Received: April 19, 1989; accepted: June 28, 1989

REACTIONS OF TeF₅OCI WITH FLUOROCARBON IODIDES AND SYNTHESIS OF CF₃OTeF₅

CARL J. SCHACK AND KARL O. CHRISTE

Rocketdyne, a Division of Rockwell International Corporation, Canoga Park, California 91303 (USA)

SUMMARY

The low temperature reaction of TeF₅OCl with the fluorocarbon iodides, CF₃I, C₂F₅I, n-C₃F₇I, and i-C₃F₇I results in the formation of R_fI(OTeF₅)₂ adducts. Except for the trifluoromethyl derivative these are stable, colorless compounds. The trifluoromethyl adduct decomposes above -78°C to give the previously unknown CF₃OTeF₅. The perfluoroethyl and n-propyl adducts decompose at 120°C or under UV radiation giving C₂F₅OTeF₅ and n-C₃F₇OTeF₅, respectively. These reactions constitute a new synthesis of primary R_fOTef₅ compounds. Attempts to extend this synthesis to secondary fluorocarbon iodides were unsuccessful.

INTRODUCTION

Reactions of TeF₅OX (X=Cl,F) and Xe(OTeF₅)₂ with fluoroolefins are direct paths to TeF₅O- substituted fluorocarbons [1-3].

$$TeF_{5}OX + C = C \longrightarrow TeF_{5}O \cdot C - C \cdot X$$
(1)

$$Xe(OTeF_5)_2 + C = C \longrightarrow TeF_5O - C - C - OTeF_5 + Xe$$
(2)

Because of the potentially useful properties of these derivatives it was of interest to investigate additional synthetic approaches, thus broadening the availability of the R_fOTeF_5 compounds. One promising approach involved the displacement of iodine from R_fI compounds

© Elsevier Sequoia/Printed in The Netherlands

using TeF₅OCl. This technique had previously been successfully employed to produce fluorocarbon fluorosulfates by the displacement of halogen from R_f Hal species using ClOSO₂F [4,5].

EXPERIMENTAL

Volatile materials were manipulated in a stainless steel vacuum line equipped with Teflon FEP U-traps, 316 stainless steel bellows-seal valves, and a Heise Bourdon tube-type gauge. The reactions were usually conducted in stainless steel cylinders. Infrared spectra were recorded on a Perkin Elmer Model 283 spectrophotometer using cells equipped with AgBr windows. Raman spectra were recorded at ambient temperature on a Cary Model 83 spectrophotometer with the use of the 488-nm exciting line of an Ar ion laser, and a premonochromator for the elimination of plasma lines. To avoid decomposition, the Raman spectrum of the yellow solid, $I(OTeF_5)_3$, was recorded at -140°C on a Spex Model 1403 spectrophotometer using the 647-nm exciting line of a Kr ion laser. Sealed quartz tubes, 3mm OD, or Pyrex mp capillaries were used as sample containers. ¹⁹F NMR spectra were recorded at 84.6 MHz on a Varian Model EM390 spectrometer with internal CFCl₃ as a standard with negative chemical shifts being upfield from CFCl₃. Literature methods were used to prepare TeF₅OCl [6]. The fluorocarbon iodides were commercial products (PCR Research Chemicals and Columbia Organic Chemicals) which were stirred with Cu turnings and/or distilled before use.

<u>TeF₅OCl-R_f1 Reactions.</u> A tared cylinder was cooled to -196°C and measured quantities of R_fI and TeF₅OCl were successively condensed in. The closed cylinder was placed in a dewar containing a liquid N₂-dry ice slush and this was allowed to warm slowly from -196 to -78°C in a dry ice chest. Monitoring the progress of the reaction at -78°C was accomplished by removing and measuring the evolved Cl₂ or other products volatile at -78°C. After a period of time at -78°C, the reaction mixtures were warmed slowly to ambient temperature to complete the oxidative addition reaction. For CF₃I the resulting adduct was unstable and decomposed above -78°C to give CF₃OTeF₅ (trapped at -126°C on fractionation) and other products. For the other fluorocarbon iodides, all volatile materials were removed at room temperature. In the cylinders remained the colorless addition compounds of composition, R_fI(OTeF₅)₂. These were low melting solids or liquids, C₂F₅I(OTeF₅)₂, 30-31°C; n-C₃F₇I(OTeF₅)₂, 49-51°C, and i-C₃F₇I(OTeF₅)₂, 16 - 17°C.

 $R_f I(OTeF_5)_2$ Decomposition Reactions. In the dry box, a tared cylinder was loaded with a weighed amount of the $R_f I(OTeF_5)_2$ compound. The cylinder was then evacuated, closed and placed in an oven at 115-120°C for several hours. After recooling to ambient temperature, the contents of the reactor were separated by fractional condensation, measured, and identified by their infrared and ¹⁹F NMR spectra. In addition to the R_fOTeF_5 product generally obtained (see text), the significant volatile products were $R_f I$ and some $R_f F$. Lesser amounts of TeF₆ and TeF₅OTeF₅ [7] were sometimes encountered. Left behind in the cylinder was crude I(OTeF₅)₃ identified by infrared and Raman spectroscopy [8] and usually present in 80-90% yield based on the disproportionation reaction shown below. For the photolytic decomposition of $R_f I(OTeF_5)_2$, Pyrex reactors were loaded in the dry box, evacuated, and irradiated with a Hanovia 100W Utility Lamp. In addition to $I(OTeF_5)_3$, the photolysis products contained variable amounts of the coupling product $R_f R_f$, and for i-C₃F₇I(OTeF₅)₂ isomers of C₆F₁₄ and C₃F₇I.

RESULTS AND DISCUSSION

The reaction of TeF₅OCl and R_fI compounds occurs at low temperature in high yield according to (3).

$$2 \operatorname{TeF_5OCl} + \operatorname{R_fI} \longrightarrow \operatorname{R_fI}(\operatorname{OTeF_5})_2 + \operatorname{Cl_2}$$
(3)

 $R_f = CF_3, C_2F_5, n-C_3F_7, and i-C_3F_7$

These $R_f I(OTeF_5)_2$ compounds are new compounds, except for the CF_3 - derivative. The latter has previously been reported [9] from the ligand exchange reaction in (4)

$$CF_3IF_2 + 2HOTeF_5 \rightarrow CF_3I(OTeF_5)_2 + 2HF$$
 (4)

which required a large excess of HOTeF5 and a solvent to obtain complete conversion.

Data on the $R_f I(OTeF_5)_2$ formation reaction (3) are summarized in Table I. Except for $CF_3I(OTeF_5)_2$, these oxidative addition products are all stable at ambient temperature and are low melting solids or a liquid. In analogy, the hypochlorites $CIOSO_2F$ [5], $CIOCIO_3$ [10], and $CIONO_2$ [11] also react with fluorocarbon iodides to give the corresponding iodine III adducts in high yields. However, these compounds are generally not stable at ambient temperature. The fluorosulfate [5] and perchlorate [10] decompose according to (5)

$$R_{f}I(OX)_{2} \longrightarrow R_{f}OX + IOX \qquad X=SO_{2}F, CIO_{3}$$
(5)

whereas the nitrate [11] decomposes in a multistep reaction summarized by equation (6).

$$10 \operatorname{CF_3I(ONO_2)_2} \longrightarrow 5 \operatorname{CF_3I} + 5 \operatorname{CF_2O} + 10 \operatorname{N_2O_5} + \operatorname{I_2} + \operatorname{IF_5} + \operatorname{I_2O_5}$$
(6)

Thus, it appears that the $R_f I(OTeF_5)_2$ compounds are another example of the ability of the TeF₅O- group to stabilize relatively unstable oxidation states [12].

R ₄ I Type Compd., mmol	TeF ₅ OCI mmol	Temp. max. °C	Time	R _f -OTeF ₅ Product		Percent Yield ^a	Other Products
CF ₃ I, 0.91	1.85	-78	4d	CF ₃ I(OTeF ₅) ₂	-	~80	Cl 2, CF4, TeF6
C ₂ F ₃ I, 1.10	2.58	25	3d	C ₂ F ₃ I(OTeF ₅) ₂	II	95	Cl ₂ , TeF5OCl, TeF5OH
n-C ₃ F ₇ I, 2.56	5.62	25	2d	$n-C_3F_1(OTeF_5)_2$	III	94	Cl 2, TeF5OCl, TeF5OH
i-C ₃ F ₇ I, 2.56	4.73	25	2d	$i\text{-}C_3F_7I(OTeF_5)_2$	IV	76	Cl ₂ , TeF5OCl, TeF5OH
I, ~0.7		25	2h	CF3OTeF5		17	CF ₃ I, CF ₄ , $(TeF_4O)_{II}$,
							I(OTeF ₅) ₃
II, 0.24		115	21h	C ₂ F ₅ OTeF ₅		78	C _F 51, I(OTeF ₅) ₃
III, 0.30		115	26h	n-C ₃ F ₇ OTeF ₅		30	nC_{F_1} L, C_{F_8} , TeF_6 ,
							TeF5OTeF5, I(OTeF5)3
III, 0.37		25,UV	18h	n-C ₃ F7OTeF5		LT	nC_3F_1I , C_6F_{14} , $I(OTeF_5)_3$
IV, 0.66		120	10h				i-C ₃ F ₁ i, CF ₃ C(0)CF ₃ , C _{F14}
							TeF5OTeF5, I(OTeF5)3
IV, 0.53		25,UV	16h				C_6F_{14} , i- C_3F_7I , I(OTe F_5) ₃
^a Yield based on the limiting r	eagent and for the o	decomposition re	actions on the	stoichiometry: 2 R _f I(OT	$(eF_g)_2 \rightarrow 0$	RfOTeF5 +	$R_{f}I + I(OTeF_{3})_{3}$.

TABLE I $R_{t}I(OTeF_{s})_{2}$ synthesis and decomposition data

Thermal decomposition of these compounds takes place below 25°C for the methyl compound and at 115-120°C for the ethyl and n-propyl derivatives (7).

$$2R_{f}I(OTeF_{5})_{2} \rightarrow R_{f}OTeF_{5} + R_{f}I + I(OTeF_{5})_{3}$$

$$R_{f} = CF_{3}, C_{2}F_{5}, \text{ and } n-C_{3}F_{7}$$
(7)

The high yields of $I(OTeF_5)_3$ in (7) demonstrates again the stabilizing effects of the TeF₅O- group on I (III). Furthermore, this mode of decomposition contrasts sharply with that noted for reaction (6) and to some extent with that for reaction (5).

The $R_f I(OTeF_5)_2$ compounds can also be decomposed by UV photolysis. For the n-propyl compound reaction (8) was observed.

$$2 \operatorname{n-C_3F_7I}(OTeF_5)_2 \longrightarrow \operatorname{n-C_3F_7I} + \operatorname{n-C_3F_7OTeF_5} + I(OTeF_5)_3$$

$$(8)$$

$$C_6F_{14} + I_2$$

Except for the secondary decomposition of $n-C_3F_7I$, this process emulates the thermal reaction (7).

For $i-C_3F_7I(OTeF_5)_2$, neither photolysis nor thermal decomposition resulted in the formation of any R_fOTeF_5 derivative. It is noteworthy that the decomposition of $i-C_3F_7I(OSO_2F)_2$ and $i-C_3F_7I(OClO_3)_2$ also did not produce $i-C_3F_7OSO_2F$ [5], or $i-C_3F_7OClO_3$ [10], respectively. Therefore, it appears that for X=TeF_5, SO_2F, or ClO_3, the R_fOX synthesis from R_fI and ClOX is limited to primary R_fI compounds.

Table II lists the ¹⁹F NMR data for the new compounds. Data for $C_2F_5OTeF_5$ and $n-C_3F_7OTeF_5$, prepared by other routes, have previously been reported [1]. The TeF₅O-groups give rise to AB₄ type spectra which are very similar for compounds of the same structural type. For CF₃OTeF₅, the observed chemical shifts are within the A= -49 to -54 and B₄ = -38 to -45 ppm range, found [1-3] for other R_fOTeF₅ moieties. For the R_fI(OTeF₅)₂ compounds the observed chemical shifts for the B₄ part are again in this region but the A part is shifted downfield to about -41 ppm. A similar shift of the A resonances from the high to the low field side of the B₄ resonances has also been noted for a series of inorganic TeF₅O-derivatives [13]. This change in the relative shifts of A and B₄ is due to the differences in the bonding environment of the TeF₅O- groups in the R_fI(OTeF₅)₂ and R_fOTeF₅ compounds.

^aCFCl₃ internal reference, negative shift being upfield from the reference. Φ = chemical shift, ppm (multiplicity; where b = broad; d = doublet, t = triplet, and qi = quintet. The area ratios measured for these resonances agreed with the given assignments. J₁₂₅ Te¹⁹F = 3640-50 Hz for the R_fI(OTeF₅)₂ compounds.

For the fluorine on carbon resonances there is remarkably little change in the chemical shifts on going from $R_f I$ to $R_f I(OTeF_5)_2$, except for the CF resonance of the secondary fluorine in the isopropyl compound which is shifted from $\emptyset = -149$ in i- $C_3F_7 I$ [14] to $\emptyset = -125$ in i- $C_3F_7 I(OTeF_5)_2$. This downfield shift might be caused by steric factors.

The vibrational spectra for the $R_f I(OTeF_5)_2$ compounds are given in Table III. In the infrared spectra, strong bands associated with $v CF_n$ (1320 - 1130 cm⁻¹), $vCC(1060 - 850 \text{ cm}^1)$, and δCF_n (820 - 785 cm⁻¹) motions are characteristic for fluorocarbon species. In addition, strong infrared bands at about 740, 710, and 325 cm⁻¹ are attributable

TABLE III

Obsd. Freq. cm ⁻¹ (rel. intens.) ^a									
	$\underline{C_2F_5I(OTeF_5)_2}^b$		<u>nC3F7I(</u>	nC3F7I(OTeF5)2 ^b		iCzF7I(OTeF5)2°			
<u>Assign.</u> (<u>IR</u> 1323 s 1245 vs	<u>Raman</u> 1320(0.1) 1235(0.1)	<u>IR</u> 1320 s 1260 s	<u>Raman</u> 1326(0.6)	<u>IR</u> 1293 s 1250 s	<u>Raman</u> 1300(0.1) 1250(0.1)			
vCF	1132 s	1130(0.2)	1225 s 1153 s	1060(1.8)	1162 m	1165(0.2)			
vCC	890 s	887(0.6)	1030 sh 850 sh	1000(1.3)	962 m 861 m	875(1.2)			
(814 w	820(0.5)					
δCF_n	805 s 732 sh	800(1.0) 731(0.6)	786 s 730 s	793(1.2) 728(1.9)	800 m	800(0.9)p 748(2.3)p			
vasTeF4	740 s	742(0.9)	740 s	745(0.4)	745 s				
vTeF'	710 s	710(1.9)	710 s	710(2.7)	710 s	715 sh			
vsTeF ₄		692(3.3)		695(4.1) 655(2.1)		700(4.7)p			
vTeO	635 m	643(4.7)	629 m 620 sh	640(3.0) 625(1.9)	630 m	648(5.9)p			
	583 w		595 m	598(0.8)					
	548 w	545(0.3)	531 m 512 w	535(0.3)	543 w	541(0.9)			
VasIO5	465 ms		453 ms		465 m				
v _s IO ₂		440(4.8) 382(0.7)		458(6.6) 380(1.0)		455(3.9)p			
		353(0.9)				350(0.5)p			
SETati	225 -	220(1.0)	225 -	225(1.0)	220 4	307(1.0)dn			
SOTAE.	525 \$	305(1.0)	5258	323(1.0) 302(1.1)	520 8	300(0.6)dp			
δ _{os} TeF.	265 w	271(0.5)	265 mw	502(1.1)		500(0.0)ap			
0451014	200 1	271(0.5)	205 110	(265(8.0)					
vCI		240(10)		238(5.0)		238(10)p			
		205(1.3)		165(3.7)		190(0.7)p			
δCIO ₂		135(7.8)		138(10) 112(1.7)		135(8.3)p			
				92(5.0)		95(3.1)p			

Vibrational spectra of $R_{f}I(OTeF_{5})_{2}$ compounds

^a Uncorrected Raman intensities (peak heights); ^b solid; ^c liquid

to ν_{as} TeF₄, ν TeF', and δ FTeF₄, respectively, of the TeF₅O-group. These assignments are the same as those given for R_fOTeF₅ [1-3] and TeF₅X [15, 16] compounds. Two additional medium to strong intensity infrared bands are present for these compounds at about 630 and 460 cm⁻¹. The higher frequency band is assigned to vTeO which appears in the region 720 - 700 cm⁻¹ in (TeF₅O)₂R_f compounds [3], at 616 cm⁻¹ in TeF₅OF [15], and at 625 cm⁻¹ in I(OTeF₅)₃ [8]. For the 460 cm⁻¹ band of the R_fI(OTeF₅)₂ compounds, no comparable band was observed in other R_fOTeF₅ or TeF₅X species. This band is then assigned to an iodine oxygen stretching mode which is found at 434 cm⁻¹ in I(OTeF₅)₃ [8].

Raman counterparts are present for many of these strong infrared bands, <u>i.e.</u> vCF_n; vCC; δ CF_n; v_{as}TeF₄; vTeF; and δ FTeF₄, and, as expected, they are relatively weak. For R_fOTeF₅ compounds, a Raman band at 675 cm⁻¹ is dominant [3] and arises from v_sTeF₄. For the R_fI(OTeF₅)₂ compounds, this band appears at about 695 cm⁻¹, but it is no longer the strongest Raman band. The two strongest Raman bands now occur at about 265 - 240 cm⁻¹ and at 135 cm⁻¹. For the higher frequency band, an assignment is made as vCI, which occurs at 280 - 260 cm⁻¹ in simple R_fI compounds [17] and which is expected to be a very intense Raman band. The intense band at 135 cm⁻¹ is attributed to the skeletal bending mode, δ CIO₂. This agrees well with the most intense Raman band observed for I(OTeF₅)₃ at 134 cm⁻¹ [8] and which probably arises from the δ OIO₂ motions whose infrared couterparts have been mentioned. Thus all the spectroscopic data, including ¹⁹F NMR, are in agreement with the formulation of these materials as R_fI(OTeF₅)₂.

The infrared spectrum of CF₃OTeF₅ exhibits bands at 1263(s); 1233(s); 1192(vs); 743(s); 710(m); and 324(s) cm⁻¹. Comparable vCF_n vibrations are found for CF₃OSF₅ at 1274(s), 1243(s) and 1202(vs) cm⁻¹ [18]. In the case of $C_3F_7OTeF_5$ its infrared spectrum was previously reported [1] for a 70:30 mixture of n- and iso- $C_3F_7OTeF_5$. The spectrum of pure n- $C_3F_7OTeF_5$ isolated in this study exhibits bands at 1338(w), 1250(vs), 1229(m), 1186(m), 1170(m), 1010(m), 754(s), 726(m), and 331(m) cm⁻¹.

CONCLUSIONS

It has been found that the reaction of TeF₅OCl with R_fI compounds proceeds at low temperature to furnish $R_fI(OTeF_5)_2$ derivatives in high yield. These adducts were thermally and photolytically decomposed, yielding in the case of the primary fluorocarbon compounds, the corresponding R_fOTeF_5 compounds. This two step sequence represents a new process for preparing R_fOTeF_5 type materials.

ACKNOWLEDGMENT

The authors are grateful for support of this work by the U.S. Air Force Office of Scientific Research under Contract F49620-81-C-0020, and to Dr. L.R. Grant for helpful discussions.

REFERENCES

- 1 C. J. Schack and K. O. Christe, J. Fluorine Chem., 24 (1984) 467.
- 2 C. J. Schack and K. O. Christe, J. Fluorine Chem., 26 (1984) 19.
- 3 C. J. Schack and K. O. Christe, J. Fluorine Chem., 27 (1985) 53.
- 4 A. V. Fokin, Yu. N. Studnev. I. N. Krotovich, L.D. Kuznetsova, and O. V. Verenikin, Izv. Akad. Nauk SSSR Ser. Khim. (1979) 748.
- 5 C. J. Schack and K. O. Christe, J. Fluorine Chem., <u>16</u> (1980) 63.
- 6 C. J. Schack and K. O. Christe, J. Fluorine Chem., <u>21</u> (1982) 393.
- 7 H. Burger, Z. Anorg. Allg. Chem., <u>360</u> (1968) 97.
- 8 K. Seppelt, Chem. Ber., <u>106</u> (1973) 1920.
- 9 D. Naumann, Research Report of the State of North Rhine-Westfalia, No. 3115, West Germany, Verlag (1982).
- 10 C. J. Schack, D. Pilipovich, and K. O. Christe, Inorg. Chem., <u>14</u> (1975) 145.
- 11 D. Naumann, H. H. Heinsen, and E. Lehmann, J. Fluorine Chem., <u>8</u> (1976) 243.
- 12 K. Seppelt, Accts. of Chem. Res., <u>12</u> (1979) 211.
- 13 K. Seppelt, Z. Anorg. Allg. Chem., <u>399</u> (1973) 65.
- 14 C. H. Dungan and J. R. VanWazer, 'Compilation of Reported ¹⁹F NMR Chemical Shifts "Wiley-Interscience, New York, 1970.
- 15 C. J. Schack, W. W. Wilson, and K. O. Christe, Inorg. Chem., 22 (1983) 18.
- 16 W. V. F. Brooks, M. Eshague, C. Lau, and J. Passmore, Can. J. Chem., <u>54</u> (1976) 817.
- 17 D. A. C. Compton and D. M. Rayner, J. Phys. Chem., <u>86</u> (1982) 1628.
- 18 G. Pass and H. L. Roberts, Inorg. Chem., <u>2</u> (1963) 1018.