962 Communications SYNTHESIS

Preparation of 3-Aryl-4-oxo-2-thioxo-1,2,3,4-tetrahydroquinazolines from Methyl *N*-Aryldithiocarbamates and Anthranilic Acid

J. MAYORAL, E. MELENDEZ*, F. MERCHÁN, J. SANCHEZ

Departamento de Química Organica, Universidad de Zaragoza, Zaragoza, Spain

3-Aryl-4-oxo-2-thioxo-1,2,3,4-tetrahydroquinazolines 4 have been synthesized by a variety of methods ¹⁻⁶, some of which require starting materials such as isothiocyanates. In order to avoid the use of such reagents, we have developed a synthetically important method to prepare the title compounds 4 in good yields. This reaction involves the use of methyl *N*-aryldithiocarbamates ⁷ 2 and dimethylformamide as solvent.

R1 COOH
$$R^{2} \longrightarrow NH_{2} \longrightarrow Ar-NH-C$$

$$S-CH_{3} \longrightarrow CH_{3} \longrightarrow R^{1} \longrightarrow R^{2} \longrightarrow R^{2} \longrightarrow NH-C$$

$$R^{2} \longrightarrow NH-C-NH-Ar$$

$$R^{3} \longrightarrow R^{1} \longrightarrow R^{2} \longrightarrow NH-C$$

$$R^{3} \longrightarrow R^{3} \longrightarrow R^{2} \longrightarrow NH-C$$

$$R^{3} \longrightarrow NH-C-NH-Ar$$

$$R^{3} \longrightarrow NH-C-NH-Ar$$

$$R^{3} \longrightarrow NH-C-NH-Ar$$

$$R^{3} \longrightarrow NH-C-NH-Ar$$

$$R^{4} \longrightarrow NH-C-NH-Ar$$

$$R^{4}$$

The reaction is easily performed by addition at room temperature of the compound 2 in dimethylformamide to a solution of anthranilic acid 1 in the same solvent. After reflux, the crude product 4 is isolated by precipitation of the mixture in water.

The data summarized in the Table show several examples (we have prepared 35) of compounds 4, using various anthranilic acids 1 and methyl *N*-aryldithiocarbamates 2, in order to show the generality of the procedure.

Melting points were determined using a Mettler FP-61 automatic apparatus. The I.R. spectra were recorded with a Perkin-Elmer 283 instrument. ¹H-N.M.R. spectra were obtained with a Perkin-Elmer R-12 spectrometer using TMS as internal reference. Mass spectra were recorded with a Hewlett-Packard 5930-A spectrometer.

3-Aryl-4-oxo-2-thioxo-1,2,3,4-tetrahydroquinazolines 4; General Procedure:

To a stirred solution of the anthranilic acid 1 (0.01 mol) in dimethylformamide (20 ml) is added at room temperature and dropwise a solution of the methyl N-aryldithiocarbamate 2 (0.01 mol) in dimethylformamide (10 ml). After addition, the mixture is refluxed for 4-6 h. The solution thus obtained is cooled and poured into water (300-350 ml) to yield the crude solid product 4. The precipitate is isolated by filtration, washed with hexane, dried, and recrystallized.

Received: July 1, 1981

Table. 3-Aryl-4-oxo-2-thioxo-1,2,3,4-tetrahydroquinazolines 4 (selected examples)

Ar	R¹	\mathbb{R}^2	R ³	Yield [%]	m.p. [°C] (solvent)	Molecular formula ^a	I.R. (nujol) [cm ⁻¹]		'H-N.M.R. (DMSO-d ₆)	M.S. (70 eV)
							<i>v</i> _{NH} <i>v</i> _{C=0}	v_{CreeN}	δ [ppm]	m/e (M+) (rel. int.)
4-H ₃ CC ₆ H ₄	Н	Н	Н	83	304° (CH ₃ CN)	C ₁₅ H ₁₂ N ₂ OS (268.3)	3255 1670	1630	2.30 (s, 3 H); 6.7-8.0 (m, 8 H); 12.90 (s, 1 H)	268 (72%)
2,4-di-H ₃ C—C ₆ H ₃	Н	Н	Н	74	273° (CH ₃ CN)	$C_{16}H_{14}N_2OS$	3260 1660	1620	1.80 (s, 3 H); 2.15 (s, 3 H); 6.8-8.0 (m, 7 H); 13.00 (s, 1 H)	282 (48%)
2-H ₃ C-3-Cl—C ₆ H ₃	Н	Н	Н	76	286° (CH ₃ CN)	$C_{15}H_{11}ClN_2OS$	3240 1680	1630	2.35 (s, 3 H); 7.2-8.3 (m, 7 H); 13.10 (s, 1 H)	302 (86%)
3,4-(OCH ₂ O)C ₆ H ₃	Н	Н	Н	77	264° (CH ₃ CN)	$C_{15}H_{10}N_2O_3S$ (298.3)	3260 1670	1625	5.90 (s, 2 H); 6.6~7.9 (m, 7 H); 12.70 (s, 1 H)	298 (100%)
3-F ₃ C-C ₆ H ₄	Н	Н	Н	84	265° (CH ₃ CN)	$C_{15}H_9F_3N_2OS$ (322.3)	3270 1670	1635	6.5-8.0 (m, 8 H); 13.20 (s, 1 H)	322 (41%)
C_6H_5	Н	NO ₂	Н	40	> 300° (CH ₃ NO ₂	$C_{14}H_9N_3O_3S$	3240 1660	1615	7.1-8.0 (m, 8 H); 13.10 (s, 1 H)	299 (28%)
4-H ₃ CC ₆ H ₄	Н	NO ₂	Н	93	> 300° (CH ₃ NO ₂	$C_{15}H_{11}N_3O_3S$	3200 1660	1610	2.60 (s, 3 H); 7.9-8.1 (m, 7 H); 13.20 (s, 1 H)	313 (29%)
4-H ₃ CO—C ₆ H ₄	Н	NO ₂	Н	68	>300° (CH ₃ NO ₂	$C_{15}H_{11}N_3O_4S$	3200 1650	1620	3.70 (s, 3 H); 6.9–8.1 (m, 7 H); 13.00 (s, 1 H)	329 (97%)
4-H ₃ CC ₆ H ₄	Н	Cl	Н	58	>300° (CH ₃ CN)	$C_{15}H_{11}C1N_2OS$ (302.7)	3220 1665	1610	2.40 (s, 3 H); 7.1-8.3 (m, 7 H); 13.1 (s, 1 H)	302 (57%)
4-H ₃ CO—C ₆ H ₄	Н	Cl	Н	47	> 300° (CH ₃ CN)	$C_{15}H_{11}CIN_2O_2S$ (318.7)	3225 1660	1615	3.75 (s, 3 H); 6.9-8.2 (m, 7 H); 13.00 (s, 1 H)	318 (100%)
4-H ₃ CC ₆ H ₄	C	Н	C	53	>300° (CH ₃ CN)	$C_{15}H_{10}Cl_2N_2OS$	3220 1660	1610	2.50 (s, 3 H); 7.0-8.0 (m, 6 H); 13.00 (s, 1 H)	336 (20%)
4-H ₃ CO—C ₆ H ₄	C	Н	C	1 51	/	$C_{15}H_{10}Cl_2N_2O_2S$	3215 1665	1605	3.80 (s, 3 H); 7.0-8.1 (m, 6 H); 12.90 (s, 1 H)	352 (100%)

The microanalyses were in satisfactory agreement with the calculated values: C ± 0.40 ; H, ± 0.25 ; N, ± 0.32 .

¹ J. E. MacCarty, E. L. Haines, C. A. Vanderwerf, J. Am. Chem. Soc. **82**, 964 (1960).

² P. N. Bhargava, P. Ram, Bull. Chem. Soc. Jpn. 38, 342 (1965).

³ S. Toyoshima, K. Shimada, S. Hamiano, T. Ogo, *J. Pharm. Soc. Jpn.* 85, 502 (1965); *C. A.* 63, 7009 (1965).

⁴ L. Capuano, W. Ebner, J. Schrepfer, Chem. Ber. 103, 82 (1970).

⁵ H. Singh, Curr. Sci. 39, 234 (1970), C. A. 73, 14796 (1970).

⁶ A. C. Glasser, L. Diamond, G. Combs, J. Pharm. Sci. 60, 127 (1971); C. A. 74, 76390 (1971).

J. Garin, V. Martinez, E. Melendez, F. Merchán, Synthesis 1981, 961