Reaction of Tributyltin Enolates with α -Halogeno Ketones: a New Route to Furan Derivatives

Masanori Kosugi, Izumi Takano, Isao Hoshino, and Toshihiko Migita*

Department of Chemistry, Faculty of Technology, Gunma University, Kiryu, Gunma 376, Japan

The reaction of tributyltin enolates with α -halogeno ketones gave substituted furans which were not derived from the normal cross-coupling products, 1,4-diketones, but were formed instead through addition of the tin enolate to the α -halogeno ketones.

By analogy with the palladium-catalysed cross-coupling reaction between tributyltin enolates and various halides, we expected that tributyltin enolates would react with α -halogeno ketones to form 1,4-diketones. However, a reaction took place without a catalyst to give substituted furans, which, from the substitution pattern, are not derived by the cyclization of the 1,4-diketones, but produced instead, via addition of the

tin enolate to the α -halogeno ketone. This provides the new route to furan derivatives reported here.

The reaction of acetonyltributyltin with α -bromoacetophenone is typical. A stirred solution of acetonyltributyltin (36 mmol) and α -bromoacetophenone (20 mmol) in toluene (10 ml) was heated under argon at 80 °C for 20 h. The mixture was then washed with aqueous potassium fluoride to remove

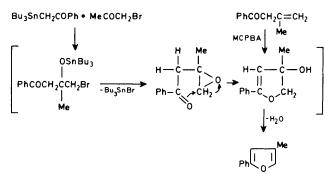

J. CHEM. SOC., CHEM. COMMUN., 1983

Table 1. Preparation of the furan derivatives.

^a Isolated yield based on halogeno ketone. ^b Y. F. Perveev, L. Shilnikova, and V. S. Gorchav, *J. Org. Chem., USSR (Eng. Transl.)*, 1972, **8**, 2286, 2288, give m.p. 39—40 °C.

the tributyltin bromide formed, and an ethereal solution of the organic layer was dried (Na_2SO_4). After evaporation, column chromatography of the residue (silica gel; cyclohexane followed by ether as eluants) provided 2-methyl-4-phenylfuran† in 32% yield.

Other furan derivatives were prepared similarly from α -bromo ketones and tributyltin enolates (Table 1), and were identified by their ¹H n.m.r. spectra. Higher yields tended to be obtained with the more substituted furans.

Scheme 1

The reaction may be explained in terms of an initial addition of enolate to the carbonyl group of the α -bromo ketone,² followed by elimination of tributyltin bromide to produce the β , γ -epoxy ketone,³ which then undergoes cyclodehydration. This mechanism was supported by the fact that heating a solution of epoxidized 2-methylallyl phenyl ketone with *m*-chloroperbenzoic acid (MCPBA) gave 2-phenyl-4-methylfuran (Scheme 1).

There are a number of methods for the preparation of furan rings,⁴ and the present has the advantages of simplicity and lack of additives.

Received, 7th June 1983; Com. 743

References

- M. Kosugi, M. Suzuki, I. Hagiwara, K. Goto, K. Saitoh, and T. Migita, *Chem. Lett.*, 1982, 939; M. Kosugi, I. Hagiwara, T. Sumiya, and T. Migita, *J. Chem. Soc.*, *Chem. Commun.*, 1983, 344.
- 2 J. G. Noltes, H. M. J. C. Creemers, and G. J. M. Van Der Kerk, J. Organometal. Chem., 1968, 11, 21.
- 3 B. Delmond and J. C. Pommier, Tetrahedron Lett., 1968, 6147.
- 4 R. M. Acheson, 'An Introduction to the Chemistry of Heterocyclic Compounds,' Wiley, New York, 1976, pp. 149—150;
 T. Mukaiyama, H. Ishihara, and K. Inomata, *Chem. Lett.*, 1975, 527; M. Ishiguro, N. Ikeda, and H. Yamamoto, *ibid.*, 1982, 1029.

[†] 1 H N.m.r.: 1 7.46 (1H, s, 5-H), 7.27 (5H, br.s, 4-Ph), 6.2 (1H, s, 3-H), and 2.33 (3H, s, 2-Me).