VIBRATIONAL AND NMR SPECTRA OF LIGHT AND HEAVY CH₃COSH AND CD₃COSH IN RELATION TO TAUTOMERISM AND HYDROGEN BONDING

H. S. RANDHAWA*, W. WALTER and CLAUS O. MEESE

Institut für Organische Chemie und Biochemie der Universität Hamburg, Hamburg (W. Germany)

(Received 24 September 1976)

ABSTRACT

The infrared and Raman spectra of CH,COSH, CH,COSD, CD,COSH and CD,COSD in the liquid and vapor states have been reported and vibrational assignments proposed. The low temperature NMR studies show the presence of hydrogen bonding in this acid. The NMR studies on the neat liquid fail to prove the presence of thion tautomer in thiolacetic acid.

INTRODUCTION

Earlier spectroscopic studies and physical arguments show that thiolacids exist as thiol tautomer (I) with very small or undetectable amounts of thion tautomer (II) [1-8]

Normal coordinate analysis of thiolacetic acid has recently been carried out employing modified valence force field [9]. The hydrogen bonded dimers in this acid in the solid state and in solution at low temperatures or high solute concentration have also been studied by infrared spectroscopy [10]. Molecular orbital calculations on the intermolecular association through hydrogen bonding has also been reported [5]. The aim of our present study is to verify the physical arguments in connection with thiol—thion tautomerism and also to investigate hydrogen bonding by NMR spectroscopy. In addition, we propose a vibrational assignment for thiolacetic acid which is supported by the extensive infrared and Raman data obtained for CH_3COSD , CD_3COSH and CD_3COSD in the vapor and liquid states.

^{*}Alexander von Humboldt Fellow.

EXPERIMENTAL

Samples of d_0 - and d_3 -thiolacetic acids were prepared by the following reaction [11], in which X = H or D

$$CX_3COCl + H_2S \xrightarrow{AlCl_3} CX_3COSH + HCl$$

. . . .

The respective samples were distilled twice and CH_3COSH and CD_3COSH with boiling points at 88°C and 99°C respectively were used in the present investigations. The corresponding heavy acids (i.e. d_1 and d_4) were obtained by the direct exchange of respective light acids (i.e. d_0 and d_3) with heavy water.

Infrared spectra of these acids in thin film (using NaCl windows) and the vapor state (using gas cell with NaCl windows) were recorded in the 4000–540 cm^{-1} region on a Perkin–Elmer 421 grating spectrophotometer. The infrared band frequencies (in cm^{-1}) along with relative intensities are given in Table 1.

The laser Raman spectra of light and heavy acids in the liquid state were scanned from 0-4000 cm⁻¹ on a Cary 82-spectrophotometer. The excitation was by means of the 6328 Å line of a He--Ne laser. The wave numbers along with relative intensities are reported in Table 1. The NMR spectra of CH₃COSH in CDCl₃ as well as in CS₂ using TMS as reference in the low and high temperature range were recorded on a Varian NV-14 NMR spectrometer.

DISCUSSION

Assuming that thiolacetic acid belongs to C_s point group, a total of 3N-6 i.e. 18 vibrational modes may be classified as 12a' + 6a''. All these vibrational modes should be infrared and Raman active. The in-plane a' motions should give rise to polarised Raman lines while a'' vibrational modes are associated with out-of-plane depolarised transitions. We have reported only the parallel plane polarized spectra of these acids in Table 1.

CX₃ stretching vibrations

The complete vibrational spectra of the four isotopic species of thiolacetic acid provide a sound basis for the assignment of the three C—X stretching vibrations of each CX₃ (X = H or D) group. The intensity of these motions in the infrared spectra (Table 1) is generally weak or medium [12]. The symmetric stretching mode occurs as an intense Raman band in CH₃COSH (Table 1) and is in accordance with observations reported earlier in acetic acid and its deuterated derivative [13]. The CD₃—C motions behave similarly in CD₃COSH. Therefore the Raman lines centred at 2108 cm⁻¹, 2135 cm⁻¹ and 2258 cm⁻¹ have been assigned to the a'-symmetric, a'-asymmetric and a"asymmetric stretching modes on the basis of their relative intensities. Our assignment of these lines to the CD₃ stretching modes finds support from the work of Weltner [13] on acetic acid and its deuterated derivatives. The additional Raman lines centred at 1870 cm⁻¹, 2052 cm⁻¹ and 2228 cm⁻¹

188

$ \begin{array}{c cccc} \mbox{Constraint} & Constra$								ļ			1		•
	CH,CUS	11		CHJCOSI			coscos	H		cD ₁ COS			Assignment and
3380 - 3380 - 3380 - 2380 3380 - 234100 3380 - 24100 3320 3000 3000 3000 3000 3000 2036(15) 2260bw 2250bw 2250bw 2350m 2340m 2340m 2340m 2340m 2360w 2350m 2354(15) CX, savm stra' 2440 2776(27) 1860w 1865m 1870(415) 2586w 2368(15) CX, savm stra' 2460 2776(17) 1860w 1866m 1870(415) 2586w 2368(15) CX, savm stra' 2460 276(27) 1860w 18660 2166(11) C 2288(28) CV, savm stra' 2460 276(11) 18660 1860(14) 18680 1870(145,6) CX, savm stra' 21367 1736w 1700w 1888(17) 1735w 1700w 1886(1,6) CX, savm stra' 1387 1287 1286m 1266(1,6) 1266(1,6) 1266(1,6) CX, savm stra' CX, sa	(¥)	(B)	(C)	(Y)	(B)	0	(V)	(B)	(0)	(V)	(B)	(C)	Species
ýžožom 3000m 3010(1) 8020m 3000m 3010(1) 8020m 2080m 2280(2) CX, saym stra' 240 220 2293(3) 2 - 2134(7) CX, saym stra' 240 2578(3) 240 250 238(3) 2 - 2134(7) CX, saym stra' 260 2578(3) 260 238(3) 260 238(3) 200 2035(3) CX, saym stra' 266 258(3) 260 238(3) 1890 1870(4.15) 2588 SX stra' - 2035(3) SX stra' - 2035(3) SX stra' - - 2035(3) SX stra' - - - - - - 2035(3) SX stra' - <td>3380m</td> <td>3380m</td> <td>T</td> <td>3380m</td> <td>3380m</td> <td>I</td> <td>3380m</td> <td>3380m</td> <td>I</td> <td>3380m</td> <td>3380m</td> <td>I</td> <td>2 X 1700</td>	3 3 80m	3380m	T	3380m	3380m	I	3380m	3380m	I	3380m	3380m	I	2 X 1700
9.40m 2.920m 2.936(7) <th< td=""><td>3020m</td><td>3000m</td><td>3010(1)</td><td>3020m</td><td>3000m</td><td>3008(0.5)</td><td>2260bw</td><td>2250bm</td><td>2258(2)</td><td>2260bw</td><td>2250bm</td><td>2258(2)</td><td>CX, asym str a"</td></th<>	3020m	3000m	3010(1)	3020m	3000m	3008(0.5)	2260bw	2250bm	2258(2)	2260bw	2250bm	2258(2)	CX, asym str a"
3840m 2920m 2924(3) 2940m 2926(3) 2940m 2926(3) 2940m 2926(3) 2940m 2926(3) 2040m 2926(3) 2040m 205(3) 2040m 205(3) 2040m 205(3) 2040m 205(3) 2040m 205(3) 2060m 206(3) 206(41.6) 205(3.6) \sim \sim 205(2.6) \sim \sim 205(2.6) \sim \sim \sim 205(3) \sim \sim 205(3) \sim	1	1	1	I	1	1	ł	ſ	2135(7)	ł	I	2135(7)	CX, asym str a'
2665w 2076(27) 1890w 1867(41.6) 2865w 2866w 2666w 2660w	2940m	2920m	2928(38)	2940m	2920m	2928(22.8)	1	2096m	2108(31.5)	ł	2095m	2108(31.5)	CX, sym str a'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2585vw	2565m	2578(27)	1890vw	1865m	1870(41.5)	2585vw	2565m	2678(13)	1890vw	1865m	1870(45.8)	SX str a'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ì	1	1	I	1	I		1	2228(2)	ł	I	2228(2.5)	overtone
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	ł	ł	1	ſ	I	I	ł	2052(2.8)	I	ł	2062(3)	overtone
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	1	I	1	1	1920m	ł	I	ł	1	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	}	1	1	I	1880w	1860m	1870(6.5)	I	ł	1	overtone
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1735vst	1700vst	1685(8)	1785vat	1700vat	1683(9)	1735vat	1700vst	1688(7.7)	1735vst	1700vst	1685(12)	C=O stra'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	142.6m	1420m	1428(3.2)	1425m	1420m	1425(3.2)	1035w	I	1035(3)	I	1030sh	1035(1.5)	CX ₃ asym bend a', a''
1287m 1276k 1276k <t< td=""><td>1865st</td><td>1352st</td><td>1360(1.4)</td><td>1365st</td><td>1355st</td><td>1360(1.4)</td><td>990st</td><td>980st</td><td>990(7)</td><td>970st</td><td>975st</td><td>990(5.5)</td><td>CX₃ sym bend a'</td></t<>	1865st	1352st	1360(1.4)	1365st	1355st	1360(1.4)	990st	980st	990(7)	970st	975st	990(5.5)	CX ₃ sym bend a'
1225w 1215m - - 1220w -	1287m	1287m	1	1287m	1295m	1	1300w	1295m	I	I	1285m	1	Impurity band
1128vst 1130vst 900m 906(10) - - - 2	1226w	1215m	1	1	1	I	1220vw	I	I	1	ł	1	2
1072w - - - - - - - - - 7 - - - 7 - - - 7 - - - 7 - - - 7 - - 7 - - 7 5 - - 7 7 5 2 2 2 - - 7 5 2 2 2 2 - - 7 5 2 2 2 2 2 1 <th1< th=""> 1 1 1<td>1128vst</td><td>1126st</td><td>1135(7.2)</td><td>1128vst</td><td>1125st</td><td>1130(6.3)</td><td>900m</td><td>900m</td><td>905(10)</td><td>ł</td><td>900m</td><td>I</td><td>CX₃ rock + C-C str a'</td></th1<>	1128vst	1126st	1135(7.2)	1128vst	1125st	1130(6.3)	900m	900m	905(10)	ł	900m	I	CX ₃ rock + C-C str a'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1072w	1	ł	I	I	1	1	1	I	ł	1	ł	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1065(0.8)	1	1	1060(1)	1	765st	775(14)	1	765(w)	775(2)	CX ₃ rock a"
860w - 855w - - - 451 + 438 451 + 438 880w - - 451 + 438 816 + 438 830m 835 + 9 - - 451 + 438 830m 835 + 9 - - - 451 + 438 830m 835 + 9 - - 451 + 438 830m 835 + 9 - - 451 + 438 830m 835 + 9 - - 451 + 438 830m 830 + 5 - - 645 + 7 CSX bend a' - - - - - 820m 805 + 1 - - 645 + 7 CSX bend a' - - - - 820m 805 + 1 - - - 100 + 1 -	1000st	990st	998(7.2)	960at	960st	970(9)	1140st	1140st	1	1140st	1140st	1	C-C str + CX ₃ rock a'
830m 836(9) 658(16) 845m 845m 830(4.5) 645(7) CSX bend a' 820m 805(1) 645(7) CSX bend a' 730(5.8) - 820m 805(1) 7 575(82) 675(63) C-S str a' - - - 575(82) 7 2 - - - - - - 7 2 - -<	860w	ł	1	860w	I	I	855w	1	I	1	1	ł	451 + 438
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	830m	830m	835(9)	I	1	658(16)	845m	845m	830(4.5)	ł	ł	645(7)	CSX bend a'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	1	I	1	I	820m	805(1)	ł	820m	805(0)	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	732(2.6)	ł	1	730(5.8)	1	1	I	I	ł	1	Impurity band
- - 560(3) - - - 7 - 525(1) - - 525(1) - - 835-330 - 525(1) - - 525(1) - - 835-330 - 525(1) - - 525(1) - - 835-330 - 441(44) - - - - 835-330 - 442(44) - - - 835-330 - - 430(32) - - - - - - 430(32) - - - 429(49) 0CS bend a' - - 330(6.5) - - 3326(2) - - - - - - 333(5) - - 308(7) CCS bend a'	1	I	628(96)	1	1	628(79.5)	I	1	575(82)	I	I	675(63)	C-S str a'
- $525(1)$ - - $525(1)$ - - $835-330$ - - $451(88.5)$ - - $1299(3.5)$ - - $442(44)$ - - $835-330$ - - $451(88.5)$ - - $1229(3.5)$ - - $422(44)$ - - 655 - - $438(32)$ - - $430(32)$ - - $429(49)$ $0CS$	I	ł	1	1	1	560(3)	I	ł	I	l	1	1	ż
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	525(1)	I	I	525(1)	ł	I	ł	I	I	ł	835-330
- - 438(32) - - 430(32) - - 429(49) 0CS bend a' - - 352(2) - - 348(3.2) - - 25(2) - - 250(2) - - - C=0 wag a' - - 330(6.5) - - 325(2.6) - - 308(7) CCS bend a'	1	1	451(68.5)	1	1	: 299(3.5)	1	1	442(44)	I	1	1	CSX bend a"
→ → 352(2) → → 348(3.2) → → 325(2) → → → C=O wag a" → → 330(6.5) → → 325(2.6) → → 303(5) → → 308(7) CCS bend a"	ł	I	438(32)	1	I	438(92)	1	1	430(32)	I	1	429(49)	OCS bend a'
<u> 330(6.5) 325(2.6) 303(5) 303(7) CCS bend a'</u>	I	ł	352(2)	1	I	348(3.2)	1	I	325(2)	I	I	ł	C=O wag a"
	-	1	330(6.5)	1	1	325(2.6)	ł	l	303(5)	-	1	308(7)	CCS bend a' O

ana Con Con i 200 4 í : . 3.6 • Å, . * ... Q ... 1

TABLE 1

(Table 1) may be due to the overtones of CD_3 bending modes in Fermi resonance with specific CD_3 stretching vibrations.

CX₃ bending vibrations

Of the molecules containing CD₃ groups for which assignments have been reported, CD₃COOH is structurally the closest to d_3 -thiolacetic acid. Thus using the assignments for CD₃COOH [13] as a guide, we prefer to assign the bands at 1035 cm⁻¹ and 990 cm⁻¹ (Table 1) to the asymmetric a', a" and symmetric a' bending motions of CD₃. Their counterparts in CH₃COSH are at 1425 cm⁻¹ and 1365 cm⁻¹ respectively.

C-C stretching and CX_3 rocking vibrations

Earlier workers [1, 2, 9] have assigned the bands at 1128 cm⁻¹ and 1065 cm⁻¹ to the CH₃ in-plane and out-of-plane rocking motions respectively. However the assignment of the CD₃ rocking modes is more difficult than for other internal modes. The 1065 cm⁻¹ band in d_0 - and d_1 species (Table 1) has a counterpart at 765 cm⁻¹ in d_3 - and d_4 -species and may be assigned to the CD₃ out of plane rocking mode. Our assignment to this mode finds support from the work of Weltner [13] on CD₃COOH.

The assignment of the strong band at 1140 cm⁻¹ in the infrared absorption spectra of d_3 - and d_4 -species (Table 1) is of particular interest. We prefer to assign the band at 1140 cm⁻¹ to the C—C stretching mode in d_3 - and d_4 species while its counterpart in d_0 - and d_1 -species is at 1000 cm⁻¹ (Table 1). The band at 900 cm⁻¹ which is seen in both the infrared as well as Raman spectra of d_3 - and d_4 -species (Table 2) is assigned to the CD₃ in-plane rocking vibration. The two vibrations C—C stretch and CX₃ rock seem to be highly mixed. This is in accordance with potential energy distribution calculated by Crowder et al. [9].

COSX group motions

These are the most important group vibrations to be discussed as most of the bands of this group are red shifted on deuteration. As far as we know, no data are available in the literature for the bands of the COSD group.

The SH stretching vibrational mode is seen as a weak band in the vapor and is medium in the liquid phase (Table 1). The frequency in the liquid phase is lower than the frequency in the vapor phase. The SD stretching vibration must have the characteristics of the SH stretching mode. Therefore the band centred at 1865 cm⁻¹ (in liquid) and at 1890 cm⁻¹ (in vapor) is assigned to the SD stretching motion. The increase in frequency in going from liquid to vapor phase is the normal behaviour of SH groups observed in other systems [6, 8] containing this group. The frequency ratio i.e. v_{SH}/v_{SD} is 1.37 and 1.36 for the liquid and vapor phase respectively.

The carbonyl stretching vibration is about 35 cm⁻¹ higher in the vapor phase than in the liquid phase (Table 1). Similar behaviour of this band has been observed in other thiolacids [6, 8]. The other important mode of the COSX group to be discussed is the C—S stretching vibration. It should be strong in Raman spectra. The only band in the appropriate region is centred at 575 cm⁻¹ in the d_3 - and d_4 -species but at 626 cm⁻¹ in the d_0 - and d_1 -species (Table 1).

The CSH in-plane bending motion merits little discussion while its corresponding out-of-plane analogue is the most controversial motion to be discussed. The band positioned at 830 cm⁻¹ in d_0 - and d_3 - species (Table 1) is red shifted on deuteration and appears at 658 cm⁻¹ in the corresponding d_1 and d_4 species respectively. The frequency ratio of these bending motions is 1.26.

Crowder et al. [9] on the basis of their normal coordinate analysis assigned a band at 288 $\rm cm^{-1}$ (calc.) to the CSH out of plane deformation, while the assignment made by Mecke and Spiesecke [2] to this mode is at 525 cm^{-1} . The possibility of assigning the 525 cm^{-1} band to this mode is ruled out as this band has been observed in our Raman spectra of both the d_0 - and d_1 -species (Table 2). The only band in the appropriate region which is red shifted on deuteration is at 451 cm^{-1} and hence could safely be assigned to the CSH out of plane bending motion and the corresponding CSD band appears at 299 cm⁻¹ in the d_1 -species. Hence the Crowder et al. [9] assignment of 445 cm^{-1} and 430 cm^{-1} to CSH and OCS bending motions respectively needs to be changed. The band at 430 cm^{-1} which is not influenced by deuteration may be assigned to the OCS bending vibration. The frequency ratio of the δ_{CSH} and δ_{CSD} vibrations is 1.50 and the comparison of frequency ratios shows that the deuteration effect follows the order: $\delta_{CSH(O/p)} > \nu_{SH} > \delta_{CSH(I/p)}$ The results of the deuteration effect on the COSX group vibrations are summarized in Table 2.

NMR STUDIES

The NMR spectra of CH₃COSH were investigated in CS₂ solution using TM3 as a reference in the temperature range $+22^{\circ}$ C to -93° C. The signals corresponding to SH and CH₃ protons were observed at the δ value of 4.90

	Snecies				Frequency ratio
WOG6-	d	d,	d,	d,	(d_0/d_1)
SH str	2565	1865	2565	1865	1.37
CSH(I/P)def CSH(O/P)def	830 451	658 299	845 442	645 	1.26 1.50
C-S str	628	028	575	575	1.0

TABLE 2

Deuteration effects on the COSH group vibrations

Abbreviations: I/P, in-plane; O/P, out of plane; str, stretch; def, deformation.

192

ppm and 2.30 ppm respectively. The half bandwidth of the SH proton increased on lowering the temperature. It was of the order of 0.5 Hz at $+22^{\circ}$ C and 3 Hz at -93° C. The increase may be due to the molecular association through S-H····O type hydrogen bonding as has been observed by infrared spectral studies [10]. The NMR spectra of neat CH₃COSH (TMS as reference) in the temperature range $+38^{\circ}$ C to $+83^{\circ}$ C showed signals for the SH and CH₃ protons at δ values of 5.25 ppm and 2.35 ppm respectively. We failed to observe the signal for the OH proton. A comparison of δ values of SH and CH₃ protons in different media is given in Table 3.

TABLE 3

δ Values (in ppm) of SH and CH, protons of CH,COSH in different media^a

Medium	Temperature	SH proton	CH, proton
Carbondisulphide ^b	+22°C	4.90	2.30
pure liquid	+ 38° C	5.25	2.38
Chloroform ^c	+ 37° C	4.70	2.33

^aTMS as reference. ^b 30% *w/v*.

c19% w/v.

ACKNOWLEDGEMENT

One of the authors Dr. H. S. Randhawa, is grateful to Alexander von Humboldt Stiftung for financial support.

REFERENCES

- 1 N. Sheppard, Trans. Faraday Soc., 45 (1949) 693.
- 2 R. Mecke and H. Spiesecke, Chem. Ber., 89 (1956) 1110.
- 3 B. Sjöberg, Acta Chem. Scand., 11 (1957) 945.
- 4 G. R. Engler and G. Gattow, Z. Anorg. Allg. Chem., 388 (1972) 78.
- 5 H. S. Randhawa and C. N. R. Rao, J. Mol. Struct., 21 (1974) 123.
- 6 H. S. Randhawa, C. O. Meese and W. Walter, J. Mol. Struct., 36 (1977) 25.
- 7 R. A. Nyquist and W. J. Potts, Spectrochim. Acta, 15 (1959) 514.
- 8 G. A. Crowder, Appl. Spectrosc., 26 (1972) 486.
- 9 G. A. Crowder, E. Robertson and K. Potter, Can. J. Spectrosc., 20 (1975) 49.
- 10 R. B. de Alencastro and C. Sendorfy, Can. J. Chem., 51 (1973) 1443.
- 11 F. Arndt and N. Bekir, Chem. Ber., 63 (1930) 2390.
- 12 L. J. Bellamy, Advances in Infrared Group Frequencies, Methuen, London, 1968, p. 5.
- 13 W. Weltner, Jr., J. Am. Chem. Soc., 77 (1955) 3941.