J.C.S. Снем. Сомм., 1980

Reversible Isomerization of Cyclo-octasulphur Monoxide; Preparation and X-Ray Crystal Structure of S₈O·SbCl₅

By RALF STEUDEL, TORSTEN SANDOW, and JURGEN STEIDEL

(Institut fur Anorganische und Analytische Chemie, Technische Universität Berlin, D-1000 Berlin 12, Federal Republic of Germany)

Summary The reaction of S_8O and $SbCl_5$ in CS_2 gave $S_8O \cdot SbCl_5$ (71% yield) which was shown by X-ray crystallography to contain S_8O in an isomeric conformation compared with pure S_8O which can be recovered from the adduct in its usual conformation by recrystallization from acetone or carbon disulphide

CYCLO-OCTASULPHUR MONOXIDE S_8O is prepared by the oxidation of S_8 with $CF_3CO_3H^1$ and crystallizes as an unstable orange material containing puckered S_8 rings with exocyclic oxygen atoms in axial positions ² In an attempt to prepare more stable derivatives the synthesis of adducts with metal halides as electron acceptors was investigated

Reaction of S_8O with SbCl₅ in CS₂ at 20 °C and subsequent cooling to -50 °C for 9 days yielded an orange crystalline product of composition S_8O SbCl₅ (yield 71%)

Crystal data $S_8O\cdot SbCl_5$, orthorhombic, space group Pcmn, a = 1052(5), b = 880(3), c = 1621(6) pm, Z = 4, $D_c = 2\cdot53$ g cm⁻³ (-100 °C), $M = 571\cdot5$ (Mo- K_{α} , $\lambda = 71\,069$ pm, $\mu = 37\cdot7$ cm⁻¹) Data were collected at -100 °C using a Syntex $P2_1$ diffractometer The intensities of 1621 reflections were measured ($2\theta < 50^\circ$), 1336 which had $I_{obs} > 2\sigma(I_{obs})$ were considered observed and used in the structure analysis The structure was solved by Patterson synthesis and refined to R = 0.083 using anisotropic thermal parameters but without absorption correction \dagger

[†] The atomic co-ordinates for this work are available on request from Prof Dr G Bergerhoff, Institut fur Anorganische Chemie, Universitat, Gerhard-Domagk-Str 1, D-5300 Bonn 1, West Germany Any request should be accompanied by the full literature citation for this communication

Published on 01 January 1980. Downloaded by University of Western Ontario on 27/10/2014 18:05:16.

The crystal lattice consists of $S_8O \cdot SbCl_5$ molecules of C_8 symmetry with only van der Waals type intermolecular interactions. The S₈O unit differs from molecular S₈O by an equatorially-bonded oxygen atom as well as by significantly different SO and SS bond lengths (see Figure 1).

FIGURE 1 Molecular structure, bond lengths (pm) and torsional angles of S₈O·SbCl₅.

While the SO bond length has increased from $148 \cdot 3(9)$ in S_8O to 155(1) pm, the adjacent bonds S(1)-S(2) have decreased in length from 220.0(4) in S₈O to 211.1(5) pm which is consistent with the explanation of electron delocalization from the oxygen atom into antibonding molecular orbitals at the neighbouring sulphur atoms;³ removal of electrons from the oxygen by co-ordination of SbCl₅ diminishes this effect. The bond angle at oxygen is $133 \cdot 3(7)^{\circ}$.

The co-ordination at the Sb atom is approximately octahedral with a mean Sb-Cl distance of 233 pm and angles Cl-Sb-Cl between 86 and 94°. Three Cl atoms are located on the molecular mirror plane. This is the second structural determination of a sulphoxide-SbCl₅ adduct, although only incomplete information about the structure of Ph₂SO·SbCl₅ is available.⁴

At 25 °C solid S₈O·SbCl₅ decomposes within 5 min to SOCl₂, SbCl₃, and S₈. On dissolution of the adduct in

- ¹ R. Steudel and J. Latte, Angew. Chem. Internat. Edn., 1974, 13, 603. ² P. Luger, H. Bradaczek, R. Steudel, and P. Rebsch, Chem. Ber., 1976, 109, 180.
- ³ R. Steudel, Angew. Chem. Internat. Edn., 1975, 14, 655. ⁴ I. Lindquist, 'Inorganic Adduct Molecules of Oxo-Compounds,' Springer, Berlin, 1963.
- ⁵ P. Laur, 'Sulfur in Organic and Inorganic Chemistry,' ed. A. Senning, Vol. 3, p. 201-4, Marcel Dekker, New York, 1972.
- ⁶ F. Wudl, R. Gruber, and A. Padwa, Tetrahedron Letters, 1969, 2133.

acetone and subsequent cooling and recrystallization from dilute solutions in CS2, pure S8O was obtained whose Raman spectrum was identical to that of an original sample, prepared by oxidation of S_8 and which therefore must consist of molecules with axially-bonded oxygen atoms. Since pyramidal inversion at the trico-ordinated sulphur atom is unlikely at low temperatures^{5,6} a conformational inversion of the eight-membered ring is likely to take place during preparation and dissociation of $S_8O \cdot SbCl_5$ (see Figure 2).

FIGURE 2. Possible pathway for the exchange of the oxygen atom between axial and equatorial positions by S_8 ring inversion.

We thank Priv.-Doz. Dr. J. Pickardt for assistance in solving the X-ray structural analysis.

(Received, 29th October 1979; Com. 1147.)