DIASTEREOSELECTIVE SYNTHESIS OF $\beta-$ And $\gamma_2-MUUROLENE:$ A CARBOCATIONIC PATHWAY FROM MONO- TO SESQUITERPENES

Azizur-Rahman, Herbert Klein, Jürgen Dressel, and Herbert Mayr*

Institut für Chemie der Medizinischen Universität zu Lübeck Ratzeburger Allee 160, D-2400 Lübeck 1, Federal Republic of Germany

(Received in Germany 21 June 1988)

Abstract. The Lewis acid catalysed addition of the piperityl chlorides 6 to isoprene yields adduct 7, which undergoes a cis-stereoselective cyclisation to give the diastereoisomeric muurolene monohydrochlorides 8. Treatment with potassium tert-butoxide affords β - and γ_2 - muurolene 2.

Various representatives of the cadalane series - cadinenes 1, muurolenes 2, bulgarenes 3, and amorphenes 4 - with double bonds in different positions $(\alpha,\beta,\gamma,\delta,\epsilon,\gamma_1,\gamma_2)$ have been found in nature¹, and syntheses for many of these compounds have been reported.²⁻⁶ In this article we describe the stereoselective synthesis of <u>rac</u> β - and γ_2 -muurolene, two members of this family, which have not been reported previously.

Cadinenes

Muurolenes

Bulgarenes

Amorphenes

Results. A 2:1 mixture of the allylic chlorides **6a** and **6b** was obtained, when the commercially available trans-piperitol **5** was reacted with concentrated hydrochloric acid at ambient temperature.⁷ In accord with previous predictions,⁸ the $\text{ZnCl}_2/\text{Et}_20^{\circ}$ catalysed reaction of **6a,b** with isoprene can be terminated at the 1:1 product stage, since the terminally trialkylated allyl cation **9** formed from **6a,b** is better stabilised than the terminally dialkylated allyl cation 10 formed from **7.**¹⁰ The $\text{ZnCl}_2/\text{Et}_20$ catalysed cyclisation of **7**, which is carried out after removal of the unreacted isoprene, yields an 85:15-mixture of two diastereoisomeric tertiary chlorides **8**, which is treated with potassium tert-butoxide in tert-butanol to give the muurolenes β -2 and γ_2 -2.

Structural Assignments. The observation of only 15 resonances in the ¹³C NMR spectrum of 7 (Table 1) indicates that the reaction of 6 with isoprene is regio- and stereoselective, ¹¹ but the configuration of 7 (cis or trans) could not be assigned at this stage. We were also unable to assign the configurations of the diastereomeric compounds 8 (85:15) on the basis of their NMR spectra. Since treatment of this mixture with base gave only two isomers (β -2 and Y_2 -2) in 1:1 ratio, both isomers of compound 8 and the resulting elimination products have identical relative configurations at C-1, C-6, and C-10, and the two diastereoisomeric chlorides 8 differ in the relative configuration of C-7.

The 200 MHz NMR spectrum of the isomer with the exocyclic double bond (Y_2-2) showed a resonance at δ 2.50 (6-H) with couplings of approximately 5, 3, and 2 Hz. Since a coupling constant $J_{ax,ax} > 8$ Hz should be observable, if the two six-membered rings were trans annelated, structures 1 and 3 can be excluded, leaving compounds with muurolene (2) and amorphene (4) structure. In accord with this conclusion, the cadinenes β -1 and Y_2 -1 have been found to show NMR spectra^{3,5,12} which differ from those reported in this work.

The diastereotopic protons of the isopropyl group in various compounds with amorphene structure have been reported to show ¹H NMR signals between δ 0.86 and 0.98 with $\Delta\delta \leq$ 0.02 ppm.⁶ Analogously, the chemical shift differences of the corresponding ¹³C nuclei have been found to be \leq 0.9 ppm

for seven different derivatives of 4.⁶ The observed ¹H NMR absorptions of the isopropyl group at δ 0.77 and 0.87 (β -2) and δ 0.77 and 0.91 (γ_2 -2) as well as the corresponding ¹³C NMR shifts at δ 15.24 and 21.04 (β -2) and δ 16.60 and 21.47 (γ_2 -2), therefore, exclude amorphene structures. As the observed resonances fall into the range reported for muurolenes,⁶ the assignment to structures β -2 and γ_2 -2 could be made. Furthermore, in all amorphene derivatives studied, C-10 shows a NMR absorption at δ 46-49,⁶ whereas in the compounds, which we assign to β - and γ_2 -2, all methine carbons absorb at $\delta < 41$.

In contrast to cadinenes, bulgarenes, and amorphenes, the muurolenes have been found to adopt various conformations with isopropyl in equatorial or axial position.⁶ The ¹H NMR signal of 1-H, which should give information about the position of the isopropyl group, was overlapped by other resonances in both Y_2 - and β -2. In the case of Y_2 -2, a separation of the 1-H signal was possible by adding AgNO₃ and Eu(fod)₃,¹³ and on irradiation of the 6-H resonance, a quartet with J = 3 Hz was observed for 1-H, indicating an axial position of the isopropyl group. Since both 1-H and 6-H do not show couplings > 5 Hz, a boat like structure of the cyclohexene ring is suggested. As this conformation was not found to be a minimum by MM2 calculations,¹⁴ the possibility that the conformational equilibrium is influenced by the shift reagents has to be considered.

H O ^r	$ \begin{array}{c} 12 \\ 6 \\ 1 \\ 9 \\ 10 \\ 13 \\ 15 \end{array} $	$ \begin{array}{c} C \\ 5 \\ 4 \\ 11 \\ 3 \\ 2 \\ 14 \\ 15 \end{array} $	12 C l	$\begin{array}{c} 5 \\ 5 \\ 11 \\ 3 \\ 2 \\ 14 \\ 14 \\ 15 \end{array}$	$\begin{array}{c} & & & & \\ & & & 5 \\ & & & & \\ & & & & \\ & & & &$
	5	7	8	β− 2	γ ₂ - 2
C - 1	68.96	35.40	33.01, 35.24	37.76	39.55
C- 2		44.87	31.40, 31.98	30.80	31.58
C- 3		141.58	132.00, 130.58	131.96	131.81
C- 4		124.42	118.33, 119.90	119.29	119.19
C- 5		40.94	25.65, 26.10	29.16	27.77
C- 6	125.53	122.18	45.96, 45.74	34.74	40.95
C- 7	137.24	133.81	76.82, 75.81	138.82	152.28
C- 8	30.12	28,95	36.38, 37.39	119.75	31.02
C- 9	20.82	21.11	20.71, 22.56	24.92	25.95
C-10	47.74	43.14	36.98, 36.95	34.93	38.30
C-11		16.07	23.69, 23.59	2 3.92	23.94
C-12	23.16	23.70	31.11, 30.25	21.93	106.29
C-13	26.38	27.06	27.03, 26.78	27.11	27.00
C-14	17.26	17.85	15.03, 14.97	15.24	16.60
C-15	21.26	21.79	21.36, 21.43	21.04	21.47

Table 1. ¹³C NMR chemical shifts for β -and γ_2 -muurolene and their precursors^a

a) The assignments are based on DEPT spectra and estimated shift increments, and are not unequivocal within a group (CH, CH_2 , CH_3) of resonances. **Reaction Mechanism.** In analogy to the reactions of allyl cations with other alkenes,¹⁰ the initially generated allyl cation 9 is regioselectively attacked at the less substituted terminus (steric control), and the steric effect of the isopropyl group must be responsible for the exclusive formation (>90%) of the anti compound 7.¹¹ As in other electrophilic alkylations,¹⁵ isoprene is selectively attacked at C-1 to give the (\underline{E})-configurated 1,4-adduct. The initial formation of 7 can be explained by the fact that 10 does not possess the proper configuration for cyclisation. Since the rotational barrier for the conversion 10 + 12 is estimated to be approximately 12-15 kcal/mol,¹⁶ the stereomutation 10 + 12 is assumed to proceed via the intermediate 11. cis-Specific cyclization¹⁷ finally yields 13, which accepts chloride ions from both sides to give the two diastereoisomers of 8.

EXPERIMENTAL

NMR: XL 200 (Varian), ¹³C NMR are given in Table 1. TMS was used as internal standard. Mass spectra: 70-250 (VG); only the most intensive peaks are listed. IR: IR-435 (Shimadzu). Commercially available <u>trans</u>-piperitol (FLUKA) was used for the preparation of **6a,b**.⁷

trans-3-(4-Chloro-2-methyl-2(E)-butenyl)-4-isopropyl-1-methylcyclohex-1-ene (7). A solution of 6a and 6b (5.18 g, 30 mmol) in 75 mL of CH_2Cl_2 was added dropwise with stirring to a cooled (-78°C) solution of isoprene (2.04 g, 30 mmol) and $ZnCl_2$ (1.36 g)/ether (1.6 mL)⁹ in 125 mL of CH_2Cl_2 . The reaction mixture was kept at -78°C for 1 h, then washed with concentrated aqueous ammonia, dried (Na₂SO₄), concentrated and distilled (83-90°C (bath)/0.2 mbar) to give 7 (4.62 g, 64%) as a colourless oil. - 'H NMR (CDCl_3): δ 0.82, 0.92 (2 d, J = 6.8 Hz, 6 H, (CH₃)₂CH), 0.78-2.20 (m, 9 H), 1.64 (br. s, 3 H, 2'-CH₃), 1.72 (br. s, 3 H, 1-CH₃), 4.13 (d, J = 8 Hz, 2 H, CH₂Cl), 5.22 (mc, 1 H, 2-H), 5.46 (br. t, 8 Hz, 1 H, 3'-H). - Mass spectrum (70 eV): m/z = 242, 240 (0.26%, 0.85%, M⁺), 204 (34), 161 (52), 137 (50), 119 (66), 105 (43), 93 (70), 81 (100), 69 (25), 41 (36). - IR (neat): 2953, 2923, 2870, 1660, 1460, 1446, 1385, 1367, 1251, 834, 667 cm⁻¹.

7-Chloro-10-isopropyl-3,7-dimethylbicyclo[4.4.0]dec-3-ene (8). A solution of 3.61 g (15 mmol) of 7 in 30 mL of CH_2Cl_2 was added dropwise to a cooled (-78°C) solution of $ZnCl_2$ (1.84 g) in 2.2 mL of ether and 70 mL of CH_2Cl_2 . The reaction mixture was then kept at -78°C for 25 h. The reaction mixture was successively washed with concentrated aqueous ammonia solution and water. The organic layer was separated, dried (Na_2SO_4) and distilled to give 8 (2.52 g, 70%) as a mixture (85:15) of two diastereoisomers. - ¹H NMR ($CDCl_3$) of the major isomer: δ 0.79, 0.89 (2 d, J = 7.0 Hz, 6.9 Hz, 6 H, (CH_3)_2CH), 0.72-2.18 (m, 12 H), 1.57 (s, 3 H, 7-CH_3), 1.65 (br. s, 3 H, 3-CH_3), 5.26 (mc, 1 H, 4-H). - Mass spectrum (12 eV): m/z = 242, 240 (2.8%, 3.5%, M⁺), 204 (100), 161 (65), 136 (35), 119 (40), 93 (34), 92 (23). - IR (neat): 2953, 2927, 2871, 1459, 1445, 1378, 1368, 788 cm⁻¹.

 β - and γ_2 - Muurolenes 2. Compound 8 (1.20 g, 5 mmol) was added to a well stirred suspension of potassium tert-butoxide (3.37 g, 30 mmol) in 30 mL of tert-butanol and refluxed for 50 h. The

reaction mixture was cooled, poured onto crushed ice, acidified with 20% aqueous acetic acid, extracted with CH_2Cl_2 , concentrated and distilled (70-75°C (bath)/0.5 mbar) to give a mixture of β -2 and γ_2 -2. These two isomers were separated by MPLC (C18-phase, methanol/ether = 9/1) to give 0.45 g (44%) of β -2 and 0.40 g (39%) of γ_2 -2 (colourless liquids).

rac β -Muurolene (10-isopropyl-3,7-dimethylbicyclo[4.4.0]dec-3,7-diene) β -2. - ¹H NMR (C₆D₆): δ 0.77, 0.87 (2 d, J = 6.7 Hz, 6.9 Hz, 6 H, (CH₃)₂CH), 1.45-2.40 (m, 10 H), 1.68 (br. s, 6 H, 3-CH₃, 7-CH₃), 5.36 (mc, 2 H, 4-H, 8-H). - IR (neat): 2953, 2917, 2906, 2892, 1463, 1444, 1436, 1385, 1377, 1366, 821, 786 cm⁻¹. - Mass spectrum (70 eV): m/z = 204 (17%, M⁺), 161 (17), 136 (17), 119 (16), 105 (23), 93 (100), 92 (48), 91 (22), 77 (16). Anal. Calcd. for C₁₅H₂, (204.4): C, 88.16; H, 11.84. Found: C, 88.11; H, 11.77.

rac Y_2 -Muurolene (10-isopropyl-3-methyl-7-methylenebicyclo[4.4.0]dec-3-ene) Y_2 -2. - ¹H NMR (CDCl₃): δ 0.77, 0.91 (2 d, 6.8 Hz, 6.9 Hz, 6 H, (CH₃)₂CH), 1.50-2.38 (m, 12 H), 1.64 (br. s, 3 H, 3-CH₃), 2.50 (mc, 1 H, 6-H), 4.62 (mc, 2 H, = CH₂), 5.33 (mc, 1 H, 4-H). - IR (neat): 2947, 2915, 1646 (= CH₂), 1462, 1443, 1383, 1366, 884, 786 cm⁻¹. - Mass spectrum (70 eV): m/z = 204 (15%, M⁺), 161 (62), 136 (21), 119 (17), 105 (16), 94 (19), 93 (100), 92 (17), 91 (24), 80 (14), 79 (14), 77 (15). - Anal. Caled. for C₁₅H₂₄ (204.4): C, 88.16; H, 11.84. Found: C, 88.11; H, 11.87.

Acknowledgement. We thank Dr. E. Bäuml and R. Koschinsky for discussions on the structural assignments. A.R. thanks the Alexander von Humboldt foundation for a fellowship.

REFERENCES AND NOTES

- 1) W. Karrer, H. Hürlimann, E. Cherbuliez, "Konstitution und Vorkommen der organischen Pflanzen stoffe", 2. Aufl., Birkhäuser, Basel 1976-1985 and references cited therein.
- 2) M.D. Soffer, L.A. Burk, Tetrahedron Lett. 211 (1970).
- 3) L.A. Burk, M.D. Soffer, Tetrahedron 32, 2083 (1976).
- 4) R.P. Gregson, R.N. Mirrington, J. Chem. Soc. Chem. Commun. 598 (1973).
- 5) H. Sakurai, A. Hosomi, M. Saito, K. Sasaki, H. Iguchi, K. Sasaki, Y. Araki, Tetrahedron **39**, 883 (1983).
- 6) F.-H. Köster, H. Wolf, H. Kluge, Liebigs Ann. Chem. 78 (1986).
- 7) B.D. Gray, J.A. Miller, J. Chem. Res. (S) 206 (1987).
- 8) (a) H. Mayr, Angew. Chem. 93, 202 (1981); Angew. Chem., Int. Ed. Engl. 20, 184 (1981).
 (b) H. Mayr, C. Schade, M. Rubow, R. Schneider, Angew. Chem. 99, 1059 (1987); Angew. Chem. Int. Ed. Engl. 26, 1029 (1987).
- 9) H. Mayr, W. Striepe, J. Org. Chem. 50, 2995 (1985).
- 10) H. Mayr, H. Klein, G. Kolberg, Chem. Ber. 117, 2555 (1984).
- 11) Small additional peaks in the 13 C NMR spectrum of 7 (< 10%) may be attributed to 11 or to stereoisomers of 7.
- 12) We thank Dr. F.J. Hammerschmidt, Fa. Dragoco for informing us about the 60 MHz ^1H NMR data of $\beta\text{-cadinene}$.
- 13) P.A. Krasutsky, A.G. Yurchenko, V.N. Rodionov, M. Jones, Jr. Tetrahedron Lett. 23, 3719 (1982).
- (a) U. Burkert, N.L. Allinger Molecular Mechanics, ACS Monograph 177, ACS Washington, DC, (1982); (b) J.J. Gajewski, K.E. Gilbert, Molecular Mechanics Package (MS-DOS Computers), Serena Software, Bloomington, Indiana.
- 15) H. Mayr, W. Striepe, J. Org. Chem. 48, 1159 (1983).
- 16) H. Mayr, W. Förner, P.v.R. Schleyer, J. Am. Chem. Soc. 101, 6032 (1979), ibid. 102, 3663 (1980).
- (a) W.S. Johnson, Angew. Chem. 88, 33 (1976); Angew. Chem. Int. Ed. Engl. 15, 9 (1976);
 (b) J.K. Sutherland, Chem. Soc. Rev. 9, 265 (1980).