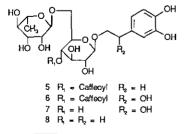
CONSTITUTIONS OF FORSYTHOSIDES F AND G, NEW PHENOL GLYCOSIDES OF FORSYTHIA VIRIDISSIMA STEMS⁺

Katsuya Endo* and Kazuhiro Takahashi


Pharmaceutical Institute, Tohoku University, Aoba-yama, Sendai 980, JAPAN

<u>Abstract</u> — Two new phenol glycosides forsythoside F (1) and forsythoside G (2) have been isolated from <u>Forsythia viridissima</u> stems and their structures were established based on the spectroscopic data and chemical transformations. <u>D</u>=2-<u>O</u>-methylapiose was for the first time characterized in the natural product.

The crude drug <u>Forsythiae Fructus</u> is prescribed in the Oriental medicine as an antiinflammatory, a diuretic, a drainage or an antidote. Recent investigations have proven that the original plants of the drug contain a series of phenol glycosides which are primarily responsible to the antibacterial activity. Thus <u>F. viridissima Lindley</u> yielded forsythoside B (3) in the stems and acteoside (4) in the leaves, 1, 2 while <u>F. suspensa Vahl</u>. afforded forsythoside A (5) in the leaves and forsythosides A, C (6), D (7) and E (8) in the fruits.³⁾ The result indicates further that <u>F. viridissima</u> is characterized by the presence of 3-rhamnosylyglucose derivatives which contrasts to the 6-rhamnosylglucose derivatives in F. suspensa.

Our continued efforts to the investigation of pharmacologically active constituents resulted in isolation of two new phenol glucosides from <u>F</u>. <u>viridissima</u> stems, designated as forsythoside F (1) and forsythoside G (2) both having the 3-rhamnosylglucose part structure, and this article deals with their structure determination.

Forsythoside F (1), amorphous solid, $[\alpha]_D -70.9^\circ$ (MeOH), exhibited the ion peaks at $\underline{m}/\underline{z}$ 757 ([M+1]⁺) and 779 ([M+Na]⁺), corresponding to the molecular formula of $C_{34}H_{44}O_{19}$, in the FAB-mass spectrum. Further, the ¹H nmr spectrum (CD₃OD) of 1 displayed signals for a rhamnosyl group (δ

1.08 3H <u>d</u>, <u>J</u> 6Hz; 5.15 1H <u>d</u>, <u>J</u> 2Hz), a phenethyl group (δ 2.77 2H <u>t</u>, <u>J</u> 7Hz; 6.5-7.3 3H <u>m</u>), a β -glucosyl group (δ 4.36 1H <u>d</u>, <u>J</u> 8Hz) a caffeoyl group (δ 6.25 and 7.56 1H each <u>d</u>, <u>J</u> 16Hz; 6.5-7.3 3H <u>m</u>) and one more aldosyl group (δ 4.22 1H <u>d</u>, <u>J</u> 7Hz). All of the structural features are very similar to those of forsythosid B (3) except the signal at δ 4.22 which

⁺ In the memories of Professor Emeritus Tetsuji Kametani.

		Forsythe	side F Acteoside		ide	e β-Xyloside		Forsythoside		
β-Glucosyl	C-1	103.9	(d. 158)	104.0	(đ)		_	103.9	(d)	
	2	73.8	(d)	73.7	(d)			73.7	(d)	
	3	80.4	(d)	80.3	(d)			79.6	(d)	
	4	70.1		70.3	(d)			70.3	(d)	
	5	74.5	(d)	76.1	(d)			74.3	(d)	
	6	69.2	(t)	62.1	(t)			68.2	(t)	
-Rhamnosyl (C-1	103.0	(d 170)	102.9	(d)			102.9	(d)	
1	2	72.4	(d)	72.4	(d)			72.3	(d)	
	3	72.4	(d)	72.4	(d)			72.3	(d)	
	4	75,6	(d)	75.7	(d)			75.5	(d)	
	5	70.2	(t)	70.1	(t)			70.2	(t)	
	6	19.1	(q)	19.0	(q)			19.0	(q)	
Pentosvl	C-1	105.5	(đ 157)			105.6	(đ)	111.0	(d)	
1	2	74.9	(d)			74.7	(d)	77.7	(d)	
	3	78.0	(d)			77.8	(d)	80.3	(s)	
	4	70.9	(d)			71.1	(d)	75.0	(t)	
	5	67.0	(t)			66.8	(t)	65.3	(t)	

Table I. ¹³C Signals of Sugar Carbons in Forsythoside F and the Related Compounds

Chemical shift δ (ppm) from TMS in pyridine- \underline{d}_5 ; multiplicity and coupling constant in parenthesis differs from the data for the β -apiosyl group (δ 4.91 1H <u>d</u>, <u>J</u> 2.5Hz).¹) Corresponding differences are also observed between the ¹³C nmr spectra of 1 and 3, where the new signals at δ 105.5 (<u>d</u>), 74.9 (<u>d</u>), 78.0 (<u>d</u>), 70.9 (<u>d</u>) and 67.0 (<u>t</u>) are assignable most likely to a β -xylosyl group (Table I).⁴)

These analyses were substantiated by the following experiments. Thus acetylation of 1 with acetic anhydride in pyridine at room temperature overnight yielded the undecaacetate 1a (m/z 1218).

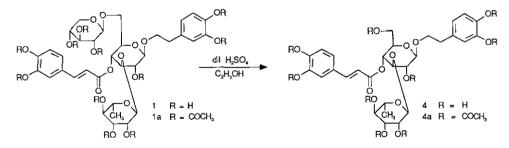


Table II. Selected ¹H Signals of Forsythoside F Acetate and the Related Compounds

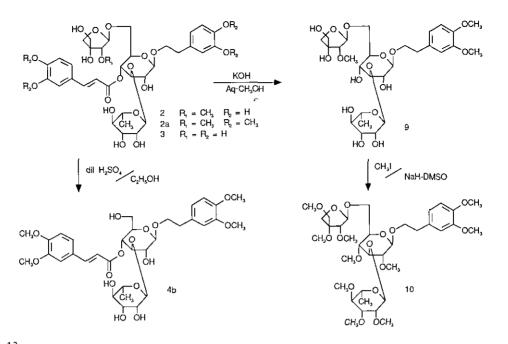
Forsythoside F acetate (1a)	1.03 (d 6)	1.86, 1.92, 1.95, 1.99, 2.01 2.84 (t 7) 2.01, 2.08 2.25, 2.27, 2.28, 2.29 (all s)	4.33 (d 8) 4.49 (d 8) 5.00 (d 2)
F-Hydrolysate	1.03 (d 6)	1.86, 1.93, 2.01, 2.08, 2.09 2.85 (t 7)	4.37 (d 8)
acetate (1b)		2.25, 2.27, 2.28, 2.30 (all s)	5.02 (d 2)
Aceteoside	1.03 (d 6)	1.85, 1.93, 2.01, 2.07, 2.09 2.85 (t 7)	4.37 (d 8)
acetate (4a)		2.26, 2.27, 2.29, 2.30 (all s)	5.02 (d 2)
Forsythoside A	1.17 (d 6)	1.90, 1.93, 1.95, 1.95, 2.09 2.85 (t 7)	4.49 (d 8)
acetate (5a)		2.25, 2.27, 2.28, 2.30 (all s)	4.77 (d 2)

Chemical shift δ (ppm) from TMS in CDCl_3; multiplicity and coupling constant in parenthesis

On the other hand, partial hydrolysis of 1 with 2N sulfuric acid in 50% aqueous ethanol at the refluxing temperature for 1h furnished its dexylosyl derivative (4 35%), which was then acetylated similarly to the peracetate. The product did not coincide to the forsythoside A nonaacetate (5a) but identical to the acteoside nonaacetate (4a) (Table II).

Thus the β -xylosyl group was allocated on the C-6 of the glucose moiety, and consequently, the structure of forsythoside F was assigned as β -(3,4-dihydroxyphenyl)ethyl 4-caffeoyl-3- α -rhamnosyl-6- β -xylosylglucoside (1).

Forsythoside G (2) was isolated as its tetramethyl ether (2a), amorphous solid, $[\alpha]_D$ -69.1° (MeOH), from a crude forsythoside B fraction treated with methyl iodide and potassium carbonate in acetone. The largest ion peak of 2a at $\underline{m}/\underline{z}$ 825 ([M-1]⁺) in the FD-mass spectrum indicated the molecular formula of $C_{39}H_{54}O_{19}$. The ¹H nmr peaks of 2a (CD₃OD) at δ 1.09 (3H <u>d</u>, <u>J</u> 6Hz), 2.89 (2H <u>t</u>, <u>J</u> 7Hz), 3.41 (3H <u>s</u>), 3.78 (3H <u>s</u>), 3.82 (3H <u>s</u>), 3.84 (3H <u>s</u>), 3.85 (3H <u>s</u>), 4.37 (1H <u>d</u>, <u>J</u> 8Hz), 4.97 (1H <u>d</u>, <u>J</u> 2Hz), 5.19 (1H <u>d</u>, <u>J</u> 1Hz), 6.41 (1H <u>d</u>, <u>J</u> 16Hz), 6.8-7.3 (6H <u>m</u>), 7.67 (1H <u>d</u>, <u>J</u> 16Hz) and ¹³C nmr spectrum (Table III) were very similar to those of forsythoside B (3) with additional signals at δ 3.41 (3H <u>s</u>) and 58.8 (1C <u>g</u>) compatible to an extra methoxyl group.


On hydrolysis with 2<u>N</u> sulfuric acid in aqueous ethanol, 2a yielded acteoside tetramethyl ether (4b 30%), while reaction with potassium hydroxide in methanol, it gave the deacyl derivative (9), $[\alpha]_D$ -68.9°(MeOH). 9 was then methylated exhaustively with metyl iodide and sodium hydride in DMSO to furnish the permethyl ether (10), m/z 736, $[\alpha]_D$ -52.9° (MeOH), being identical to the product obtained by the same treatment of 3.¹) Further, the C-2 carbon signals for the apiose moieties in

		Forsythoside G tetramethyl ether (2a)	Deacylforsy- thoside G di- methyl ether (9)	Forsythoside B tetramethyl ether (3a)	Deacylforsy- thoside B di- methyl ether
β-Glucosyl	C-1	103.9 (d)	104.0 (d)	103.9 (d)	104.2 (d)
	2	73.6 (d)	73.9 (d)	73.7 (đ)	74.0 (d)
	3	80.2 (d)	83.7 (d)	80.1 (d)	83.5 (d)
	4	70.9 (d)	70.0 (d)	70.8 (d)	70.0 (d)
	5	74.1 (d)	76.7 (d)	74.4 (d)	76.9 (d)
	6	68.2 (t)	68.8 (t)	68.3 (t)	68.6 (t)
∝-Rhamnosyl	C-1	102.9 (d)	102.8 (d)	102.9 (d)	102.8 (d)
	. 2	72.3 (d)	72.4 (d)	72.4 (d)	72.6 (d)
	3	72,3 (d)	72.3 (d)	72.4 (d)	72.5 (d)
	4	75.5 (d)	75.1 (d)	75.6 (d)	75.3 (d)
	5	70.1 (t)	69.8 (t)	70.2 (t)	69.8 (t)
	6	18.9 (q)	18.4 (q)	18.8 (q)	18.6 (q)
β-Apiosyl	C-1	110.8 (d)	108.9 (d)	110.9 (d)	111.0 (d)
	2	86.7 (d)	86.5 (d)	77.8 (d)	77.7 (d)
	3	80.6 (s)	80.5 (s)	80.3 (s)	80.4 (s)
	2 3 4	75.0 (t)	74.9 (t)	75.0 (t)	74.9 (t)
	5	65.1 (t)	65.1 (t)	65.3 (t)	65.3 (t)
Methoxyl		58.8 (q)	58.7 (g)		

Table III. 13	C Signals -	of Sugar	Carbons	in F	orsythoside	G and	the	Related	Compounds
---------------	-------------	----------	---------	------	-------------	-------	-----	---------	-----------

1 7

Chemical shift δ (ppm) from TMS in pyridine- \underline{d}_5 ; multiplicity in parenthesis

the ¹³C nmr spectra of 2a and 9 showed apparent down field shifts due to alkylation (Table III), and hence, the structure of new sugar was assigned as 2- $\underline{0}$ -methylapiose. Consequently, the structure of forsythoside G was established as β -(3,4-dihydroxyphenyl)ethyl 4-caffeoyl-6- β -(2- $\underline{0}$ -methyl)apiosyl-3- α -rhamnosylglucoside (2).

ACKNOWLEDGEMENTS

Authors are greatly indebted to Professor Sansei Nishibe at Higashi-Nippon-Gakuen University for the identification of the plant.

NOTE AND REFERENCES

- 1) K. Endo, K. Takahashi, T. Abe, and H. Hikino, Heterocycles, 1982, 19, 261.
- 2) The plant previously assigned as <u>Forsythia</u> <u>koreana</u>¹) was incorrect, and it should read <u>Forsythia</u> <u>viridissima</u>. Analysis of lignan derivatives also supported this identification.⁵)
- 3) K. Endo, K. Takahashi, T. Abe, and H. Hikino, <u>Heterocycles</u>, 1981, 16, 1311; K. Endo and H. Hikino, <u>ibid</u>., 1982, 19, 2033; S. Nishibe, K. Okabe, H. Tsukamoto, A. Sakushima, and S. Hisada, <u>Chem. Pharm. Bull</u>., 1982, 30, 1048; S. Nishibe, K. Okabe, H. Tsukamoto, A. Sakushima, S. Hisada, H. Baba, and T. Akisada, ibid., 1982, 30, 4548.
- 4) T. Takemoto, S. Arihara, T. Nakajima, and M. Okuhira, <u>Yakugaku</u> Zasshi, 1983, 103, 173.
- 5) S. Nishibe, M. Chiba, and S. Hisada, Shoyakugaku Zasshi, 1977, 31, 131.

Received, 11th August, 1989