7,2"-DI-O-GLYCOSYL-6-C-GLYCOSYLFLAVONES FROM CERASTIUM ARVENSE

MARIE-ALETH DUBOIS, ANNE ZOLL and JEAN CHOPIN*

Faculté de Pharmacie, 21033 Dijon Cédex, France; *Université Claude Bernard, 69622 Villeurbanne, France

(Revised received 28 April 1983)

Key Word Index—*Cerastium arvense*; Caryophyllaceae; C-glycosylflavonoids; isovitexin 7-O-glucoside-2''-O-arabinoside; isomollupentin 7,2''-di-O-glucoside; isomollupentin 7-O-glucoside-2''-O-xyloside; isomollupentin 7-O-glucoside; isomollupentin 7-O-glucoside-2''-O-xyloside; isomollupentin 7-O-glucoside; isomollupentin 7-O-glucoside

Abstract—Four 7,2"-di-O-glycosyl-6-C-glycosylflavones were isolated from *Cerastium arvense*, including two new compounds: isomollupentin 7-O-glucoside-2"-O-arabinoside and isomollupentin 7-O-glucoside-2"-O-xyloside. The known compounds are isovitexin 7-O-glucoside-2"-O-arabinoside and isomollupentin 7,2"-di-O-glucoside.

INTRODUCTION

We have previously reported the isolation of several new C-glycosylflavones from Cerastium arvense L. [1, 2]. One of them was identified on the basis of UV, acid hydrolysis and mass spectrometry of the permethylated (PM) derivatives as isovitexin 7,2"-di-O-glucoside [3, 4]. In this paper we report the isolation and characterization of four other 7,2"-di-O-glycosyl-6-C-glycosylflavones, two of which are new compounds, from the whole plant of C. arvense.

RESULTS AND DISCUSSION

Fresh plant material of C. arvense was extracted with 95% ethanol. After elimination of the lipophilic pigments the water-soluble fraction yielded the known compounds isomollupentin 7,2"-di-O-glucoside, previously isolated from Spergularia rubra [5], and isovitexin 7-O-glucoside-2"-O-arabinoside, previously isolated from Melandrium album [6], and two new ones, 1 and 2.

Compound 1 showed the UV spectrum and diagnostic shifts of a 7-O-substituted apigenin [7] and the chromatographic properties of a triglycoside. Acid hydrolysis with 4 N HCl-MeOH (1:1) or 0.1 % HCl yielded isomollupentin (6-C-arabinosylapigenin) (UV, mass spectrometry of PM ether and TLC comparison with standard free and permethylated samples) accompanied by its Wessely-Moser isomer and equal amounts of arabinose and glucose (TLC). The mass spectrum of PM 1 showed the characteristic fragmentation pattern of a PM 5,7dihydroxy-6-C-glycosylflavone 7,2"-di-O-glycoside [5]: $[M]^+$ (m/z 850), absence of $[M-15]^+$ and $[M-31]^$ peaks (showing the absence of a 2"-OMe [8] owing to the presence of a 2"-O-glycosyl residue) replaced by the ions $[SO]^+$ (m/z 675) and $[S]^+$ (m/z 659) by loss of the PM 2"-O-glycosyl residue, respectively without and with the oxygen atom of the glycosidic bond (the pentose nature of the 2"-O-glycosyl group is given by the difference [M -SO] = 175; the homologous peaks $[SO(AH)]^+ (m/z)$ 457) and $[S(AH)]^+$ (m/z 441), derived from $[SO]^+$ and [S]⁺ by loss of the PM 7-O-glycosyl group with hydrogen

glucoside-2"-O-arabinoside. Compound 2 again showed the UV spectrum and diagnostic shifts of a 7-O-substituted apigenin and the chromatographic properties of a triglycoside. Acid hydrolysis with 4 N HCl-MeOH (1:1) or 0.1 % HCl led to equal amounts of xylose and glucose (TLC) and to isomollupentin (identified as above). The mass spectrum of PM 2 also

transfer, showed the hexose nature of this group by the

difference [S - S(AH)] = 218. Finally, the important

peak $[j(AH)]^+$ (m/z 327) agreed with the apigenin nature

of the flavone moiety and the difference S(AH) - j(AH)

Compound 1 is thus identified as isomollupentin 7-0-

= 114 with the pentose nature of the 6-C-glycosyl residue.

showed the characteristic fragmentation pattern of a PM 5,7-dihydroxy-6-C-glycosylflavone 7,2"-di-O-glycoside and all peaks were found at the same *m/z* values as in the mass spectrum of PM 1. These data proved 2 to be isomollupentin 7-O-glucoside-2"-O-xyloside. A number of 7,2"-di-O-glycosyl-6-C-glycosylflavones have been previously identified in *Melandrium album*: isovitexin 7-O-glucoside-2"-O-rhamnoside [9], isovitexin 7-O-glactoside-2"-O-glucoside and -2"-O-rhamnoside [10], isovitexin 7-O-xyloside-2"-O-glucoside [4], -2"-O-arabinoside and -2"-O-rhamnoside [6], and isovitexin 7,2"-di-O-glucoside and -2"-O-rhamnoside [4], -2"-O-arabinoside and -2"-O-rhamnoside [6], and isovitexin 7,2"-di-O-glucoside and -2"-O-glucoside are characterized for the first time.

EXPERIMENTAL

Plant material. Cerastium arvense L. subsp. arvense was collected on the roadside at Chamboeuf (Côte d'Or), France. A voucher specimen, No. 116, has been deposited at the Herbarium, Faculté de Pharmacie, Université de Dijon.

Extraction and isolation. Fresh leaves and flowers were extracted with 95% EtOH under reflux. After concn under red. pres., the residue was macerated with hot H₂O and filtered. The aq. soln was extracted with CHCl₃. The remaining aq. layer was fractionated first on a Lichrosorb RP 18 (25–40 μ m) column eluted with a discontinuous gradient MeOH-H₂O-HOAc, 5:15:1, 6:13:1, 10:9:1 (pressure 10 bars, flow rate 10 ml/min),

then on a microcrystalline cellulose column (5 bars) eluted by isocratic 5% HOAc (flow rate 3.5 ml/min), and finally on a Lichrosorb RP 18 (10 μ m) column (10 bars) eluted by isocratic MeOH-H₂O-HOAc, 35:65:2 (flow rate 6 ml/min.).

1: Isomollupentin 7-O-glucoside-2"-O-arabinoside (apigenin 6-C-[2-O-arabinosylarabinoside]-7-O-glucoside). UV λ_{max}^{MeOH} nm: 272, 334; + NaOAc 270, 298 sh, 394; + AlCl₃ 278, 302, 350, 388 sh; + AlCl₃ + HCl 280, 300, 350, 384 sh; + NaOMe 274, 306 sh, 352 sh, 396. TLC (polyamide) R_f 0.73 (H₂O-EtOH-MeCOEt-AcCH₂COMe, 12:4:3:1); (cellulose) 0.52 (5% HOAc), 0.69 (15% HOAc), 0.45 (BAW, 4:1:5); (silica gel) 0.19 (EtOAc-MeOH-H₂O, 21:4:3). Permethyl ether: EIMS 70 eV, m/z (rel. int.): 850 [M]⁺ (7), 705 [SOj]⁺ (20), 689 [SOk]⁺ (7), 675 [SO]⁺ (100), 659 [S]⁻ (86), 487 [SOj(AH)]⁺ (20), 471 [SOk(AH)]⁺ (3), 457 [SO(AH)]⁺ (79), 441 [S(AH)]⁺ (51), 409 [S - MeOH(AH)]⁺ (15), 341 [i(AH)]⁺ (11), 327 [j(AH)]⁺ (99), 311 [k(AH)]⁺ (11), TLC (silica gel) R_f 0.03 (CHCl₃ - EtOAc-Me₂CO, 5:4:1), 0.23 (CHCl₃-EtOAc-Me₂CO, 5:1:4).

2: Isomollupentin 7-O-glucoside-2"-O-xyloside (apigenin 6-C-[2-O-xylosylarabinoside]-7-O-glucoside). UV λ_{max}^{MOH} nm: 274, 332; + NaOAc 272, 348 sh, 392; + AlCl₃ 272, 308, 352, 394 sh; + AlCl₃ + HCl 300, 320 sh, 360, 396 sh; + NaOMe 270, 348 sh, 388. TLC (polyamide) R_f 0.73 (H₂O-EtOH-MeCOEt-AcCH₂COMe, 12:4:3:1); (cellulose) 0.50 (5 % HOAc), 0.67 (15 % HOAc), 0.40 (BAW, 4:1:5); (silica gel) 0.17 (EtOAc-MeOH-H₂O, 21:4:3). Permethyl ether: EIMS 70 eV, m/z (rel. int.): 850 [M]⁺ (5), 719 [SOi]⁺ (7), 705 [SOj]⁺ (8), 689 [SOk]⁺ (11), 675 [SO]⁺ (80), 659 [S]⁺ (77), 501 [SOi(AH)]⁺ (3), 487 [SOj(AH)]⁺ (100), 409 [S - MeOH(AH)]⁺ (20), 341 [i(AH)]⁺ (11), 327 [j(AH)]⁺ (100), 311 [k(AH)]⁺ (11). TLC (silica gel) R_f 0.05 (CHCl₃-EtOAc-Me₂CO, 5:4:1), 0.33 (CHCl₃-EtOAc-Me₂CO, 5:1:4).

Acid hydrolysis. The samples were dissolved in MeOH-4 N HCl (1:1) or in 0.1°_{0} HCl and heated at 100° for 1 hr in a sealed tube. After repeated evapns of the solvent, the residue was taken up in H₂O and extracted with *n*-BuOH. The aglycones were identified in the *n*-BuOH extracts by TLC (silica gel) in

EtOAc MeOH-H₂O (21:4:3), 15% HOAc and BAW, 4:1:5. The sugars were identified by TLC (0.2 M Na₂HPO₄-impregnated silica gel plates) in Me₂CO-H₂O (9:1) against standard markers; flavones and sugars were respectively detected with bisdiazotized benzidine-Na₂CO₃ and aniline phthalate. The aglycones were permethylated and co-chromatographed on TLC (silica gel) with PM 6-C-arabinosylapigenin: R_f 0.16 (CHCl₃-EtOAc-Me₂CO, 5:4:1), 0.54 (CHCl₃-EtOAc-Me₂CO, 5:1:4).

Isovitexin 7-O-glucoside-2"-O-arabinoside and isomollupentin, 7,2"-di-O-glucoside were identified by UV, acid hydrolysis, MS of PM ethers and comparison with standard samples.

REFERENCES

- 1. Dubois, M. A. (1980) Thèse de doctorat de 3ème cycle en Pharmacie, Université de Paris V.
- Dubois, M. A., Zoll, A., Bouillant, M. L. and Chopin, J. (1982) Phytochemistry 21, 1141.
- Chopin, J., Bouillant, M. L. and Besson, E. (1982) in *The Flavonoids, Advances in Research* (Harborne, J. B. and Mabry, T. J., eds.), pp. 449–503. Chapman & Hall, London.
- 4. Brederode, J. van and Nigtevecht, G. van (1974) Biochem. Genet. 11, 65.
- Bouillant, M. L., Ferreres de Arces, F., Favre-Bonvin, J., Chopin, J., Zoll, A. and Mathieu, G. (1979) *Phytochemistry* 18, 1043.
- 6. Brederode, J. van and Nigtevecht, G. van (1972) Mol. Gen. Genet. 118, 247.
- 7. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The* Systematic Identification of Flavonoids. Springer, Berlin.
- Bouillant, M. L., Besset, A., Favre-Bonvin, J. and Chopin, J. (1980) Phytochemistry 19, 1755.
- 9. Brederode, J. van and Nigtevecht, G. van (1972) Genen Phaenen. 15, 3.
- Wagner, H., Obermeier, G., Seligmann, O. and Chari, V. M. (1979) *Phytochemistry* 18, 307.