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Summary: Gas-phase pyrolysis of the en&-vinyl epimer (1A) of the title compound at 27Y’C affords 
predominantly 3-(2-methyl-2-butenyl)cyclopentene (presumably the Z isomer), a direct [1,5]-hydrogen shift 
product, whereas the cxo-vinyl epimer (1B) favors the tiqmentation products, cyclopentene and isoprene. 

We wish to report on the thermal behavior of both epimers of 6-methyl-6-vinylbicyclo[3.2.O]heptane (1),* 

which was prepared from 7-methyl-7-vinylbicyclo[3.2.0]heptan-6-one2 via our standard cyclobutanone 

reduction.3 We have conducted a rigorous kinetic investigation4 of the gas-phase (275’C ) pyrosylates of each 

individual epimer of the tide compound using nonane as an internal standard The rate constant for overall loss of 

reactant epimer (b) as well as the relative distribution of products among three rearrangement modes, [ 1,5]- 

hydrogen shift (kl.5). [13]-carbon migration (kl,3), and retro-[2+2] cycloreversion or fragmentation (kt),6 are 

reported in Table 1. 
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Surprisingly, the most favorable rearrangement mode for epimer A is a [1,5]-hydrogen shit. formally a 

retro-ene reaction. of the e&o-hydrogen on C-4 to the methylene carbon of the e&o-vinyl substituent. The most 

convincing evidence for the characterization of this product as 3-(2-methyl-2-butenyl)cyclopentene is derived 

froml%!-NMR.7 We attribute the greater reactivity of epimer A relative to epimer B (a factor of 16) to steric 

destabilization operating in epimer A. Epimer A can, therefore, undergo a facile [ 1,5]-hydrogen shift assisted by 

Table 1. Kinetic Data for 6-methyl-6-vinylbicyclo[3.2.0]heptane (I) at 275’C. 

kl,s/ka kl,dkd krlka 

epimer A ;66 $g# J$.g2)t 1;; (.ol)t .17 
epimer B . . .70 

j’ Nonlinear least squares values, where different from linear least squares data, are given in parentheses. 

’ This is presumably an indirect diical-mediated [l.!i]-hydrogen shit product; its GC retention time is slightly different from that 
observed for qimer A. 

the close proximity of the C-4 e&o-hydrogen to the migration terminus.8 Chickos and Frey have previously 

concluded that an analogous [ lJ]-hydrogen shit in 2.2~dimethyl-1-vinylcyclobutane is concerted.~ However, 
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the [1,5]-hydrogen shift is far less important in this monocyclic vinylcyclobutane with kl5flrd = 0.18. The only 

monocyclic vinylcyclobutane that favors the [ lf-hydrogen shift is cis-2-ethylvinylcyclobutane, for which a 

ktJflCd of 0.66 is observed.10 Moreover, the cis-trans rate ratio of 13 for this monocyclic system is similar to the 

corresponding rate ratio (k&B = 16) that we have noted. The kinetic data from the related monocyclic 

vinylcyclobutane systems am reported in Table 2. 

Although the phenomenon of cis-truns isomerism has complicated the kinetic analysis of other substituted 

vinylcyclobutanes such as 2cthylvinylcyclobutane, 10 them is a complete absence of geometric isomerism in either 

epimer of compound 1. One plausible explanation for this is that the allylic diradical that is produced upon 

homolytic cleavage of the C-5/C-6 bond is sufficiently sterically hindered that fragmentation rather than 

recombination is the favored process via the diradical intermediate. The lack of epimerixation implicates a 

nonequilibrated diradical intermediate. 

Because epimer B cannot undergo a diit [1,5]-hydrogen shift, its thermal energy profile must 

necessarily traverse a diradical intermediate. Comparing actual rates, however, epimer A still iiagments 4 times 

faster than epimer B. A similar analysis of 2-ethylvinylcyclobutane reveals that fragmentation is 5.5 times faster 

in the cis than in the rruns isomer. 10 Relief of steric interactions in epimer A and cis-2-ethylvinylcyclobutane is 

apparently responsible for these differences. 

m. Kinetic Data for Related Vinylcyclobutanes 

kdxlOS s kdka k 1,dkd k&d 

2.2~dimethyl- 35.6 (280°C.) 0.18 0.77 0.04 
vinylc yclobutane~ 

cis-2-ethyl- 43.5(290°C.) 0.66 0.18 0.04.f 
vinylcyclobutane~o 

trans-2-ethyl- 3.6(290%) ____- 0.44 0.28f 
vinylcyclobutanelu 

fThe rate ratios do not sum tc one due to exclusion of geometrical isomerism. 

While noting that the rate constants for cis- and trans-2-ethylvinylcyclobutane are approximately twice 

those for epimer A and epimer B, respectively, one can readily account for this variation by the 15°C temperature 

difference. If anything, compound 1 might be slightly mom reactive due to the greater degree of substitution at C- 

6 in 1 versus C-l in 2-ethylvinylcyclobutane. Because of the greater stability of a tertiary (C-2) versus a primary 

(C-4) radical, 2,2dimethylvinylcyclobutane undergoes mgiospecific fragmentation. In contrast, the fragmentation 

mode in 2-ethylvinylcyclobutane is not as clean. Yet in compound 1 fragmentation pmceeds exclusively along the 

C-l/C-7 and C-5/C-6 axes (an obvious entropic benefit), parallel to MS fragmentations; however, the presence of 

three [1,3]-carbon migration products in about equal intensities (1.5: 3.3: 1) in the pyrosylate of epimer B 

indicates that both diradical intermediates & (C-5,C-6 cleavage) and u (C-QC-7.cleavage) must form: La to yield 

both cis- and rrun.r-3-methylbicyclo[4.3.0]non-3-ene and fi to yield cis-2-methylbicyclo[4.3.0]non-2-ene. One 

again observes similarities with rrux.r-2-ethylvinylcyclobutane, which affords two different [1,3]-carbon migration 

products in a 9: 1 ratio resulting from a secondary, allylic and a primary, allylic diradical, respectively. However, 

the primary, dylic didid is apparently more competitive in our system. Another parallel between epimer B and 
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nuxs-2-ethylvinylcyclobutane is the greater pmpordon of [ 13]-carbon migration relative to that in their respective 

geometricisomers. 

la 

In summary, the thermal behavior of epimers A and B parallels that of cis- and trans-2- 

ethylvinylcyclobutane in many respects. In particular, the dominant thermal pathway observed for both epimer A 

and cis-2-ethylvinylcyclobutane is a concerted [1,5]-hydrogen shift. However, geometric isomerism, signifrcaut 

in the monocyclic system, is absent in compound 1. The most plausible explanation for this difference is that the 

bicyclic system affords a nonequilibrated diradical that favors fragmentation over recombination. 
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