

Organic Preparations and Procedures International

SYNTHESIS AND CHARACTERIZATION OF ISOMERIC 2,5-DJMETHYL-6-PHENYL-3-CYCLOHEXENE-1METHANOL ANALOGS

Gary M. Coppola , Robert E. Damon , Michael J. Shapiro , Karl G. Gunderson \& Michael X. Kolpak

To cite this article: Gary M. Coppola , Robert E. Damon , Michael J. Shapiro , Karl G. Gunderson \& Michael X. Kolpak (2000) SYNTHESIS AND CHARACTERIZATION OF ISOMERIC 2,5-DJMETHYL-6-PHENYL-3-CYCLOHEXENE-1-METHANOL ANALOGS, Organic Preparations and Procedures International, 32:1, 75-79, DOI: 10.1080/00304940009356749

To link to this article: http://dx.doi.org/10.1080/00304940009356749

Published online: 18 Feb 2009.

Submit your article to this journal

Article views: 34

View related articles

Citing articles: 2 View citing articles | |
| :---: |

SYNTHESIS AND CHARACTERIZATION OF ISOMERIC 2,5-DIMETHYL-6-PHENYL-3-CYCLOHEXENE-1-METHANOL ANALOGS

Gary M. Coppola*, Robert E. Damon, Michael J. Shapiro, Karl G. Gunderson and Michael X. Kolpak
Department of Metabolic and Cardiovascular Diseases
Novartis Pharmaceuticals
556 Morris Ave., Summit, NJ 07901

Few if any reactions can rival the Diels-Alder cycloaddition for the construction of carbocyclic molecules. The stereochemical outcome for as many as four contiguous ring centers can usually be predicted due to the highly organized nature of the transition state. During the course of one of our programs several 2,5-dimethyl-6-phenyl-3-cyclohexene-1-methanol isomers were required as key intermediates. Retrosynthetic evaluation of these compounds led us to choose the Diels-Alder reaction for their syntheses. Although the Diels-Alder reaction has been systematically studied for a wide variety of dienes and dienophiles, cinnamates have surprisingly received little attention, especially in reactions with hexadiene derivatives. We are aware of only two papers where cinnamic acids are condensed with trans, trans-2,4-hexadiene and in both cases, the cycloxexene ring was subsequently aromatized. ${ }^{1.2}$

Our synthesis is based on the reaction of both trans- and cis-ethyl cinnamate with trans, trans-2,4-hexadiene to produce the cyclohexene adduct followed by reduction of the ester to the © 2000 by Organic Preparations and Procedures Inc.
desired alcohol (Scheme 1). The stereochemical outcome of the cycloaddition can be predicted in part. It is known that with few exceptions, the relative configuration of the dienophile is retained in the adduct. ${ }^{3}$ It was expected that the ester group of the cinnamate would control the stereochemistry of the 1,2 -substituents of the product relative to the 3 and 6 -methyl groups, and therefore $\mathbf{1}$ should produce trans- 1,6 -analogs whereas 6 should afford the corresponding cis- 1,6 -isomers. If the ester adopts an endo-like position relative to the diene, then product 2 should be the preferred isomer.

Reaction of 1 with trans, trans-2,4-hexadiene at 180° produced an inseparable $4: 1$ mixture of cycloadducts isolated in 82% yield. Reduction of the ester groups with lithium aluminum hydride gave a mixture of alcohols $\mathbf{4}$ and 5 which were readily separable by column chromatography.

The NMR spectrum of the major isomer was readily analyzed by homonuclear decoupling experiments. Methyl doublets at $\delta 0.75$ and $\delta 1.15$ are assignable to Me_{f} and Me_{e} with the associated resonances for H_{c} and H_{f} at $\boldsymbol{\delta} 2.30$ and $\delta 2.45$ respectively (see Figure 1). The signal for H_{d} appears at $\delta 3.10$ as a doublet of doublets with apparent couplings of 12 and 5 Hz , suggesting one axial and one equatorial partner. The resonance for H_{g} is characteristic of an axial proton with two axial partners (a triplet with two large couplings of 12 Hz). The pseudoaxial relationship of H_{e} and pseudoequatorial H_{f} are confirmed by decoupling experiments and the magnitude of their allylic coupling to H_{a} and H_{b}. It was observed that J_{AE} is larger than J_{BE} while J_{FA} is smaller than J_{FB}. These results are consistent with structure 4.

Figure 1

9

10

Figure 2. Conformational representations of structures 4, 5, 9,10
In the NMR spectrum of the minor isomer, the proton signal for H_{g} and H_{d} are observed at δ 2.20 and $\delta 2.10$ with H_{d} showing two large couplings to H_{g} and H_{f} The axial-like disposition of H_{r} is further confirmed by its allylic couplings to H_{a} and H_{b}. NOE from irradiation of Me_{e} gives enhancement of signals $\mathrm{H}_{\mathrm{e}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{d}}$ and of the CH_{2} protons, which is consistent with structure 5 .

Ethyl cis-cinnamate (6) was readily prepared by partial catalytic reduction of ethyl phenylpropiolate in the presence of Pd / C poisoned with benzaldehyde dimethylthioacetal $\left(\mathrm{PhCH}(\mathrm{SMe})_{2}\right)$. No ethyl trans-cinnamate was formed as in other methods ${ }^{46}$ and only traces of over reduction to the alkane were detected. Reaction of 6 with trans, trans-2,4-hexadiene at 190° produced a 1.2:1 mixture of Diels-Alder adducts (52% yield) along with 12% of unreacted cinnamate. Reduction of the ester

Prep 500 apparatus using 30% MTBE/hexane to elute the products. The less polar product 4 (15.1 g) was isolated as a colorless oil in 60% yield (99.6% pure determined by GC). IR (CHCl_{3}): 3680,3490 , $1460,1235,1080 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.39-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 5.51(\mathrm{~d}$, broad, 1 H , H_{b}), 3.63 (s, broad, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.10\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 2.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 1.75\left(\mathrm{tt}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right)$, $1.15\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}_{\mathrm{e}}\right), 0.98(\mathrm{~s}$, broad, $1 \mathrm{H}, \mathrm{OH}), 0.75\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}_{\mathrm{f}}\right.$).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 83.28 ; \mathrm{H}, 9.32$. Found: $\mathrm{C}, 83.10 ; \mathrm{H}, 9.30$
The more polar product $5(5.6 \mathrm{~g})$ was isolated as a colorless oil in 22% yield $(96.1 \%$ pure determined by GC). IR (CHCl_{3}): $3680,3470,1460,1370,1230,1000 \mathrm{~cm}^{-1}$. ${ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.21-7.05(\mathrm{~m}, 3 \mathrm{H})$, $7.00-6.91(\mathrm{~m}, 2 \mathrm{H}), 5.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 5.52\left(\mathrm{~d}\right.$, broad, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 3.11\left(\mathrm{~d}\right.$, broad, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.59(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{c}}\right), 2.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 2.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 1.10\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}_{\mathrm{e}}\right), 0.75(\mathrm{~d}, \mathrm{~J}=7.5$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{Me}_{\mathrm{f}}$), 0.68 (s, broad, $1 \mathrm{H}, \mathrm{OH}$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 83.28 ; \mathrm{H}, 9.32$. Found: C, 83.59; H, 9.40
Ethyl cis-Cinnamate (6).- A solution of ethyl phenylpropiolate ($3.0 \mathrm{~g}, 17.2 \mathrm{mmol}$) and benzaldehyde dimethylthioacetal ${ }^{7}$ ($50 \mathrm{mg}, 0.27 \mathrm{mmol}$) in 40 mL of ethyl acetate was hydrogenated over $5 \% \mathrm{Pd} / \mathrm{C}$ $(300 \mathrm{mg})$ at 1 atm for 48 h . The reaction mixture was filtered through Celite and the solvent evaporated to give $3.1 \mathrm{lg}(100 \%)$ of 6 as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.64-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.16$ $(\mathrm{m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, 2 \mathrm{H}), 1.23(\mathrm{t}, 3 \mathrm{H})$.
Reaction of 6 with trans,trans-2,4-Hexadiene.- A mixture of ethyl cis-cinnamate ($3.0 \mathrm{~g}, 17 \mathrm{mmol}$), trans, trans-2,4-hexadiene ($4 \mathrm{~g}, 49 \mathrm{mmol}$) and hydroquinone (20 mg) was heated at 190° in a sealed vessel for 4 days. GC analysis of the mixture showed a $1.2: 1$ ratio of adducts. The mixture was chromatographed on a Waters Prep 500 apparatus using 5% ethyl acetate/hexane to elute $2.3 \mathrm{~g}(52 \%)$ of a mixture of 7 and 8 .
(1S,2S,5R,6R)-rel-2,5-Dimethyl-6-phenyl-3-cyclohexene-1-methanol (9) and (1R,2S,5R,6S)-rel-2,5-dimethyl-6-phenyl-3-cyclohexene-1-methanol (10).- To a 1.0 N solution of lithium aluminum hydride in tetrahydrofuran (8.0 mL) was added dropwise a solution of 7 and $8(520 \mathrm{mg}, 2 \mathrm{mmol})$ in 2 mL tetrahydrofuran. The mixture was stirred at room temperature for 4 h then saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution was added dropwise until a thick precipitate formed. Ether was added and the mixture filtered through Celite. The filtrate was evaporated and the residual oil was chromatographed on a Waters Prep 500 apparatus using 40% MTBE/hexane to elute the products. The less polar product 10 (125 mg) was isolated as an oil in 29% yield (94.2% pure determined by GC). IR (CHCl_{3}): 3680, 1460 , $1375,1240,1060,1020 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.31-7.06(\mathrm{~m}, 5 \mathrm{H}), 5.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ and $\left.\mathrm{H}_{\mathrm{b}}\right), 3.35(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.83\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 2.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right.$ and $\left.\mathrm{H}_{\mathrm{f}}\right), 1.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.05(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ (d, J=7.5 Hz, 3H), 0.67 (s , broad, $1 \mathrm{H}, \mathrm{OH}$).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 83.28 ; \mathrm{H}, 9.32$. Found: C, $83.40 ; \mathrm{H}, 9.40$
The more polar product $9\left(145 \mathrm{mg}\right.$) was isolated as a solid ($\mathrm{mp} 115-117^{\circ}$) in 33% yield $(99.9 \%$ pure determined by GC). IR $\left(\mathrm{CHCl}_{3}\right): 3680 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.49-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.02(\mathrm{~m}, 3 \mathrm{H})$, $5.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ and $\left.\mathrm{H}_{\mathrm{b}}\right), 3.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.05\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 2.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 2.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.18$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 0.92\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}_{\mathrm{i}}\right), 0.66\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}_{\mathrm{e}}\right), 0.52(\mathrm{~s}$, broad, $1 \mathrm{H}, \mathrm{OH})$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 83.28 ; \mathrm{H}, 9.32$. Found: C, $83.30 ; \mathrm{H}, 9.50$

REFERENCES

1. J. Correa and M. Gonzalez, Ciencia (Mexico City), 27, 147 (1972); Chem. Abstr., 78, 3999 (1973).
2. V. M. Dixit, J. M. Khanna and N. Anand, Indian J. Chem., 16B, 124 (1978).
3. J. G. Martin and R. K. Hill, Chem. Rev., 61, 537 (1961).
4. D. Savoia, C. Trombini, A. Umani-Ronchi and G. Verardo, Chem. Commun., 540 (1981).
5. D. Savoia, E. Tagliavini, C. Trombini and A. Umani-Ronchi, J. Org. Chem., 46, 5344 (1981).
6. B. T. Khai and A. Arcelli, Chem. Ber., 126, 2265 (1993).
7. G. M. Coppola, R. E. Damon and H. Yu, Synlett, 1143 (1995).
(Received December 6, 1999; in final form January 18, 2000)
