Synthetic Studies on Aromadendrane-Type Compounds. III. ${ }^{1)}$
 Stereoselective Total Syntheses of (+)-Aromadendrene and (-)-Alloaromadendrene

Tetsuaki Tanaka, Kimiya Maeda, Hidenori Mikamiyama, Yousuke Funakoshi, Kenji Uenaka, and Chuzo Iwata*

Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565, Japan.

Abstract

The stereoselective total syntheses of (+)-aromadendrene (5) and (-)alloaromadendrene (6) were achieved via (+)-($1 S, 2 R, 4 R, 7 S, 11 R$)-7-tert-butyl-dimethylsiloxymethyl-3,3,11-trimethyltricyclo[6.3.0.0 ${ }^{2,4}$]undec-8-en-10-one (7) as a common intermediate.

In the preceding two papers in this series, ${ }^{1)}$ we described the stereoselective synthesis of a tricyclic enone, $(+)-(1 S, 2 R, 4 R, 7 S)-3,3,7$-trimethyltricyclo[6.3.0.0 $\left.{ }^{2,4}\right]$ undec-8-en-10-one (1), and its conversion into B / C-trans and -cis compounds (2 and 3) corresponding to the aromadendrane and alloaromadendrane skeletons, ${ }^{1 a}$ and the total synthesis of (+)-1,2-didehydroaromadendrane (4) via regio- and stereoselective introduction of a methyl group at the C 11 position of 1 followed by reductive deoxygenation. ${ }^{1 b}$) However, among natural products with an aromadendrane skeleton, several functionalities are known at C7, e.g., an exo-methylene, ${ }^{2)}$ a hydroxyl group, ${ }^{2 a, b, 3)}$ an isonitrile or an isothiocyanate group, ${ }^{4)}$ and a sugar moiety. ${ }^{5)}$

Accordingly, we sought to establish an efficient general synthetic route that could be applied to these
of (+)-aromadendrene (5) ${ }^{2 b}$) and (- -alloaromadendrene (6). ${ }^{2 c)}$ Since the C 7 substituent in 1 is a methyl group, functionalization of the C 7 position seems difficult. To solve this problem, we used (+)($1 S, 2 R, 4 R, 7 S, 11 R$)-7-tert-butyldimethylsiloxymethyl-3,3,11-trimethyltricyclo[6.3.0.0 ${ }^{2,4}$]undec-8-en-10-one (7) as a common key intermediate. It has a siloxymethyl group at $C 7$, which simplifies manipulation of the functional group (Chart 1).

Charts 2 and 3 show the preparation of the targeted enone 7 from the previously described 7 membered cyclic β-ketoester 8 . ${ }^{\text {1a) }}$ Exhaustive reduction of 8 using excess lithium aluminum hydride (LAH) in ethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) followed by protection of the primary hydroxyl group of diol 9 as a tertbutyldimethylsilyl (TBS) ether with TBS chloride and imidazole in N, N-dimethylformamide (DMF) furnished the alcohols 10 (50% yield from 8) and 11 (50% yield from 8), which were separated by column chromatography. Compounds 10 and 11 seem to be diastereomers with regard to the hydroxyl group, but their configurations were not determined at this stage. Oxidation of 10 and 11 was carried out separately using Ley's tetrapropylammonium perruthenate (TPAP) / 4-methylmorpholine N-oxide (NMO) system ${ }^{6)}$ to afford the ketones 12 (90% from $\mathbf{1 0}$) and 13 (93% from 11). The configurations at C4 of $\mathbf{1 2}$ and $\mathbf{1 3}$ were determined to be R and S, respectively. Chair conformations are presumed for these compounds. ${ }^{1 a)}$ The downfield shift (to $\delta 3.34$) of the C 4 proton signal in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 12 is ascribed to a deshielding effect arising from its position flush with the carbonyl plane. Since the C4 proton of $\mathbf{1 3}$ is located far from the carbonyl plane, its resonance occurs at a higher field ($\delta 2.44$). These data show that the siloxymethyl group of $\mathbf{1 2}$ is axial and that of $\mathbf{1 3}$ is equatorial, as shown in Chart 2 . Allylation at C 2 from the less hindered α-side was accomplished by treatment of 12 with lithium diisopropylamide (LDA) followed by addition of hexamethylphosphoric triamide (HMPA) and allyl bromide to provide 14 . The

Chart 2
stereochemistry was determined by the observation of nuclear Overhauser effect (NOE) between the C2 proton and the methylene protons of the siloxymethyl group. However, allylation of 13 did not follow the same course as that of $\mathbf{1 2}$, and a small quantity of $\mathbf{1 5}$ was produced along with some recovered starting
material. The different behavior of $\mathbf{1 2}$ and $\mathbf{1 3}$ can be attributed to the reversed configuration at $\mathbf{C} 4$. The C 4 proton of $\mathbf{1 3}$ is axial, so that it is indistinguishable from the C 2 axial proton. Ketone 13 could not be directly isomerized to 12 ; however, desilylation of the C 4 hydroxyl group of 13 by exposure to tetra-nbutylammonium fluoride (TBAF) followed by treatment with potassium carbonate in methanol led to a diastereomeric mixture of keto alcohols 16 (82% from 13). LAH reduction of this mixture followed by protection of the primary hydroxyl group of diol as a TBS ether gave the alcohols 10 (40% yield from 16) and 11 (52% yield from 16). Thus, the recycling of 13 into 10 has been established (Chart 2).

The allyl group of 14 was converted to a methyl ketone by Wacker oxidation ${ }^{7)}$ to give the diketone 17 in 96% yield. Aldol condensation of the latter was unexpectedly troublesome. The desired aldol product was not reproducible ($27-76 \%$ yield) under previously reported conditions. la. 8) After various examinations, we identified effective conditions; namely, 17 was treated with sodium bis(trimethylsilyl)amide (NaHMDS) in tetrahydrofuran (THF) at $-78^{\circ} \mathrm{C}$, then warmed to $50^{\circ} \mathrm{C}$ to afford the desired enone 18 in $76-$ 84% yield. Methylation at Cl 1 from the less hindered β-side was accomplished by treatment of 18 with lithium bis(trimethylsilyl)amide (LiHMDS) at $-78^{\circ} \mathrm{C}$, followed by alkylation with methyl iodide to provide 7 as a sole product in 92% yield. The configuration of the newly introduced methyl group was confirmed by analysis of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, including NOE measurement. The Cl proton signal appeared at $\delta 2.22$ as a doublet ($J=9.8 \mathrm{~Hz}$) coupled only with the C 2 cyclopropyl proton. The C 11 proton signal appeared at δ 2.18 as a quartet $(J=7.3 \mathrm{~Hz})$ coupled only with the CII methyl proton. Since vicinal coupling between the C 1 and Cl1 protons was not observed, it is clear that the dihedral angle between them is about 90°. Furthermore, NOE was detected between the C 2 and C 11 protons. These observations obviously show that the methyl group was introduced stereoselectively from the β-side of the kinetic dienolate ($\mathrm{A}: \mathrm{R}=\mathrm{H}$) (Chart 3).

(a) $\mathrm{O}_{2}, \mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{DMF}$ (b) NaHMDS. HMPA. THF, $-78^{\circ} \mathrm{C} \rightarrow 50^{\circ} \mathrm{C}$
(c) LiHMDS, HMPA, THF, then MeI (d) LiHMDS, HMPA, THF, then satd. $\mathrm{NH}_{4} \mathrm{Cl}$ aq.

Chart 3

With the enone 7 in hand, we next focused on the total syntheses of (+)-aromadendrene (5) and (-)alloaromadendrene (6), as a part of the development of a general synthetic route to aromadendrane-type compounds. Since 5 and 6 have an α-methyl group at the C11 position, isomerization of the C11 methyl group of 7 is required. We expected that a proton could be introduced from the less hindered β-side by reprotonation of the kinetic dienolate ($\mathrm{A}: \mathrm{R}=\mathrm{Me}$) to give the desired compound 19 bearing an α-oriented methyl group. Although treatment of 7 with LDA did not give a useful result because of the low acidity of
the equatorial C 11 proton, treatment with LiHMDS in THF-HMPA at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ and quenching with saturated ammonium chloride solution gave 19 . The stereochemistry of 19 was determined by the observation of NOE between the Cl and C 11 protons (Chart 3).

Chart 4
With the enone 19 in hand, we were now ready to attempt the stereoselective construction of the B/Cring systems for aromadendrane-type and alloaromadendrane-type compounds in accordance with our previously established method. ${ }^{\text {1a) }}$ Catalytic hydrogenation of 19 over Pd / C exclusively afforded the B / C trans compound 20 . The observation of NOE between the C 2 and C 8 protons supports this result. On the other hand, enone 19 was converted to a tosylhydrazone $21,{ }^{9}$) which was then treated with sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$ in acetic acid ${ }^{10}$) to provide the desired B / C-cis compound 22 as expected. The stereochemistry of $\mathbf{2 2}$ was confirmed by the observation of NOE between the C1 and C8 protons (Chart 4).

After securing the B/C-trans compound 20 and the cis compound 22, our only remaining task was functional group manipulation. Thus, reduction of the carbonyl group of 20 using NaBH_{4} followed by treatment with phenyl chlorothionoformate, pyridine and 4-dimethylaminopyridine (DMAP) led to a diastereomeric mixture 23 with respect to the thiocarbonate at ClO . Treatment of 23 with tributyltin hydride $\left(n-\mathrm{Bu}_{3} \mathrm{SnH}\right)$ in refluxing toluene in the presence of a catalytic amount of $2,2^{\prime}$-azobis(isobutyronitrile) (AIBN) furnished the deoxy derivative 24 in 68% yield. Desilylation of the C 7 hydroxyl group of 24 by exposure to TBAF followed by treatment with methanesulfonyl chloride (MsCl), triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$) and DMAP led to mesylate 26 in quantitative yield from 24 . Mesylate 26 was treated with 1,8 -diazabicyclo[5.4.0]undec-7ene (DBU) in toluene at $100^{\circ} \mathrm{C}$ to afford (+)-aromadendrene (5), which was identical to an authentic sample by spectral comparison. ${ }^{11)}$

Catalytic hydrogenation of 22 over Pd / C provided 27, which was converted to (-)-alloaromadendrene (6) in the same manner as 24 was converted to (+)-aromadendrene (5). Synthetic (-)-alloaromadendrene (6) showed spectral data identical to those previously reported, ${ }^{2 b}$) including the $[\alpha]_{D}$ value (Chart 5).

Thus, the total syntheses of $(+)$-aromadendrene (5) and (-)-alloaromadendrene (6) were achieved via a common key intermediate (+)-($1 S, 2 R, 4 R, 7 S, 11 R$)-7-tert-butyldimethylsiloxymethyl-3,3,11-trimethyltricyclo[6.3.0.0 $0^{2,4}$]undec-8-en-10-one (7). Further extension of this methodology to other natural products is now underway.

Reagents: (a) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$ (b) $\mathrm{PhOC}(\mathrm{S}) \mathrm{Cl}$, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ (c) n - $\mathrm{Bu}_{3} \mathrm{SnH}$. AIBN, toluene
(d) TBAF, THF (e) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (f) DBU , toluene

Chart 5

Experimental

Optical rotations were recorded on a JASCO DIP- 360 polarimeter. NMR spectra were recorded on a JEOL JNM-GX-500 or a Varian VXR-200 instrument and calibrated using tetramethylsilane (TMS) or residual undeuterated chloroform as an internal standard. IR spectra were recorded on a Hitachi 260-10 spectrometer. Mass spectra (MS) and high resolution mass spectra (HRMS) were obtained on a Shimadzu QP- 1000 or a JEOL JMS D- 300 mass spectrometer. Merck Kieselgel 60 was used for column chromatography. Preparative thin-layer chromatography (PTLC) separations were carried out on Merck Kieselgel $60 \mathrm{PF}_{254}$. All organic extracts were dried over anhydrous MgSO_{4} before concentration.
(-)-(1S, $4 R, 7 R$)- and (+)-($1 S, 4 S, 7 R)$-4-tert-Butyldimethylsiloxymethyl-8,8-dimethyl-bicyclo[5.1.0]octan-3-ol (10 and 11 from β-ketoester 8) --... A solution of β-ketoester 8 1a) (91.3 $\mathrm{mg}, 0.435 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{ml})$ was added dropwise to a stirred suspension of LAH ($49.6 \mathrm{mg}, 1.30 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ and the mixture was stirred at room temperature for 1 h . After successive careful addition of $\mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{ml}), 1 \mathrm{~N} \mathrm{NaOH}$ solution (0.05 ml) and $\mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{ml})$, the resulting precipitates were filtered off through a celite pad. The filtrate was dried and concentrated to give the corresponding crude diol 9 which was taken to the next step without further purification. $\operatorname{TBSCl}(65.5 \mathrm{mg} ; 0.435 \mathrm{mmol})$ was added to a solution of the previous diol 9 and imidazole ($65.0 \mathrm{mg}, 0.957 \mathrm{mmol}$) in DMF (3 ml) at $0^{\circ} \mathrm{C}$, and the whole was allowed to warm to room temperature under stirring, and the stirring was continued for 12 h . After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=50: 1$) to give the alcohols $10(65.3 \mathrm{mg}, 50 \%$) and 11 (64.2 $\mathrm{mg}, 50 \%)$, each as a colorless oil. $\quad 10:[\alpha]^{28} \mathrm{D}-0.2\left(c=1.85, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $0.08(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me} \times 2), 0.52-0.59(2 \mathrm{H}, \mathrm{m}, \mathrm{Cl}-\mathrm{and} \mathrm{C} 7-\mathrm{H}), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 1.00(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{Mex}$ 2), $1.23-1.36(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\beta \mathrm{H}, \mathrm{OH}), 1.37-1.52(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\alpha \mathrm{H}, \mathrm{C} 6-\alpha \mathrm{H}), 1.63-1.70(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\beta \mathrm{H}$, $\mathrm{C} 5-\beta \mathrm{H}), 2.02(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\alpha \mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 3.67(1 \mathrm{H}, \mathrm{dd}, J=4.2,9.7 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}), 3.96(2 \mathrm{H}, \mathrm{dd}$, $\left.J=9.2,9.8 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{CH}_{2}\right) . \quad$ IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 3460(\mathrm{OH}) . \quad \mathrm{MS} \mathrm{m} / \mathrm{z} \quad$ (rel. int. \%): $298\left(\mathrm{M}^{+}, 1.8\right), 149$ (100). HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}$: 298.2326. Found: 298.2321. 11: $[\alpha]^{28} \mathrm{D}+31.6(c=1.52$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.05(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me} \times 2), 0.62-0.74(2 \mathrm{H}, \mathrm{m}, \mathrm{Cl}-\mathrm{and} \mathrm{C} 7-\mathrm{H})$, $0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 1.00,1.03$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{Me} \times 2), 0.92-1.08(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-3 \mathrm{H}), 1.18(1 \mathrm{H}, \mathrm{dd}, J=$ $10.4,14.6 \mathrm{~Hz}, \mathrm{C} 2-\beta \mathrm{H}), 1.31(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 1.45(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\alpha \mathrm{H}), 1.77(1 \mathrm{H}, \mathrm{dd}, J=12.8,25.6 \mathrm{~Hz}, \mathrm{C} 5-$ $\beta \mathrm{H}), 1.97(\mathrm{IH}$, ddd, $J=6.1,6.7,7.3 \mathrm{~Hz}, \mathrm{C} 6-\alpha \mathrm{H}), 2.27(\mathrm{IH}$, ddd, $J=6.7,14.7,14.7 \mathrm{~Hz}, \mathrm{C} 2-\alpha \mathrm{H}), 2.92$
($1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}$), $3.65\left(1 \mathrm{H}, \mathrm{dd}, J=4.9,9.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right), 3.72(1 \mathrm{H}, \mathrm{dd}, J=4.3,9.8 \mathrm{~Hz}$, one of $\mathrm{C} 4-$ $\left.\mathrm{CH}_{2}\right), 4.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 3450(\mathrm{OH}) . \quad \mathrm{MS} \mathrm{m} / \mathrm{z} \quad$ (rel. int. \%$): 298\left(\mathrm{M}^{+}\right.$, 8.9), 93 (100). HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}$ 298.2325. Found: 298.2302.
(+)-(1S, 4R, 7R)-4-tert-Butyldimethylsiloxymethyl-8,8-dimethylbicyclo[5.1.0]octan-3-one
(12) ----- A mixture of alcohol $10(677 \mathrm{mg}, 2.27 \mathrm{mmol})$, $\mathrm{NMO}(416 \mathrm{mg}, 3.55 \mathrm{mmol})$, and $4 \AA$ molecular sieves (1.20 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was stirred at room temperature for 10 min . TPAP ($44.5 \mathrm{mg}, 0.127$ mmol) was added, and the whole was stirred at room temperature for 15 min . The reaction mixture was filtered through silica gel. The filtrate was concentrated and the residue was purified by column chromatography (n-hexane : $\mathrm{AcOEt}=50: 1$) to give the ketone $12(604 \mathrm{mg}, 90 \%)$ as a colorless oil. $[\alpha]^{30} \mathrm{D}+113.3\left(c=1.19, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.02,0.03$ (each $3 \mathrm{H}, \mathrm{s}$, Si-Me x 2$)$, $0.76-0.83(2 \mathrm{H}, \mathrm{m}, \mathrm{Cl}$ - and $\mathrm{C} 7-\mathrm{H}), 0.85(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 0.96,1.07$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{Me} \times 2$), $1.01-$ $1.19,1.35($ each $1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\alpha \mathrm{H}, \mathrm{C} 6-\beta \mathrm{H}), 1.84-\mathrm{I} .96(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-\beta \mathrm{H}, \mathrm{C} 6-\alpha \mathrm{H}), 2.15(1 \mathrm{H}, \mathrm{dd}, J=7.9$, $17.7 \mathrm{~Hz}, \mathrm{C} 2-\alpha \mathrm{H}), 2.60(1 \mathrm{H}, \mathrm{dd}, J=9.2,17.7 \mathrm{~Hz}, \mathrm{C} 2-\beta \mathrm{H}), 3.34(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=7.3$, 9.8 Hz , one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right), 3.89\left(1 \mathrm{H}, \mathrm{dd}, J=6.1,9.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8: -5.4 (q), -5.3 (q), 15.1 (q), 18.4 (s), 19.8 (d), 20.2 (s), 20.7 (t), 26.0 (q x 3), 26.1 (d), 28.1 (t), 28.7 (q), 39.4 (t), 51.5 (d), 63.6 (t), 214.2 (s). IR (CHCl_{3}) $\mathrm{cm}^{-1}: 1700(\mathrm{C}=\mathrm{O}) . \quad \mathrm{MS} \mathrm{m} / 2 \quad$ (rel. int. \%): 296 ($\mathrm{M}^{+}, 4.0$), 239 (100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 68.86 ; \mathrm{H}, 10.88$. Found: $\mathrm{C}, 69.02 ; \mathrm{H}, 10.68$.
(+)-(1S, 4S, 7R)-4-tert-Butyldimethylsiloxymethyl-8,8-dimethylbicyclo[5.1.0]octan-3-one (13) ---- The alcohol 11 was converted to the ketone 13 in a similar manner to that described for 10. 13: A colorless amorphous (93% yield). $\quad[\alpha]^{27} \mathrm{D}+121.8\left(c=0.740, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 0.03,0.04$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me} \times 2$), $0.56(1 \mathrm{H}$, ddd, $J=6.3,6.7,11.3 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{H}), 0.71(1 \mathrm{H}$, ddd, $J=$ $6.1,6.7,11.0 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 0.87(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 1.04,1.06$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{Me} \times 2), 1.01-1.25(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C} 5-\alpha \mathrm{H}, \mathrm{C} 6-\beta \mathrm{H}$), $2.09-2.20(3 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\alpha \mathrm{H}, \mathrm{C} 5-\beta \mathrm{H}, \mathrm{C} 6-\alpha \mathrm{H}), 2.44(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 2.48(1 \mathrm{H}, \mathrm{dd}, J=$ $6.7,11.6 \mathrm{~Hz}, \mathrm{C} 2-\beta \mathrm{H}), 3.48\left(1 \mathrm{H}, \mathrm{dd}, J=8.5,10.4 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right), 3.94(1 \mathrm{H}, \mathrm{dd}, J=4.9,10.4 \mathrm{~Hz}$, one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1700(\mathrm{C}=\mathrm{O})$. MS m/z (rel. int. \%): $296\left(\mathrm{M}^{+}, 0.3\right), 239(100)$. HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: 296.2172$. Found: 296.2173.
(+)-(1S, 2S, 4R, 7R)-4-tert-Butyldimethylsiloxymethyl-8,8-dimethyl-2-(2-propenyl)-
bicyclo[5.1.0]octan-3-one (14) $\cdots-\cdots-\operatorname{BuLi}(0.324 \mathrm{ml}$ of a 1.64 M solution in n-hexane, 0.531 mmol$)$ was added to a solution of diisopropylamine ($0.071 \mathrm{ml}, 0.51 \mathrm{mmol}$) in THF (2 ml) at $-20^{\circ} \mathrm{C}$ and the mixture was stirred for 20 min . A solution of ketone $12(100 \mathrm{mg}, 0.337 \mathrm{mmol})$ in THF (0.5 ml) was added to the above solution at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min , after that HMPA (0.25 ml) was added and stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . Allyl bromide ($0.035 \mathrm{ml}, 0.40 \mathrm{mmol}$) was added dropwise, and the reaction mixture was allowed to warm to room temperature over the period of 4 h . The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{H}_{2} \mathrm{O}$, and the resulting mixture was extracted with AcOEt. The extracted was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=50: 1$) to give 14 ($106 \mathrm{mg}, 94 \%$) as a colorless oil: $[\alpha]^{29} \mathrm{D}+109.5\left(c=0.660, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 0.03,0.04($ each $3 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me} \times 2), 0.36(1 \mathrm{H}, \mathrm{dd}, J=8.6,9.2, \mathrm{Cl}-\mathrm{H}), 0.74(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H})$, 0.87 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}$), 0.98, 1.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{Mex} 2$), $0.93-1.20(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\beta \mathrm{H}), 1.55(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-$ $\alpha \mathrm{H}), 1.76-1.91(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\beta \mathrm{H}, \mathrm{C} 6-\alpha \mathrm{H}), 2.21-2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\right.$ and $\left.\mathrm{Cl}^{\prime}-\mathrm{H}\right), 2.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Cl}{ }^{\prime}-\mathrm{H}\right)$, $3.10(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J=6.1,9.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right), 3.86(1 \mathrm{H}, \mathrm{dd}, J=7.9,9.8 \mathrm{~Hz}$, one of C4-CH2 $), 5.00\left(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}\right.$, one of $\left.=\mathrm{CH}_{2}\right), 5.04\left(1 \mathrm{H}, \mathrm{d}, J=18.3 \mathrm{~Hz}\right.$, one of $\left.=\mathrm{CH}_{2}\right), 5.73(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} 2^{\prime}-\mathrm{H}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1700(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{C})$. MS m/z (rel. int. \%): $336\left(\mathrm{M}^{+}, 0.03\right), 279$ (100). HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}: 336.2483$. Found: 336.2483 .
(+)-(1S,7R)-8,8-Dimethyl-4-methylenebicyclo[5.1.0]octan-3-one (15) ----. A colorless oil. $[\alpha]^{29} \mathrm{D}+125.8\left(c=0.660, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.67-0.78(2 \mathrm{H}, \mathrm{m}, \mathrm{Cl}-$ and $\mathrm{C} 7-\mathrm{H})$, $1.05,1.06$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{Me} \times 2$), 1.59 (1 H, ddd, $J=6.7,14.7,14.7 \mathrm{~Hz}, \mathrm{C} 6-\beta \mathrm{H}$), 2.04 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-$ $\alpha \mathrm{H}), 2.32(1 \mathrm{H}, \mathrm{dd}, J=11.0,14.0 \mathrm{~Hz}, \mathrm{C} 2-\beta \mathrm{H}), 2.45(2 \mathrm{H}, \mathrm{dd}, J=6.1,6.7 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}), 2.62(1 \mathrm{H}, \mathrm{dd}, J=$ $6.1,14.0 \mathrm{~Hz}, \mathrm{C} 2-\alpha \mathrm{H}), 5.13,5.67\left(\right.$ each $\left.1 \mathrm{H}, \mathrm{s},=\mathrm{CH}_{2} \times 2\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1700(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{C})$.

MS m/z (rel. int. \%): $164\left(\mathrm{M}^{+}, 18.0\right), 69$ (100). HRMS Caled for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}: 164.1199$. Found: 164.1199.
(+)-(1S, 4R,7R)- and (+)-(1S,4S,7R)-8,8-Dimethyl-4-hydroxymethylbicyclo[5.1.0]octan-3-one (16) --..- TBAF (5.87 ml of a 1.0 M solution in THF, 5.87 mmol) was added to a solution of ketone $13(1.16 \mathrm{~g}, 3.91 \mathrm{mmol})$ in THF (40 ml), and the whole was stirred at room temperature for 12 h . Then $\mathrm{H}_{2} \mathrm{O}$ was added, and resulting mixture was concentrated. After dilution with AcOEt, the organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, and concentrated to give the corresponding crude keto alcohol which was taken to the next step without further purification. A mixture of the previous keto alcohol and potassium carbonate ($1.47 \mathrm{~g}, 10.6 \mathrm{mmol}$) in $\mathrm{MeOH}(18 \mathrm{ml})$ was stirred at room temperature for 7.5 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and 10% aqueous HCl , and resulting mixture was concentrated. After dilution with AcOEt , the organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=1: 1$) to give a mixture of keto alcohols 16 (587 $\mathrm{mg}, \mathbf{8 2 \%}$) as a colorless oil: $\mathbf{4 R}$-Isomer of $16:[\alpha]^{26} \mathrm{D}+193.0\left(c=0.905, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.80-0.88(2 \mathrm{H}, \mathrm{m}, \mathrm{Cl}-$ and $\mathrm{C} 7-\mathrm{H}), 0.97,1.09$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{Me} \times 2$), $0.89-1.16$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\beta \mathrm{H}), 1.58(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\alpha \mathrm{H}), 1.81-1.94(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\beta \mathrm{H}, \mathrm{C} 6-\alpha \mathrm{H}), 2.13(1 \mathrm{H}, \mathrm{dd}, J=7.9,19.5$ $\mathrm{Hz}, \mathrm{C} 2-\beta \mathrm{H}), 2.70(1 \mathrm{H}, \mathrm{dd}, J=7.9,19.5 \mathrm{~Hz}, \mathrm{C} 2-\alpha \mathrm{H}), 3.44(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=3.7,11.3$ Hz , one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right), 3.74\left(1 \mathrm{H}, \mathrm{dd}, J=7.3,11.3 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 3500(\mathrm{OH})$, $1695(\mathrm{C}=\mathrm{O})$. MS m/z (rel. int. \%): $182\left(\mathrm{M}^{+}, 18.9\right) .81$ (100). HRMS Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}: 182.1304$. Found: 182.1296. $4 S$-Isomer of 16: $[\alpha]^{27} \mathrm{D}+199.0\left(c=0.475, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 0.58(1 \mathrm{H}$, ddd, $J=6.1,9.2,11.3 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{H}), 0.74(1 \mathrm{H}$, ddd, $J=6.1,9.2,11.0 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H})$, $1.06,1.08$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{Mex} 2$), $1.26(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\beta \mathrm{H}), 1.43(1 \mathrm{H}, \mathrm{dd}, J=12.2,25.0 \mathrm{~Hz}, \mathrm{C} 5-\alpha \mathrm{H}), 1.67$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.84(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\beta \mathrm{H}), 2.10-2.18(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\beta \mathrm{H}, \mathrm{C} 6-\alpha \mathrm{H}), 2.47(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 2.53$ $(1 \mathrm{H}, \mathrm{dd}, J=6.1,11.6 \mathrm{~Hz}, \mathrm{C} 2-\alpha \mathrm{H}), 3.64\left(1 \mathrm{H}, \mathrm{dd}, J=3.1,11.6 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right), 3.74(1 \mathrm{H}, \mathrm{dd}, J=$ $7.3,11.6 \mathrm{~Hz}$. one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 3500(\mathrm{OH}), 1690(\mathrm{C}=\mathrm{O})$. MS m / z (rel. int. \%): 182 $\left(\mathrm{M}^{+}, 18.9\right), 81(100)$. HRMS Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}: 182.1304$. Found: 182.1286.
(-)-(1S, 4R, $7 R$)- and (+)-($1 S, 4 S, 7 R$)-4-tert-Butyldimethylsiloxymethyl-8,8-dimethyl-bicyclo[5.1.0]octan-3-ol (10 and 11 from a mixture of keto alcohols 16) A solution of a mixture of keto alcohols $16(587 \mathrm{mg}, 3.22 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ was added dropwise to a stirred suspension of $\mathrm{LAH}(124 \mathrm{mg}, 3.26 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min at that temperature. After successive careful addition of $\mathrm{H}_{2} \mathrm{O}(0.125 \mathrm{ml})$, 1 N NaOH solution (0.125 ml) and $\mathrm{H}_{2} \mathrm{O}$ $(0.375 \mathrm{ml})$, the resulting precipitates were filtered off through a celite pad. The filtrate was dried and concentrated to give the corresponding crude diol which was taken to the next step without further purification. TBSCl ($532 \mathrm{mg}, 3.53 \mathrm{mmol}$) was added to a solution of the previous diol and imidazole (478 $\mathrm{mg}, 7.02 \mathrm{mmol}$) in DMF (16 ml) at $0{ }^{\circ} \mathrm{C}$, and the whole was allowed to warm to room temperature under stirring, and the stirring was continued for 12 h . After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=20: 1$) to give the alcohols $10(385 \mathrm{mg}, 40 \%$ from 16$)$ and $11(495 \mathrm{mg}, 52 \%$ from 16$)$ each as a colorless oil.
(+)-($1 S, 2 S, 4 R, 7 R$)-4-tert-Butyldimethylsiloxymethyl-8,8-dimethyl-2-(2-oxopropyl)-
bicyclo[5.1.0]octan-3-one (17) ---- A suspension of palladium(II) chloride ($1.62 \mathrm{~g}, 9.14 \mathrm{mmol}$) and copper(I) chloride ($3.62 \mathrm{~g}, 36.6 \mathrm{mmol}$) in aqueous DMF (DMF: $\mathrm{H}_{2} \mathrm{O}=4: 1,180 \mathrm{ml}$) was stirred at room temperature for 3 h under an oxygen atmosphere. A solution of $14(6.08 \mathrm{~g}, 18.3 \mathrm{mmol})$ in DMF (108 ml) was added to the suspension and stirred at room temperature for 4.5 h . After the addition of $\mathrm{H}_{2} \mathrm{O}(216 \mathrm{ml})$, the whole was filtered through a celite pad, and the filtrate was extracted with AcOEt. The extract was washed with aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography $(n$-hexane : $\mathrm{AcOEt}=4: 1)$ to give the diketone $17(6.08 \mathrm{~g}, 96 \%)$ as a yellow oil. $[\alpha]^{32} \mathrm{D}+153.8(c=$ $\left.0.835, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.05(6 \mathrm{H}, \mathrm{s}$, Si-Me $\times 2), 0.30(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.8 \mathrm{~Hz}$, C1-H), $0.76(1 \mathrm{H}$, ddd, $J=6.1,9.2,11.0 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 0.88(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 1.04,1.04$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{Me}$ x 2), $1.32(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\beta \mathrm{H}), 1.76-1.82(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}), 1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\alpha \mathrm{H}), 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{Me})$,
$2.50-2.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}\right.$, one of $\left.\mathrm{Cl}^{\prime}-\mathrm{H}\right), 2.93-3.02(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}$, one of $\mathrm{Cl}-\mathrm{H}), 3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $7.9,10.4 \mathrm{~Hz}$, one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right), 3.92\left(1 \mathrm{H}, \mathrm{dd}, J=5.5,10.4 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 4-\mathrm{CH}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1715$, $1700(\mathrm{C}=\mathrm{O})$. MS m / z (rel. int. \%): $352\left(\mathrm{M}^{+}, 0.8\right), 295(100) . \quad$ HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}: 352.2431$. Found: 352.2430.
(+)-(1R, 2R, 4R, 7S)-7-tert-Butyldimethylsiloxymethyl-3,3-dimethyltricyclo[6.3.0.0 $\left.\boldsymbol{0}^{2}, 4\right]$ -undec-8-en-10-one (18) --..- A solution of diketone 17 ($2.15 \mathrm{~g}, 6.10 \mathrm{mmol}$) in THF (50 ml) was added dropwise to a solution of $\mathrm{NaHMDS}(6.71 \mathrm{ml}$ of a 1.0 m solution in THF, 6.71 mmol) and HMPA (2.12 ml , 12.2 mmol) in THF (250 ml) and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , at $0^{\circ} \mathrm{C}$ for 15 min , and at 50 ${ }^{\circ} \mathrm{C}$ for 10 min . The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{H}_{2} \mathrm{O}$, and resulting mixture was concentrated. After dilution with AcOEt, the organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=15: 1$) to give the enone 18 $(1.71 \mathrm{~g}, 84 \%)$ as a colorless oil. $[\alpha]^{33} \mathrm{D}+57.6\left(c=0.725, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $0.01,0.02$ (each $3 \mathrm{H}, \mathrm{s}$, Si-Me x 2), $0.29(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.2 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 0.70(1 \mathrm{H}$, ddd, $J=6.1,9.2$, $11.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 0.86(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 1.04,1.09$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Mex} 2), 1.28(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\beta \mathrm{H}), 1.71$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\alpha \mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\alpha \mathrm{H}), 1.96(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\beta \mathrm{H}), 2.20(1 \mathrm{H}, \mathrm{d}, J=17.7 \mathrm{~Hz}, \mathrm{Cl} 1-\alpha \mathrm{H}), 2.61$ ($1 \mathrm{H}, \mathrm{dd}, J=6.7,17.7 \mathrm{~Hz}, \mathrm{Cl} 1-\beta \mathrm{H}), 2.63(1 \mathrm{H}, \mathrm{dd}, J=6.7,9.2 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{H}), 3.11(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 3.64$ ($2 \mathrm{H}, \mathrm{dd}, J=1.9,6.7 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{CH}_{2}$) , $5.86(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 9-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-5.4(\mathrm{q} \times 2)$, $15.6(\mathrm{q}), 18.3(\mathrm{~s}), 19.9(\mathrm{t}), 21.0(\mathrm{~s}), 25.9(\mathrm{q} \mathrm{x} 3), 28.1$ (t), $28.4(\mathrm{~d}), 28.7(\mathrm{q}), 32.1(\mathrm{~d}), 38.4(\mathrm{~d}), 44.6(\mathrm{~d})$, 44.7 (t), 65.3 (t), 130.3 (d), 186.8 (s), 209.7 (s). IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1690(\mathrm{C}=\mathrm{O}), 1615$ (C=C). MS m/z (rel. int. \%): $334\left(\mathrm{M}^{+}, 0.6\right), 277(100)$. HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: 334.2325$. Found: 334.2312 .
(+)-(1R, $2 R, 4 R, 7 S, 11 R)-7$-tert-Butyldimethylsiloxymethyl-3,3,11-trimethyltricyclo-
[6.3.0.0 ${ }^{2,4}$] undec-8-en-10-one (7) $\cdots-{ }^{-1}-\operatorname{BuLi}(3.45 \mathrm{ml}$ of a 1.60 M solution in n-hexane, 5.52 mmol$)$ was added to a solution of $1,1,1,3,3,3$-hexamethyldisilazane ($1.22 \mathrm{ml}, 5.49 \mathrm{mmol}$) in THF (25 ml) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h . HMPA ($1.92 \mathrm{ml}, 11.0 \mathrm{mmol}$) was added and the whole was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , after that a solution of enone $18(1.23 \mathrm{~g}, 3.68 \mathrm{mmol})$ in THF (12 ml) was added dropwise and stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Mel ($0.467 \mathrm{ml}, 7.35 \mathrm{mmol}$) was added dropwise, and the reaction mixture was allowed to warm to room temperature over the period of 2 h . The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{H}_{2} \mathrm{O}$, and resulting mixture was concentrated. After dilution with AcOEt , the organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n hexane : $\mathrm{AcOEt}=20: 1)$ to give $7(1.18 \mathrm{~g}, 92 \%)$ as a colorless oil. $\quad[\alpha]^{34} \mathrm{D}+58.4\left(c=1.03, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.01,0.02$ (each $3 \mathrm{H}, \mathrm{s}$, Si-Me x 2), $0.33(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.8 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H})$, 0.70 (1 H, ddd, $J=6.1,9.2,11.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 0.85(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 1.04,1.09$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me} \times 2$), $1.11(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{Cl} 1-\mathrm{Me}), 1.30(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\beta \mathrm{H}), 1.70-1.95(3 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\alpha \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 2.18(1 \mathrm{H}$, $\mathrm{q}, J=9.8 \mathrm{~Hz}, \mathrm{Cll}-\mathrm{H}), 2.22(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 3.64(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{C} 7-$ CH_{2}), $5.80(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 9-\mathrm{H}) . \quad$ IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1690(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C}) . \quad$ MS m / z (rel. int. \%): $348\left(\mathrm{M}^{+}\right.$, 0.4), 291 (100). HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}: 348.2484$. Found: 348.2496.
(+)-($1 R, 2 R, 4 R, 7 S, 11 S)-7$-tert-Butyldimethylsiloxymethyl-3,3,11-trimethyltricyclo-
[6.3.0.0 $\mathbf{0}^{2,4}$] undec-8-en-10-one (19) ---- n-BuLi (0.206 ml of a 1.56 M solution in n-hexane, 0.321 mmol) was added to a solution of $1,1,1,3,3,3$-hexamethyldisilazane ($0.0712 \mathrm{ml}, 0.321 \mathrm{mmol}$) in THF (2 ml) at $-20^{\circ} \mathrm{C}$ and the mixture was stirred for 20 min . To this was added dropwise a solution of $7(74.4 \mathrm{mg}$, $0.214 \mathrm{mmol})$ in THF $(0.2 \mathrm{ml})$, and then HMPA $(0.2 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over the period of 2 h . The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{H}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$. After dilution with AcOEt, the organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : AcOEt $=15: 1$) to give $19(63.8 \mathrm{mg}, 86 \%$) as a colorless oil. $[\alpha]^{24} \mathrm{D}+41.1\left(c=0.440, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.00-0.15(1 \mathrm{H}, \mathrm{m}$, C2-H), $0.01,0.02$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me} \times 2$), $0.69(1 \mathrm{H}$, ddd, $J=5.5,9.2,11.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 0.86(9 \mathrm{H}, \mathrm{s}$, Si-t$\mathrm{Bu}), 1.04,1.07$ (each 3H, s, C3-Me x 2), $1.12(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{C} 11-\mathrm{Me}), 0.90-1.40(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\beta \mathrm{H})$, $1.67(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\alpha \mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\alpha \mathrm{H}), \quad 1.98(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\beta \mathrm{H}), 2.55(1 \mathrm{H}, \mathrm{dq}, J=6.1,7.3 \mathrm{~Hz}$,
$\mathrm{Cl1}-\mathrm{H}), 2.68(1 \mathrm{H}, \mathrm{dd}, J=6.1,9.8 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{H}), 3.11(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 3.66\left(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{CH}_{2}\right)$, $5.83(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 9-\mathrm{H}) . \quad$ IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1690(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C}) . \quad$ MS m / z (rel. int. \%): $348\left(\mathrm{M}^{+}, 0.4\right)$, 291 (100). HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2}$ Si: 348.2485. Found: 348.2491.
(+)-($1 R, 2 S, 4 R, 7 S, 8 R, 11 S)-7-t e r t-B u t y l d i m e t h y l s i l o x y m e t h y l-3,3,11-t r i m e t h y l t r i c y c l o-~$ [6.3.0.0 ${ }^{2,4}$] undecan-10-one (20) A suspension of palladium carbon ($\mathrm{Pd} / \mathrm{C}, \mathrm{Pd}: 5 \%, 1.5 \mathrm{mg}$) in methanol (1 ml) was stirred at room temperature for 20 min under an atmospheric pressure of hydrogen. A solution of 19 ($15.7 \mathrm{mg}, 0.0451 \mathrm{mmol}$) in methanol (0.1 ml) was added to the above suspension and the mixture was stirred at room temperature under a hydrogen atmosphere for 2 h . The reaction mixture was filtered, concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=20: 1$) to give the ketone $20(14.7 \mathrm{mg}, 93 \%)$ as a colorless oil. $\quad[\alpha]^{23} \mathrm{D}+17.8\left(c=0.510, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 0.03(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me} \times 2), 0.00-0.12(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 0.67(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{t}-\mathrm{Bu}), 0.98$, 1.01 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me} x 2$), $1.02(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{C} 11-\mathrm{Me}), 1.38(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\beta \mathrm{H}), 1.53(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-$ $\alpha \mathrm{H}), 1.78-1.88(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\alpha \mathrm{H}, \mathrm{C} 6-\beta \mathrm{H}), 1.90-2.00(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}$, one of $\mathrm{C} 9-\mathrm{H}), 2.16-2.22(2 \mathrm{H}, \mathrm{m}$, Cl - and $\mathrm{C} 8-\mathrm{H}), 2.35(1 \mathrm{H}, \mathrm{dq}, J=7.3,8.6 \mathrm{~Hz}, \mathrm{C} 11-\mathrm{H}), 2.55(1 \mathrm{H}, \mathrm{dd}, J=8.5,18.9 \mathrm{~Hz}$, one of $\mathrm{C} 9-\mathrm{H})$, $3.46\left(1 \mathrm{H}\right.$, ddd, $J=2.4,6.1,9.8 \mathrm{~Hz}$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right), 3.55\left(1 \mathrm{H}, \mathrm{dd}, J=3.1,9.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1730(\mathrm{C}=\mathrm{O})$. MS m/z (rel. int. \%): $350\left(\mathrm{M}^{+}, 0.3\right), 293(100) . \quad$ HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}: 350.2638$. Found: 350.2633 .
($1 R, 2 R, 4 R, 7 S, 11 S$)-7-tert-Butyldimethylsiloxymethyl-3,3,11-trimethyltricyclo-
[6.3.0.0 ${ }^{2,4}$]undec-8-en-10-one Tosylhydrazone (21) ----- Tosylhydrazine ($47.0 \mathrm{mg}, 0.253 \mathrm{mmol}$) was added to a solution of $19(44.0 \mathrm{mg}, 0.126 \mathrm{mmol})$ in acetic acid $(1.5 \mathrm{ml})$, and the whole was stirred at room temperature for 12 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting mixture was extracted with CHCl_{3}. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by PTLC (n hexane : $\mathrm{AcOEt}=5: 1$) to give $19(7.0 \mathrm{mg}, 16 \%)$ and the tosylhydrazone $21(41.7 \mathrm{mg}, 76 \%$ based on 84% conversion) as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-0.01,0.00$ (each $3 \mathrm{H}, \mathrm{s}$, Si-Me $\times 2$), 0.11 , 0.25 (each $1 / 2 \mathrm{H}, \mathrm{dd}, J=9.2,9.9 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), \quad 0.45-0.80(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 0.83(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 1.00$, 1.06 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me} \times 2$) $, 0.80-2.62(10 \mathrm{H}, \mathrm{m}, \mathrm{Cl}-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl1-H}, \mathrm{C} 11-\mathrm{Me}, \mathrm{NH}), 2.41(3 \mathrm{H}, \mathrm{s}$, Ar-Me), 2.80-3.00 (1H, m, C7-H), $3.55\left(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{CH}_{2}\right), 5.78,5.97$ (each $\left.1 / 2 \mathrm{H}, \mathrm{s} . \mathrm{C} 9-\mathrm{H}\right)$, $7.57\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}\right.$, $\left.\mathrm{Ar}-\mathrm{H}\right) . \quad$ IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1620(\mathrm{C}=\mathrm{C}), 1600(\mathrm{C}=\mathrm{N}) . \quad \mathrm{MS} \mathrm{m} / 2$ (rel. int. \%): $516\left(\mathrm{M}^{+}\right.$, 6.7), 187 (100). HRMS Calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}: 516.2842$. Found: 516.2858.
(+)-($1 R, 2 S, 4 R, 7 S, 8 S, 11 S)-7-t e r t-B u t y l d i m e t h y l s i l o x y m e t h y l-3,3,11-t r i m e t h y l t r i c y c l o-~$
[6.3.0.0 $0^{2,4}$] undec-9-ene (22) ----- $\mathrm{NaBH}_{4}(30.7 \mathrm{mg} ; 0.808 \mathrm{mmol})$ was carefully added to a solution of tosylhydrazone 21 ($41.7 \mathrm{mg}, 0.0808 \mathrm{mmol}$) in acetic acid (0.6 ml) and the mixture was stirred at room temperature for 1 h , and at $70^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with ice-water, made basic $(\mathrm{pH}=9)$ with 1 N NaOH solution, and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=100: 1$) to give 22 ($13.8 \mathrm{mg}, 51 \%$) as a colorless oil. $[\alpha]^{24} \mathrm{D}+42.8\left(c=0.130, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 0.02,0.04$ (each $3 \mathrm{H}, \mathrm{s}$, Si-Me x 2), $0.40(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.8 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 0.62(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H})$, $0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 1.01,1.02$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me} x 2), 1.04(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{Cl1}-\mathrm{Me}), 1.00-2.08$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{Cl}-\mathrm{C} 5-\mathrm{C} 6-\mathrm{and} \mathrm{C} 7-\mathrm{H}), 2.60(1 \mathrm{H}, \mathrm{m}, \mathrm{Cl1}-\mathrm{H}), 2.76(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}), 3.52(1 \mathrm{H}, \mathrm{dd}, J=4.9,10.4$ Hz , one of $\left.\mathrm{C} 7 . \mathrm{CH}_{2}\right), 3.61\left(1 \mathrm{H}, \mathrm{dd}, J=5.5,10.4 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right), 5.58(1 \mathrm{H}$, ddd, $J=2.4,2.4,5.5$ $\mathrm{Hz}, \mathrm{C} 9-\mathrm{H}), 5.72(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}) . \quad$ IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1600(\mathrm{C}=\mathrm{C}) . \quad \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel. int. \%): 334 $\left(\mathrm{M}^{+}, 1.5\right), 277$ (100). HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{OSi}$: 334.2692. Found : 334.2693.
($1 R, 2 S, 4 R, 7 S, 8 R, 11 S$)-7-tert-Butyldimethylsiloxymethyl-3,3,11-trimethyltricyclo-
[6.3.0.0 ${ }^{2,4}$]undecan-10-yl Phenyl Thionocarbonate (23) ----- NaBH_{4} ($30.7 \mathrm{mg}, 0.808 \mathrm{mmol}$) was added to a solution of ketone $20(9.8 \mathrm{mg}, 0.0280 \mathrm{mmol})$ in methanol (1 ml), and the whole was stirred at room temperature for 2 h . The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. After dilution with water, the reaction mixture was extracted with AcOEt. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated to give the corresponding crude alcohol which was taken to the next step without further
purification. Phenyl chlorothionoformate ($0.0061 \mathrm{ml}, 0.032 \mathrm{mmol}$) was added to a solution of the previous alcohol, pyridine ($0.0080 \mathrm{ml}, 0.093 \mathrm{mmol}$) and DMAP ($0.3 \mathrm{mg}, 0.003 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{ml})$, and the whole was stirred at room temperature for 6 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting mixture was extracted with AcOEt. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=100: 1$) to give the thiocarbonate $23(11.6 \mathrm{mg}, 85$ $\%$) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.04,0.05$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me} \times 2$), $0.08-0.75$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2$ - and $\mathrm{C} 4-\mathrm{H}$), 0.89 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\uparrow-\mathrm{Bu}$), $0.80-2.72$ ($19 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-, \mathrm{C} 5-, \mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C}$ Cl1$\mathrm{H}, \mathrm{C} 3-\mathrm{Cl1}-\mathrm{Me}), 3.28-3.83$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{CH}_{2}$), 5.04 ($1 / 4 \mathrm{H}, \mathrm{m}, \mathrm{Cl} 0-\mathrm{H}$), $5.23(3 / 4 \mathrm{H}, \mathrm{m}, \mathrm{Cl} 0-\mathrm{H}), 7.04-$ $7.60(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1595,1495(\mathrm{C}=\mathrm{C}) . \quad \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel. int. \%): 334 ($\mathrm{M}^{+}-\mathrm{PhOC}(\mathrm{S}) \mathrm{OH}$, 2.1), 94 (100).
(-)-($1 R, 2 S, 4 R, 7 S, 8 R, 11 R) \cdot 7$-tert-Butyldimethylsiloxymethyl-3,3,11-trimethyltricyclo[6.3.0.0 ${ }^{2,4}$]undecane (24) ----- A solution of thiocarbonate $23, n-\mathrm{Bu}_{3} \mathrm{SnH}(0.0095 \mathrm{ml}, 0.036 \mathrm{mmol})$ and AIBN ($0.8 \mathrm{mg}, 0.005 \mathrm{mmol}$) in degassed toluene (0.35 ml) was stirred at reflux for 3 h , concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=100: 1$) to give $24(5.4 \mathrm{mg}, 68 \%$) as a colorless oil. $\quad[\alpha]^{28} \mathrm{D}-3.6\left(c=1.51, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.03(6 \mathrm{H}, \mathrm{s}$, Si-Me $\times 2)$, $0.45(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.2 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 0.57(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 0.91(3 \mathrm{H}, \mathrm{d}, J=7.3$ $\mathrm{Hz}, \mathrm{Cl1-Me}$), $0.99,1.00$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me} \times 2$), $1.06-2.03$ (12H, m, C1-, C5-, C6-, C7-, C8-, C9-, $\mathrm{Cl} 0-\mathrm{and} \mathrm{Cl} 1-\mathrm{H}), 3.55\left(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right), 3.67(1 \mathrm{H}, \mathrm{dd}, J=6.7,9.8 \mathrm{~Hz}$, one of $\mathrm{C} 7-\mathrm{CH}_{2}$). MS m/z (rel. int. \%): 336 ($\mathrm{M}^{+}, 27.3$), 203 (100). HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{OSi}$: 336.2848. Found: 336.2853.
(-)-(1R, 2S, 4R, $7 S, 8 R, 11 R)-3,3,11-T r i m e t h y l t r i c y c l o\left[6.3 .0 .0{ }^{2}, 4\right]$ undecan-7-ylmethanol
(25) ----- TBAF (0.370 ml of a 1.0 M solution in THF, 0.370 mmol) was added to a solution of 24 (50.0 $\mathrm{mg}, 0.149 \mathrm{mmol}$) in THF (2 ml), and the whole was stirred at room temperature for 6 h . Then $\mathrm{H}_{2} \mathrm{O}$ was added, and the resulting mixture was extracted with AcOEt. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : AcOEt $=5: 1$) to give the alcohol 25 $(33.0 \mathrm{mg}, 100 \%)$ as a colorless oil. $[\alpha]^{30} \mathrm{D}-7.4\left(c=1.03, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $0.47(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.2 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 0.59(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 0.89(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{C} 11-\mathrm{Me}), 0.98,1.00$ (each 3H, s. C3-Me x 2), $0.84-2.10$ (13H, m, Cl-, C5-, C6-, C7-, C8-, C9-, C10-, Cl1-H, OH), 3.58 $\left(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right), 3.72\left(1 \mathrm{H}, \mathrm{dd}, J=6.7,9.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right)$ $\mathrm{cm}^{-1}: 3600,3450(\mathrm{OH})$. MS m / z (rel. int. \%): $222\left(\mathrm{M}^{+}, 21.4\right), 82(100)$. HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$: 222.1981. Found: 222.1981.
(+)-(1R, $2 S, 4 R, 7 S, 8 R, 11 R)-3,3,11-T r i m e t h y l t r i c y c l o\left[6.3 .0 .0^{2}, 4\right]$ undecan-7-ylmethyl
Methanesulfonate (26) ---- $\mathrm{MsCl}(0.0207 \mathrm{ml}, 0.223 \mathrm{mmol})$ was added to a solution of alcohol 25 (33.0 $\mathrm{mg}, 0.149 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.0447 \mathrm{ml}, 0.268 \mathrm{mmol})$ and DMAP ($4.4 \mathrm{mg}, 0.030 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$, and the whole was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting mixture was extracted with $\mathrm{E}_{2} \mathrm{O}$. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : $\mathrm{ACOEt}=8: 1$) to give the mesylate $26(44.5 \mathrm{mg}, 100 \%$) as a colorless oil. $[\alpha]^{28} \mathrm{D}+5.2\left(c=0.905, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.49(1 \mathrm{H}, \mathrm{dd}, J=9.8,10.4 \mathrm{~Hz}$, $\mathrm{C} 2-\mathrm{H}), 0.59(1 \mathrm{H}$, ddd, $J=6.1,9.8,11.6 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 0.89(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{C} 11-\mathrm{Me}), 0.99,1.00$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me} \times 2$), 1.14 (1 H , ddd, $J=11.6,12.2,14.7 \mathrm{~Hz}, \mathrm{C} 5-\beta \mathrm{H}$), $1.24(1 \mathrm{H}$, m, one of $\mathrm{Cl} 0-\mathrm{H}$), 1.33 ($1 \mathrm{H}, \mathrm{m}$, one of C9-H), $1.36(1 \mathrm{H}, \mathrm{dd}, J=9.8,10.4 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{H}), 1.48(1 \mathrm{H}$, ddd, $J=3.7,10.4,12.2 \mathrm{~Hz}, \mathrm{C} 6-$ $\alpha \mathrm{H}), 1.64-1.79(3 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\alpha \mathrm{H}$, one of $\mathrm{C} 9-\mathrm{H}$, one of $\mathrm{Cl} 0-\mathrm{H}), 1.88-2.11(3 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\beta \mathrm{H}, \mathrm{C} 8$ - and $\mathrm{Cl} 1-\mathrm{H}), 2.30(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 2.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 4.20\left(1 \mathrm{H}, \mathrm{dd}, J=9.2,9.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right), 4.29$ ($1 \mathrm{H}, \mathrm{dd}, J=3.7,9.8 \mathrm{~Hz}$, one of $\mathrm{C} 7-\mathrm{CH}_{2}$). MS $m / 2$ (rel. int. \%): $300\left(\mathrm{M}^{+}, 6.6\right), 161$ (100). HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}: 300.1757$. Found: 300.1755 .
(+)-Aromadendrene (3) ----- A mixture of mesylate 26 ($44.5 \mathrm{mg}, 0.148 \mathrm{mmol}$) and DBU (0.115 ml , 0.742 mmol) in toluene (2 ml) was stirred at $100^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting mixture was extracted with n-hexane. The extract was concentrated and purified by column
chromatography (n-hexane) to give $(+)$-aromadendrene $3\left(27.0 \mathrm{mg}, 89 \%\right.$) as a colorless oil. $\quad[\alpha]^{28} \mathrm{D}+8.9(c$ $=0.390$, EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.62(1 \mathrm{H}, \mathrm{dd}, J=9.8,11.0 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 0.68(1 \mathrm{H}$, ddd, $J=6.1,9.8,11.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 0.97(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{Cl} 1-\mathrm{Me}), 0.90-1.12(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\beta \mathrm{H}), 0.98,1.04$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me} \times 2$), $1.18(1 \mathrm{H}, \mathrm{m}$, one of $\mathrm{Cl} 0-\mathrm{H}), 1.38(1 \mathrm{H}, \mathrm{ddd}, J=10.4,10.4,11.0 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{H})$, $1.56(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-\beta \mathrm{H}), 1.68(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-\alpha \mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{m}$, one of $\mathrm{C} 10-\mathrm{H}), 1.96(1 \mathrm{H}$, ddd, $J=4.9,6.1$, $14.3 \mathrm{~Hz}, \mathrm{C} 5-\alpha \mathrm{H}), 2.06(1 \mathrm{H}, \mathrm{dd}, J=13.4,14.0 \mathrm{~Hz}, \mathrm{C} 6-\alpha \mathrm{H}), 2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 11-\mathrm{H}), 2.22(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H})$, $2.41(1 \mathrm{H}, \mathrm{dd}, J=6.1,13.4 \mathrm{~Hz}, \mathrm{C} 6-\beta \mathrm{H}), 4.62\left(2 \mathrm{H}, \mathrm{s},=\mathrm{CH}_{2} \times 2\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1630(\mathrm{C}=\mathrm{C}) . \quad \mathrm{MS}$ m / z (rel. int. \%): $204\left(\mathrm{M}^{+}, 68.9\right), 161$ (100). HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{24}$: 204.1878. Found: 204.1885.
(+)-($1 R, 2 S, 4 R, 7 S, 8 S, 11 R)$-7-tert-Butyldimethylsiloxymethyl-3,3,11-trimethyltricyclo-
[6.3.0.0 ${ }^{2,4}$]undecane (27) --..- A suspension of $\mathrm{Pd} / \mathrm{C}(\mathrm{Pd}: 5 \%, 1.2 \mathrm{mg}$) in methanol (1 ml) was stirred at room temperature for 20 min under an atmospheric pressure of hydrogen. A solution of $22(12.1 \mathrm{mg}$, 0.0362 mmol) in methanol (0.1 ml) was added to the above suspension and stirred at room temperature under a hydrogen atmosphere for 2 h . The reaction mixture was filtered, concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=100: 1$) to give $27(11.7 \mathrm{mg}, 96 \%)$ as a colorless oil. $\quad[\alpha]^{25} \mathrm{D}+4.7(c$ $\left.=0.433, \mathrm{CHCl}_{3}\right) .{ }^{\mathrm{l}} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.03(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{Me} \times 2), 0.26(1 \mathrm{H}, \mathrm{dd}, J=9.2,11.8$ $\mathrm{Hz}, \mathrm{C} 2-\mathrm{H}), 0.55(1 \mathrm{H}$, ddd, $J=6.1,9.2,11.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-r-\mathrm{Bu}), 0.93(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}$, Cl1-Me), 0.96, 1.02 (each 3H, s, C3-Me x 2), $0.80-2.08$ (12H, m, Cl-, C5-, C6-, C7-, C8-, C9-, C10and $\mathrm{Cl1}-\mathrm{H}), 3.34\left(1 \mathrm{H}\right.$, dd, $J=6.7,9.8 \mathrm{~Hz}$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J=3.5,9.8 \mathrm{~Hz}$, one of C 7 CH_{2}). MS m / z (rel. int. \%): $336\left(\mathrm{M}^{+}, 6.4\right), 279$ (100). HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{OSi}: 336.2847$. Found: 336.2847.

(+)-(1R, 2S, 4R, $7 S, 8 S, 11 R)-3,3,11$-Trimethyltricyclo[6.3.0.0 $\left.0^{2}, 4\right]$ undecan-7-ylmethanol

(28) ----- TBAF (0.0720 ml of a 1.0 M solution in THF, 0.0720 mmol) was added to a solution of 27 (11.7 $\mathrm{mg}, 0.0348 \mathrm{mmol}$) in THF (0.5 ml), and the whole was stirred at room temperature for 6 h . Then $\mathrm{H}_{2} \mathrm{O}$ was added, and the resulting mixture was extracted with AcOEt. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, concentrated, and purified by column chromatography (n-hexane : AcOEt $=5: 1$) to give the alcohol 28 ($7.7 \mathrm{mg}, 100 \%$) as a colorless oil. $[\alpha]^{30} \mathrm{D}+1.8\left(c=0.425, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $0.27(1 \mathrm{H}, \mathrm{dd}, J=9.2,11.6 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 0.59(1 \mathrm{H}, \mathrm{ddd}, J=6.1,9.2,11.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 0.94(3 \mathrm{H}, \mathrm{d}, J=6.7$ $\mathrm{Hz}, \mathrm{Cl1-Me}$), 0.97, 1.02 (each 3H, s, C3-Me x 2), $0.80-2.12$ (13H, m, C1-, C5-, C6-, C7-, C8-, C9-, $\mathrm{Cl} 0-\mathrm{C} 11-\mathrm{H}, \mathrm{OH}), 3.42\left(1 \mathrm{H}, \mathrm{dd}, J=6.7,11.0 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right), 3.67(1 \mathrm{H}, \mathrm{dd}, J=3.1,11.0 \mathrm{~Hz}$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 3600,3450(\mathrm{OH}) . \quad \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel. int. \%): $222\left(\mathrm{M}^{+}, 27.5\right), 82(100)$. HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}: 222.1984$. Found: 222.2006.

$(+)-(1 R, 2 S, 4 R, 7 S, 8 S, 11 R)-3,3,11-T r i m e t h y l t r i c y c l o\left[6.3 .0 .0^{2}, 4\right]$ undecan-7-ylmethyl

Methanesulfonate (29) ---- $\mathrm{MsCl}(0.0032 \mathrm{ml}, 0.042 \mathrm{mmol})$ was added to a solution of alcohol 28 (7.7 $\mathrm{mg}, 0.035 \mathrm{mmol}), \mathrm{Et} 3 \mathrm{~N}(0.0087 \mathrm{ml}, 0.062 \mathrm{mmol})$ and DMAP $(0.8 \mathrm{mg}, 0.007 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$, and the whole was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting mixture was extracted with $\mathrm{E}_{2} \mathrm{O}$. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and prine, dried, concentrated, and purified by column chromatography (n-hexane : $\mathrm{AcOEt}=8: 1$) to give the mesylate $29(10.4 \mathrm{mg}, 100 \%)$ as a colorless oil. $[\alpha]^{25} \mathrm{D}+11.4\left(c=0.268, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.28(1 \mathrm{H}, \mathrm{dd}, J=9.2,11.6 \mathrm{~Hz}$, $\mathrm{C} 2-\mathrm{H}), 0.57(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 0.94(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{C} 11-\mathrm{Me}), 0.97,1.03$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me} \times 2$), $0.80-1.95(10 \mathrm{H}, \mathrm{m}, \mathrm{Cl}-, \mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 8-\mathrm{C} 9-\mathrm{and} \mathrm{C} 10-\mathrm{H}), 1.98(1 \mathrm{H}, \mathrm{m}, \mathrm{Cl1}-\mathrm{H}), 2.13(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H})$, $2.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J=6.7,9.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C} 7-\mathrm{CH}_{2}\right), 4.22(1 \mathrm{H}, \mathrm{dd}, J=3.1,9.8 \mathrm{~Hz}$, one of $\mathrm{C} 7-\mathrm{CH}_{2}$). MS m/z (rel. int. \%): $300\left(\mathrm{M}^{+}, 0.7\right), 82$ (100). HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}: 300.1760$. Found: 300.1767.
(-)-Alloaromadendrene (4) ----- A mixture of mesylate $29(10.4 \mathrm{mg}, 0.0346 \mathrm{mmol})$ and DBU (0.0240 $\mathrm{ml}, 0.173 \mathrm{mmol}$) in toluene (1 ml) was stirred at $100^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting mixture was extracted with n-hexane. The extract was concentrated, and purified by column chromatography (n-hexane) to give (-)-alloaromadendrene $4\left(5.7 \mathrm{mg}, 81 \%\right.$) as a colorless oil. $\quad[\alpha]^{24} \mathrm{D}$ $-27.2\left(c=1.76, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.25(1 \mathrm{H}, \mathrm{dd}, J=9.2,11.0 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 0.57$
(1 H, ddd, $J=6.1,9.2,11.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}$), $0.93(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{Cl} 1-\mathrm{Me}$), $0.95,1.00$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me}$ $\times 2), 1.12-1.40(2 \mathrm{H}, \mathrm{m}), 1.63-1.97(5 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{m}), 2.20-2.38(2 \mathrm{H}, \mathrm{m}), 2.67(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H})$, 4.70, 4.73 (each $1 \mathrm{H}, \mathrm{s},=\mathrm{CH}_{2} \times 2$). IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}: 1630(\mathrm{C}=\mathrm{C})$. MS m/z (rel. int. \%): $204\left(\mathrm{M}^{+}\right.$, 11.2), 73 (100). HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{24}$: 204.1876. Found: 204.1861.

References and Notes

1) a) Part I. Tanaka, T.; Funakoshi, Y.; Uenaka, K.; Maeda, K.; Mikamiyama, H.; Takemoto, Y.; Maezaki, N.; Iwata, C. Chem. Pharm. Bull. 1994, 42, 300; b) Part II. Tanaka, T.; Funakoshi, Y.; Uenaka, K.; Maeda, K.; Mikamiyama, H.: Iwata, C. Chem. Pharm. Bull. 1994, 42, 1243.
2) a) Büchi, G.; Chow, S. W.; Matsuura, T.; Popper, T. L.; Rennhard, H. H.; Wittenau, M. S. Tetrahedron Lett. 1959, 14; b) Dolejs L.; Motl, O.; Soucek, M.; Herout, V.; Sorm, F. Collect. Czech. Chem. Commun. 1960, 25, 1483; Bowyer, R. C.; Jefferies, P. R. Chem. Ind. (London) 1963, 1245. c) Dolejs, L.; Herout, V.; Motl, O.; Sorm, F.; Soucek, M. Chem. Ind. (London) 1959, 566; Braekman, J. C.; Daloze, D.; Ottinger, R.; Tursch, B. Experientia 1977, 33, 993; Gijsen, H. J. M.; Wijnberg, J. B. P. A.: Stork, G. A.; de Groot, A. Tetrahedron 1992, 48, 2465.
3) Blumann, A.; Cole, A. R. H.; Thieberg, K. J. L.; White, D. E. Chem. Ind. (London) 1954, 1426; L. Dolejs, L.; Sorm, F. Collect. Czech. Chem. Commun. 1960, 25, 1483; Beechan, C. M.; Djerassi, C; Eggert, H. Tetrahedron 1978, 34, 2503; Pakrashi, S. C.; Dastidar, P. P. G.; Chakrabarty, S.; Achari, B. J. Org. Chem. 1980, 45, 4765; Friedel, von H. D.; Matusch, R. Helv. Chim. Acta 1987, 70, 1753.
4) Fattorusso, E.; Magno, S.; Mayol, L.; Santacroce, C.; Sica, D. Tetrahedron 1974, 30, 3911; Idem. ibid. 1975, 31. 269: Ciminiello, P.; Fattorusso, E.; Magno, S.; Mayol, L. Can. J. Chem. 1987, 65, 518; Tada, H.; Yasuda, F. Chem. Pharm. Bull. 1985, 33, 1941; da Silva, C. C.; Almagro, V.; Zukermann-Schpector, J.; Castellano, E. E.; Marsaioli, A. J. J. Org. Chem. 1994, 59, 2880.
5) Takaoka, D.; Kawahara, H.: Ochi, S.; Hiroi, M.; Nozaki, H.; Nakayama, M.; Ishizaki, K.; Sakata, K.; Ina, K. Chem. Lett. 1986, 1121; Pizza, C.; De Tommasi, N. Phytochemistry 1988, 27, 2205; de Tommasi, N.; Pizza, C.; Conti, C.; Orsi, N.; Stein, M. L. J. Nat. Prod. 1990, 53, 830.
6) Griffith, W. P.: Ley, S. V. Aldrichimica Acta 1990, 23, 13.
7) Magnus, P. D.; Nobbs, M. S. Synth. Commun. 1980, 10, 273.
8) Treatment with sodium hydride in refluxing benzene in the presence of a catalytic amount of tert-amyl alcohol for 10 min .
9) Iida, T.; Tamura, T.; Matsumoto, T.; Chang, F. C. Synthesis 1984, 957.
10) Hutchins, R. O.; Natale N. R. J. Org. Chem. 1978, 43, 2299.
11) (+)-Aromadendrene was purchased from Fluka.
