. Ibragimov, D. L. Minsker, A. A. Berg, O. V. Shitikova, S. I. Lomakina, and U. M. Dzhemilev, *Izv. Akad. Nauk, Ser. Khim.*, 1992, 2184 [Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41, 1712 (Engl. Transl.)].
- 5. G. Hata and A. Miyake, J. Org. Chem., 1963, 28, 3237.
- D. Y. Kondakov and E. Negishi, J. Am. Chem. Soc., 1996, 118, 1577.
- A. G. Ibragimov, I. R. Ramazanov, L. M. Khalilov, R. M. Sultanov, and U. M. Dzhemilev, *Mendeleev Commun.*, 1996, 231.

- U. M. Dzhemilev, O. S. Vostrikova, and G. A. Tolstikov, J. Organomet. Chem., 1985, 285, 43.
- 9. U. M. Dzhemilev, O. S. Vostrikova, and G. A. Tolstikov, J. Organomet. Chem., 1986, 304, 17.
- U. M. Dzhemilev, O. S. Vostrikova, and A. G. Ibragimov, Usp. Khim., 1986, 55, 191 [Russ. Chem. Rev., 1986, 55 (Engl. Transl.)].
- U. M. Dzhemilev, O. S. Vostrikova, and G. A. Tolstikov, Usp. Khim., 1990, 59, 1972 [Russ. Chem. Rev., 1990, 59 (Engl. Transl.)].
- O. S. Vostrikova, A. G. Ibragimov, R. M. Sultanov, and U. M. Dzhemilev, Metalloorg. Khim., 1992, 5, 782 [Organomet. Chem. USSR, 1992, 5, 377 (Engl. Transl.)].
- U. M. Dzhemilev and A. G. Ibragimov, J. Organomet. Chem., 1994, 466, 1.
- 14. U. M. Dzhemilev, Tetrahedron, 1995, 51, 4333.

Received November 12, 1997