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ABSTRACT: The design and synthesis of a new series of tetrahydrobenzisoxazoles and their structure-activity relationship (SAR) 
as modulators of γ-secretase activity will be detailed.   Several compounds are active γ-secretase modulators (GSMs) with good to 

excellent selectivity for the reduction of Aβ42 in the cellular assay. Compound 14a was tested in vivo in a non-transgenic rat model 

and was found to significantly reduce Aβ42 in the CNS compartment compared to vehicle-treated animals (up to 58% reduction of 

cerebrospinal fluid Aβ42 as measured 3h after an acute oral dosing at 30 mg/kg). 

Alzheimer’s disease (AD) is the sixth leading cause of death 
in the United States. An estimated 5.5 million Americans have 
AD, costing the nation more than $230 billion in 2016.

1
 As the 

elderly population continues to grow, the prevalence of AD 
will be increasing greatly. Therefore, there is an urgent need to 
develop an effective therapy to prevent Alzheimer's disease. 

Aβ proteins, which are metabolites of the amyloid pre-
cursor protein (APP), are considered to be involved in the 
degeneration and loss of neurons as well as the onset of 
AD.

2,3 It is known that Aβ40 is the most abundant species 
within the soluble pool of Aβ peptides; however, deposited Aβ 
plaques primarily consist of Aβ42,

4,5
 which is the species that is 

most prone to aggregation, forming aggregates of insoluble 
fibrils in the brain.

6
 The higher aggregation potential of Aβ42 

may due to the distinct initial folding properties of Aβ40 and 
Aβ42.

7  These Aβ fragments are produced when APP is first 
cleaved by BACE (β-amyloid cleaving enzyme) and subse-

quently by γ-secretase.8 Based on these facts, γ-secretase in-
hibitors (GSIs) and BACE inhibitors have been proposed as 
treatments for the purpose of reducing the production of Aβ 
fragments.

9
  However, notch-related adverse effects are 

known as a major obstacle for the development of GSIs for the 
treatment of AD.

10
 Therefore, γ-secretase modulators (GSMs) 

have attracted much attention in recent years. 
11,12

 
GSMs selectively inhibit the production of the most amy-

loidogenic and neurotoxic Aβ42 by shifting the position of γ-
secretase cleavage toward the formation of shorter, more solu-
ble peptides, without interfering with the overall γ-secretase 
function, as measured by the formation of total amyloid (Aβto-

tal).
13 A larger ratio of Aβtotal/Aβ42 represents a more selective 

GSM. More selective GSMs do not shut down the processing 
of Notch by γ-secretase, and thus offer a potentially improved 
side effect profile compare to GSIs. Due to this advantage, 
GSMs have attracted great interest from researchers.

14
 There 

are two major classes of GSMs, the nonsteroidal anti-

inflammatory drugs (NSAIDs)
15,16

 and the non-NSAIDs class, 
such as 1 from Eisai,

17
 2 and 3 from Merck.

18,19
 In addition, 

natural product-based GSMs have also been developed.
20,21

 
Following our efforts

22-27
 to develop in the non-NSAID GSMs,  

we developed a new series, represented by structure 4 (Figure 
1),

28
 where the replacement of the double bond present in 

structures 1– 3 to mitigiate a potential metabolic. Therefore, 
the double bond and the lactam carbonyl in 1 was replaced by 
a small heterocyclic fused ring such as tetrahydrobenzisoxa-
zole in 4.  
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Figure 1. Design of GSMs from known structures 
 
The tetrahydrobenzisoxazole was selected as a linker to lock 

the side chain in the same conformation as the double bond 
did in the lead structures 1– 3.   We synthesized a series of 
compounds with a core structure of 4. Our chemical synthesis 
involves key intermediates 12 and 13 which is summarized in 
Scheme 1. The O-methylation of 5 afforded 6, which was 
converted to the oxime compound 7.  The key step is a [3 + 2] 
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cycloaddition to afford isoxazole 8. After optimization, we 
were able to develop a one pot reaction to produce intermedi-
ate 8 with a 67% yield (two steps). The nitro group in 8 was 
reduced to the corresponding amine to afford 9. The amine 
group in 9 was converted to formamide 10. The N-alkylation 
of 10 with 1-chloropropan-2-one, followed by treatment with 
ammonium acetate afforded 12, which was reduced by sodium 
borohydride to deliver 13. 

 
Scheme 1.

 
Synthesis of intermediates 12 and 13 
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From 12 and 13 a variety of final targets were prepared 

through traditional chemistry: such as reductive amination (12 
to 14a-j), Grignard reaction (12 to 15a-b), Mitsunobu reaction 
(13 to 17a-b), dehydroxylation29 (15a to 16) and alkylation 
(13 to 18) as illustrated in Scheme 2. 

 
Scheme 2.

 
Synthesis of final GSM compounds 
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The biological test results are summarized in Table 1. Hu-

man embryonic kidney (HEK) 293 cells were treated with a 
variable concentration of GSM compounds for 5 h. Aβ42 and 
Aβtotal in conditioned media were measured using MesoScale 

Discovery (MSD) sandwich immunoassays.30 Aβ42 was meas-

ured using a pair of labeled antibodies, TAG-G2-11 and bio-

tin-4G8; total Aβ was measured using antibodies TAG-W02 
and biotin-4G8.  The electrochemiluminescence (ECL) signal 
was measured using an ECLM8 instrument (IGEN Interna-
tional, Inc.) according to the manufacturer’s instructions. 

From previously known SAR, the left side 3-
methoxyphenyl-4-methyl-1H-imidazole is required for GSM 
activity.  Therefore, we focused our efforts on the SAR devel-
opment of the right side of the molecule. The SAR is summa-
rized in Table 1.  When R

2
 is N-methylamino, the Aβ42 inhibi-

tion activity is only 12 µM with no selectivity (14h, clogD = 
1.07, pKa = 8.10). It is known that increasing lipophilicity 
often results in improved in vitro activity and improved blood 
brain barrier permeability.31 Controlling the pKa was a suc-
cessful approach to improve the CNS penetration.32 We then 
introduced fluorine to modulate both lipophilicity and basicity 
of the target molecules. Substitution with N-
trifluoroethylamino led to improved Aβ42 inhibition activity 
and selectivity (464 nM and 43-fold for 14i, clogD = 2.77, 
pKa = 5.42). When the  N-trifluoroethylamino (14i) was re-
placed by an N-para-fluorobenzylamino (14e, clogD = 3.71, 
pKa = 7.08), the Aβ42 activity of 14e increased more than 3 
fold. This result suggests that the phenyl ring can increase 
activity. When the N-cyclohexanamino (14j, clogD = 2.86, 
pKa = 8.42) was replaced by an N-(4-fluorophenyl) amino, the 
Aβ42 inhibition activity and selectivity are greatly improved 
(39 nM and 499-fold for 14a, clogD = 4.20, pKa = 5.33). This 
result is probably due to the strong electron withdrawing effect 
and the lipophilic effect of the fluorine introduced on the phe-
nyl ring. When a tertiary amino (14f) or N-alpha-methyl para-
fluorobenzylamino was introduced (14g), the compounds lost 
some activity when compared to 14e. When nitrogen was re-
placed by oxygen (17a, b and 18) the compound also lost 
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some activity relative to 14e. Nevertheless, we found that the 
enantiomerically pure compounds 14a and 14c are two com-
pounds in the series with both good activity and high selectivi-
ty. To this point, the double bond and the lactam carbonyl 
present in 1 was successfully replaced by a tetrahydroben-
zisoxazole ring. The new GSM compounds, 14a and 14c, are 
two-fold more active than GSM 1, and have similar activity to 
2 and 3. Additionally, 14a and 14c are more selective than 1 
and 3, and have similar selectivity to 2.  

 
Table 1. Cellular IC50 of Tetrahydrobenzisoxazole Analogs 

ON

N N

O

R1

R2

4  
 

Comp-
ound 

R1 R2 
Aβ42  IC50, 

(µM) ⃰ 
Aβtot/Aβ42 

14a, b H 

 

3.9×10-2 

(14a) 
499 

0.23 (14b) 86 

14c, d H 

 

2.9×10-2 

(14c) 
575 

0.64 (14d) 28 

14e H  0.13 32 

14f H 

 

0.25 79 

14g H 

 

0.26 77 

14h H 
 

1.2×10 2 

14i H 

 

0.46 43 

14j H 

 

0.31 64 

15a OH 

 

0.19 105 

15b OH 

 

0.15 102 

16 H 

 

0.11 178 

17a H 
 

0.29 68 

17b H 

 

0.20 98 

18 H 

 

0.51 39 

⃰  n = 3 

Mass spectrometric analysis of Aβ peptides secreted by 
HEK293 cells carrying the London-Swedish double mutation 
after treatment with vehicle (DMSO) or 10 µM solutions of 
compounds 14a, 14c, 14e is shown in Figure 2. As expected 
for γ-secretase modulators, compounds  14a, 14c, and 14e 
blocked the production of Aβ42 and Aβ40, while the relative 
proportion of Aβ38 and Aβ37 is increased in comparison to 
Aβ40 (numbers in spectra are amyloid-β numbering). The Aβ 
profile in conditioned medium was analyzed using surface 
enhanced laser desorption/ionization (SELDI) mass spectrom-
etry as described previously.

33
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Figure 2. Mass spectrometric analysis of Aβ profile  
 
Compounds 14a, 14c, 14d and 15a were then tested in vivo 

rat model. Compound 14a significantly reduced cerebrospinal 
fluid (CSF) Aβ42 by 58% (p = 0.0066, n = 5) 3h after a single 
oral dose at 30 mg/kg in rats compared to the vehicle-treated 
animals (Figure 3).  

 

 
 
Figure 3.  CSF Aβ42 reduction in rat ⃰ 
⃰  Measured 3 h after an acute oral dosing at 30 mg/kg com-

pared to the vehicle 
 
Compound 14a was the most efficacious among compounds 

tested, albeit it was not as potent as 14c in vitro.  To get an 
insight into this discrepancy, plasma and brain drug levels 
were assessed in the rat tissues collected after dosing. We con-
cluded that the efficacy of 14a was driven by its excellent 
penetration into the CNS compartment, which provided a ~6-
fold higher exposure compared to 14c (Table 2). This conclu-
sion was supported by the fact that 14c is a PGP efflux sub-

strate (Pa-b = 68 nm/s, Pb-a = 462 nm/s, ER = 6.8). The efflux 
ratio of 14c is 4-fold higher than 14a (Pa-b = 376 nm/s, Pb-a = 
600 nm/s, and ER= 1.6). The higher efflux ratio of 14c could 
be the cause for its low brain penetration and poor in vivo effi-
cacy.  

 
Table 2. Drug levels in plasma and brain 

Comp-
ound 

Plasma Concentration  
(µM)* 

Brain Concentration 
(µM)* 

14a 10.4 14.3 

14c 6.01 2.19 

⃰ measured 3 h after the dosing (n = 3)  

In summary, we designed and synthesized a series of GSM 
compounds containing a unique tetrahydrobenzisoxazole ring. 
The unique tetrahydrobenzisoxazole ring successfully replaced 
the double bond in previously published GSMs. This series 
contained several compounds which are potent GSMs with 
good to excellent selectivity. Specifically, 14a and 14c, are 
two-fold more active than 1 and have similar activity to GSM 
2 and 3. In addition, 14a and 14c are more selective than GSM 
1 and 3, and have similar selectivity to 2.  Selected compounds 
were tested in vivo. Among them, compound 14a significantly 
reduced CSF Aβ42 by 58% after 3 h, dosed orally at 30 mg/kg 
in rats compared to vehicle-treated animals. 
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