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Table I. 
at 100 MHz in CDC1, (7 Values; Internal Standard TMSlQ 

Some ‘H NMR Parameters of 9, 10, 11, 1 ,  15, and 6 

Cornpd HA HB HC CH, 
9 8.83 2.07 2.31 7.29 

10 9.24 1.88 2.22 7.28 
1 1  8.56 + 2.06-2.34 -> 7.26 

1 6.18 2.13 2.69 7.5 2 
15 5.01 2.56 2.92 7.64 
6 3.48 3.69 3.28 1.94 

a H A ( d , J =  1 5 - 1 6 H ~ ) , H B  (dd , J=7 .5 -10 ,  15-16 Hz),HC (d, 
J =  7.5-10 Hz), CH, (s), for all compounds. 

(16,800), 292 (21,100), 386 (45,400), 552 sh (1050), 607 sh 
nm (580); urnax (KBr) 2130 m ( C s C ) ,  970 s (trans C=C) 
cm-l. Substance 1 was relatively stable, both in the solid 
state and in ether solution. 

It has been shown previously that the ‘H N M R  spectra 
of certain 1,3-bisdehydro[ 14lannulenes are temperature de- 
pendent, due to rotation about the trans double bonds,I9 
and this proved to be the case with the diacetate 7. On the 
other hand, the IH N M R  spectra of the dehydroannulenes 
9, 10, 11, and 1 were essentially temperature independent in  
the range -60 to looo ,  and showed the macrocyclic rings to 
exist in the indicated conformations. 

Some ‘H N M R  parameters of various 1,3-bisdehydro- 
[ 14lannulenes are given in Table I. As expected, the substi- 
tuted compounds 9, 10, and 11 are diatropic (“aromatic”), 
the inner HA protons resonating a t  unusually high field, and 
the outer HB, HC, and CH3 protons a t  unusually low field. 
It has already been found that the diatropicity of a 1,3-bis- 
dehydro[ 14lannulene is considerably reduced by fusion of a 
benzene ring (see 15 in Table I),2o and almost completely 
eliminated by fusion of a [clfuran ring (see 6 in Table I ) .5  
It is evident from the N M R  spectrum of 1 that fusion of a 
second bisdehydro[ 14]annulene also reduces the diamag- 
netic ring current of the bisdehydro[ 14]annulene, although 
to a lesser extent than benzene. The decreasing order of dia- 

tropicity of the macrocyclic ring of the various compounds 
in Table I (9, 10, 11 > 1 > 15 > 6) is presumably a reflec- 
tion of a decrease in the importance of different participat- 
ing KekulC structures of that ring. 
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Cycloadditions of Alkenylidenecyclopropanes with 
Acetylenic Dienophiles. An Exclusive Formation 
of the (2 + 2) Cycloadduct 

Sir: 

Alkenylidenecyclopropane (1) has been shown recently 
by Pasto and his coworkers to react with 4-phenyl-1,2,4- 
triazoline-3,5-dione via a concerted [(,2 + ,2 + 02) + T 2 ]  
pathway,] while with chlorosulfonylisocyanate (CSI) 1 
reacts via a dipolar intermediate followed by cyclopropane 
ring opening and recyclization2 and with methylenemalon- 
dinitriles3 and dichlor~difluoroethylene~ in a (2  + 2)  fash- 
ion via a radical mechanism. In view of the above variety of 

R; 
1 

Communications t o  the Editor 



4414 

the mode of the cycloadditions of 1 we are intrigued by the 
behavior of 1 against acetylenic dienophiles. 

The reaction of 2,2,3,3-tetramethylisobutenylidenecyclo- 
propane ( l a p  with dimethyl acetylenedicarboxylate (2a) 
(1:1.5 molar ratio) in benzene a t  90' for 19 hr afforded two 
products, 3a (mp 73-74') and 4 (mp 46-50') in 28 and 
15% yields, respectively, after work-up on a silica gel col- 
umn (benzene as eluent). Both products were 1: l  adducts 
on the basis of analysis and mass spectral data.6 In the 
N M R  spectrum (CCl4, 60 MHz)  3a revealed two allylic 
methyl proton signals a t  6 1.89 and 1.81 and four cyclopro- 
pyl methyl signals a t  6 1.35 (6 H )  and 1.38 (6 H )  besides 
two ester methyl signals a t  6 3.76 and 3.69, while 4 had no 
allylic methyl signals but saturated methyl signals a t  6 1.34 
(6 H )  and 1.20 (12 H )  as well as two ester methyl signals (6 
3.82, 6 H ) ,  and hence, 3a and 4 were assigned as a (2  + 2) 
adduct a t  CI-4 and C4-5 positions of la, respectively. Ir 
(KBr) (1750, 1720, 1670, and 1595 cm-l for 3a; 1746, 
1720, 1698, and 1612 cm-' for 4) and uv (MeOH) absorp- 
tions (A,,, 289 (log 6 4.19) for 3a and 296 nm (log t 3.96) 
for 4) were compatible with the assigned  structure^.^^^ 

The reaction of l a  with chlorocyanoacetylene (2b) a t  70' 
for 12 hr in benzene yielded only one (2 + 2) adduct, 3b, 
mp 90.5-92' in 33% yield, which had ir (KBr) absorptions 
a t  2220, 1675, and 1585 cm-'; uv (MeOH) absorption 
maximum a t  278 nm (log t 4.37);9 and N M R  (CDC13) sig- 
nals at  6 2.10, 1.87, and 1.32 in a 3:3:12 ratio, supporting 
the assigned structure. 
On the other hand, unsymmetrically substituted 2-phen- 

ylisobutenylidenecyclopropane l b  reacted with 2a a t  100' 
for 29 hr to afford one (2 + 2) adduct, Sa, as a viscid oil 
(39%).1° In the N M R  spectrumlo 5a revealed two methyl 
signals a t  6 1.70 and 0.67. The appearance of one of the 
methyl signals a t  a higher field such as a t  6 0.67 indicated 
the synfacial location of the methyl group to a phenyl ring 
supporting the assigned structure. 

&* + R C s C R '  + 

l a  Za, R = R = C0,Me 
b, R = CN; R' = C1 

R 

Ph 

H - b  4 

3a, R = R' = C02Me 
b, R = C K ; R ' = C l  
c. R = C1; R' = CT; 

4, R = R = COLMe 

+ RCECR' --+ 

Ib 
R R 

5a, R = R' = C0,Me 6a, R = CN; R = C1 
b. R = CS;  R' = C1 

The reaction of l b  with 2b (SO', 20 hr) gave two 1:l ad- 
ducts, 5b, mp 103-105', and 6, mp 116-117' in 38 and 
24% yields, whose structures were evidenced by their spec- 
tral data.l' 

In conclusion, the reactions of la,b with 2a,b gave exclu- 

sively (2 + 2) adduct but no [(,2 + ,2 + ,,2) + ,2] cycload- 
duct. Since the examined acetylenic dienophiles have a lin- 
ear molecular geometry, a simultaneous in-plane (with re- 
spect to the cyclopropanering) attack of the dienophile i~ 

system on C2 and on the in-plane p orbital of Cd may suffer 
from a considerable steric hindrance, and thus, [(,2 + ,2 + 
,,2) + ,2] cycloaddition is prohibited.' However, a perpen- 
dicular attack of the acetylenes with an orthogonal orienta- 
tion (against the allene moiety of l )  on a perpendicular p 
orbital a t  Cq or on an in-plane p orbital a t  Cs should be 
much less sterically hindered, allowing the formation of (2 + 2) adduct.I2 An antifacial (to the phenyl ring) attack on 
l b  by 2a or 2b is obviously favored and the fact that 2a gave 
only 5a, while 2b afforded both syn- and antifacial adducts 
5b and 6 indicates a more crowded transition state geome- 
try of the synfacial attack of 2a than 2b. All of the above re- 
sults and the formation of two regioisomers 3a and 4 from 
l a  and 2a indicate that the molecular geometry of attacking 
dienophiles is also a very important factor as well as the 
substituents for determining the reaction path of 1 regard- 
less of the cycloaddition m e ~ h a n i s m . ' ~ , ' ~  
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