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Organometallic Chemistry 

(rls-CsHs)2TiCl2-Catalyzed hydroalumination 
of ct-olefins with Et3AI 
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A preparative method for the synthesis of (alkyl)diethylalanes from a-olefins and Et3AI 
catalyzed by CP2TiCI 2 (Cp = ~q5-CsHs) is proposed. 
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It is known that Bui3Al I or Bui2AICI 2-4 with cata- 
lytic amounts of Cp2ZrC12 are presently used, as a rule, 
for hydroalumination of olefins by "hydride-free" 
hydrometallating reagents. Unlike these reagents, Et3A1 
hydroaluminates s ct-olefms to give (alkyl)diethylalanes 
(70 ~ 16 h) in yields not hitcher than 1%, whereas in 
the presence of Cp2ZrCI 2 as the catalyst, the reaction in 
CH2C12 results 6 in a mixture of organoaluminum com- 
pounds (OAC), which are the products of hydro- and 
carboalumination and 13-ethylation of the starting 
u-olefins in the ~1 : 2 : 1 ratio, respectively. 

It has been recently shown 7 that Et3A1 hydro- 
aluminates disubstituted acetylenes in the presence of 
Cp2TiCI 2 under mild conditions (22--23 *C) to give the 
corresponding alkenylalanes in sufficiently high yields 
(75--90%). 

In a continuation of these studies and in order to 
extend the application of EtaAI as the "hydride-free" 
hydrometallating reagent and to develop a preparative 
synthesis of previously difficultly accessible (aUcyl)diethyl- 
alanes, we studied hydroalumination of mono- and disub- 

stituted olefms by Et3AI involving complex catalysts based 
on Ti and Zr compounds, which exhibit the maximum 
activity and selectivity in similar reactions. S-l l  

Preliminary experiments have shown that only the 
CP2TiC12 catalyst (5 mol.%) gives the highest yields of 
products of hydroalumination of olefms by triethyl- 
aluminum; therefore, subsequent experiments were car- 
ded out using this catalyst. Unlike previous results, 6 
zirconium complexes, for example, Cp2ZrCI2, direct the 
reaction in hydrocarbon solvents to the formation of 
alumacyelopentanes. 11-14 

~l [Zr] Al 
I 
Et 

c~-Olet'ms and cyclic and acyclic unsaturated com- 
pounds containing the disubstituted double bond were 
chosen as the starting objects of the study. For example, 
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the reaction of Et3AI with 4-vinylcyclohexene (VCH) 
affords diethyl[(2-(cyclohex-3-enyl)ethyl]alane (la) in 
~80% yield. The reaction is accompanied by liberation 
of an equimolar amount of ethylene. 

t-nl ~ A ] E t 2  
Et3AI + _C.zH, ~ 

l a  

The study of the effect of the solvent nature on the 
hydroalumination of VCH established that in halogen- 
containing (1,2-dichloroethane, CH2C12, and CC14) and 
ether-type (THF, Et20) solvents, the yield of la does 
not exceed 10%, whereas in a hydrocarbon medium 
(hexar~e, cyclohexane, benzene, and toluene), hydro- 
alumination proceeds with 40--65% yields. When the 
two-component catalyst Cp2TiCI2--Bui2AIH ( 1 : 2 ,  
5 tool.%) is used, the yield of la reaches ~90%. The 
replacement of CP2TiCI2 by titanium alkoxides 
(Ti(OBun)4 or Ti(OPr~)4) results in a decrease in the 
yield of la  to 15--20%. In an excess of Et3A1 
(olefin : Et3AI = I : 1.2), the hydroalumination of VCH 
occurs with higher yields of la. 

For VCH : Et3AI ratios equal to 2 : 1 and 3 : 1, the 
yields of la calculated per olefin consumed are 64 and 
32%, respectively, which indicates that only one ethyl 
group of the starting Et3A1 participates in the hydro- 
alumination. Hydroalumination of oct- 1-ene, dodec- !- 
erie, hexadec-l-ene, styrene, 1-allylnaphthalene, tri- 
ethylvinylsilane, and triethox3'vinylsilane under the con- 
ditions established gave the corresponding higher OAC 
lb--h. Monodeuterated compounds 2a--h are the prod- 
ucts of their deuterolysis. 

Et3A] -F R/~ t ' n ]  Et,.z4j~/R D30 +. D/~/R 
-C2H 4- 

I a - -h  2a- -h  

/7""N 
a: R = ~ - -  (-80%); b: R = C6H13 (-90%); 

O: R -- C10H21 (-75%); d: R = C14Hz~ (-65%); 

e: R = Ph ( - 6 0 % ) ; f :  R = ~ (~65%); 
/ 

CH2 
g: R = Et3Si ( -75%) ;  h: R = (EtO)3Si ( -50%)  

The 13C NMR spectra of (alkyl)diethylalanes lb--d 
(Table 1) contain two broadened signals in the upfield 
region at 8 0.7--0.8 and 6 9--10 corresponding to the C 
atoms of the ethyl and n-alkyl groups directly bound to 
the AI atom. In the deuterated product 2d, the region of 
signals of the Me groups contains a signal at 5 -14 (a 
weak triplet with IJc_ D ~. 19 Hz) belonging to the 
deuteromethyl group with the isotope effect of chemical 
shifts of 0.24 ppm. 

We failed to involve disubstituted olef'ms with the 
nonactivated double bond (cyclohexene, cyclooctene, 
and hex-2-ene) in hydroalumination. Hydroalumination 
of functionally substituted O-, N- ,  and S-containi.ng 
ct-olefms, for example, 1-methoxyocta-(2E,7)-diene, 
1-phenoxyocta-(2E,7)-diene, diethylocta-(2E,7)-dienyl- 
amine, and n-butyloeta-(2E,7)-dienyl sulfide, occurred 
with low yields and considerably lower selectivity. 

Based on the published data z and our experimental 
results, we can suggest that the catalytic cycle of 
hydroalumination includes the generation (under the 
reaction conditions) of active titanium hydride com- 
plexes (3), which hydrometallate the starting ct-olefins 
to form alkyltitanium complexes (4), and their trar~- 
metallation under the action of EtaAI results in the 
target products 1 according to Scheme 1. 

Scheme I 

Cp2TiCl 2 
+ 

Et3AI 

1 

C2H4 
>, 

L~Ti--Et = LnTiH 

Et3AI 

L ~T i~ /R - R '~ 

4 

An attempt to hydroaluminate ct-olefins by higher 
trialkylalanes, for example, tris(n-octyl)aluminum, was 
unsuccessful. Perhaps, this is related to the fact that, 
according to Scheme 1, the formation of a hydride 
complex 3 requires an olefin molecule to be removed 
from the coordination sphere of  titanium, which is 
difficult in the case of titanium n-octyl complex. Under 
these conditions, the starting c~-olefin that did not enter 
the reaction isomerizes under the action of low-valence 
titanium complexes to form less reactive disubstituted 
olefins. 

Thus, the Et:rA1--Cp2TiC12 reagent hydroaluminates 
successfully ct-olefms and allows preparation of earlier 
difficultly accessible diethylalkylatanes with a sufficiently 
high selectivity. 

Experimental 

The reactions were carried out in an atmosphere of dry 
argon. GLC analysis was performed on a Chrom-41 chromato- 
graph using He as the carrier gas, column 1200• mm, 5% 
SE-30 or 15% PEG-6000 on Chromaton N-AW, and flame- 
ionization detector. GLC analysis of organosilicon compounds 
was performed under similar conditions, but with a katharomet~r 
as the detector. The 13C NMR spectra of  (alkyl)diethylalanes 1 
and deuterolysis products 2 were recorded on a JEOL FX-90 Q 
spectrometer (22.5 MHz) in regimes with complete and partial 



H y d r o a l u m i n a t i o n  o f  ct-olefins with Et3AI Ru.~.Chem.Bull., Vol. 47, No. 4, April, 1998 693 

Table 1. 13C NMR spectra of (alkyl)diethylalanes 1 and products of deuterolysis of 2 (8) 

' NVVV  A 
8 1 ~  ' ~  ~ ~ ' - ,  ,o 8 ~ , 2 , , ,  , ~ , o  , , , ~ , 

9 

l a  lb  lc  
4 

8 - ,o , s i  s i  

g 11 13 2 1 2 1 

l e  I f  l g  l h  
2 

4 2 6 4 2 
0 7 5 3 ,  ~ O  , 1 9 7 5 3 1  / ~ ~ ~  [~ 1 5 1 3 1 , 9 7 5 3 1  5 ~ , ' ~ 1  0 ? S '  D 

8 6 4 2 12 lO 8 6 4, 2 1614 12 1o 8 6 4 2 6  ~1'~J87 8 ~  12 

2b 2c 2d 2e 2f 2g 

171513  11 9 7 S 3 / ' ~  

18 1614 1~ 10 8 6 4 2 1 

l d  

Corn- C-I C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C-I1 C-12 C-13 C-14 C-15 C-16 
pound 

la 8.86 0.68 8.90 
q br.t br.t 

lb 8.86 0.68 9.38 
q br.t br.t 

Is 8.86 0.68 9.84 
q br.t br.t 

ld* 8.80 0.74 9.90 
q br.t br.t 

Ie 8.93 0.74 11.32 
q br.t t 

I f  9.51 1.39 12.18 
q t t 

lg 8.80 0.87 8.28 
q br.t br.t 

lh 8.66 1.00 9.30 
q br.t br.t 

2b 14.00"* 23.04 31.89 
td t t 

2c 13.89"* 22.87 32.17 
td td t 

2d 13.96"* 22.76 32.06 
td td t 

2 e  15.32"* 28.91 
td t 

2 f  13.96"* 23.84 
td t 

2g 7.44*** 3.28 
td t 

28.83 38.59 32.47 127.35 129.10 25.84 31.95 
t d t d d t t 

25.71 36.50 30.00 29.81 32.54 23.24 14.33 
t t t t t t q 

25.71 36.11 30.26 29.94 29.94 30.26 29.94 29.94 33.19 
t t t t t t t t t 

25.71 36.11 30.26 (t, C-6--C-14) 
t t 

32.02 147.18 128.65 128.00 125.72 128.00 128.65 
t 

28.25 

t 
5.10 

t 
5.23 

t 
29.81 

t 
29.89 

t 
29.46 

t 

23.17 14.33 
t q 

29.94 32.47 
t t 

s d d d d d 

38.78 140.42 134.24 127.54 124.23 125.92 128.72 131.71 128.00 123.77 128.72 
t s s d d d d s d d d 

3.67 7.50 
t q 

59.27 18.36 
t q 

29.81 31.89 23.04 14.29 
t t t q 
29.63 (t, C-5--C-8) 29.89 32.17 22.87 14.15 

t t t q 
29.87 (t, C-5--C-12) 29.46 32.06 22.76 14.18 

t t t q 
144.28 127.89 128.34 125.68 128.34 127.89 

s d d d d d 
35.09 138.68 133.74 127.24 123.99 125.68 128.80 132.12 128.34 t23.53 128.47 

t s s t t t d s d d d 
3.67 7.63 

t q 

* The 13C NMR spectrum also contains the following signals (8): 23.17 (t, C-17) and 14.33 (q, C-18). ** JC--D == 19 Hz. 
*** JC--D = 19.1 Hz. 

proton decoupling. Dilute solutions in anhydrous Et20 with 
addition of C6D 6 for internal field stabilization were used. 
SiMe4 was used as the internal standard. Solutions of OAC 
were sealed under argon. 

SyRthesis of (alk-yl)diethyl~l~nes la--h. An olefm (10 retool) 
and CP2TiCI 2 (0.5 rnmol) were placed in a 50-mL reactor in 
an atmosphere of  dry argon at --5--0 ~ Et3A1 (12 retool) was 
added dropwise to the mixture, the temperature was increased 
to 30--35 *C, and the mixture was stirred for 8 h. The reaction 
with (triethoxy)vinylsilane was carried out with a fourfold 

excess of Et3A1. Deuterolysis of OAC 1 was performed by 
treatment with 20% DCI in D20 at - 5  *C followed by stirring 
of the reaction mixture at -20 *C for -2 h. Yields of  1 were 
determined by GLC of  the hydrolysis or deuterolysis products. 
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