DE NOVO SYNTHESIS AND DECOMPOSITION OF VERATRYL ALCOHOL BY A LIGNIN-DEGRADING BASIDIOMYCETE

KNUT LUNDQUIST* and T. KENT KIRK

Forest Products Laboratory, Forest Service--U.S.D.A., P.O. Box 5130, Madison, WI 53705, U.S.A.

(Received 22 January 1978)

Key Word Index—*Phanerochaete chrysosporium*; basidiomycete; veratryl alcohol; 3,4-dihydroxybenzyl alcohol; metabolism; synthesis; turnover.

In studies of the metabolism of lignin-related aromatics by the ligninolytic basidiomycete Phanerochaete chrvsosporium (strain ME-446), a compound was consistently found (TLC) in chloroform extracts of cultures. The substance, identified as veratryl alcohol (1), was first suspected to be a non-metabolizable degradation product of the aromatics studied, which included various gualacyl- and veratryl-type compounds. Veratryl alcohol itself, in fact, was included in the first experiments. Further investigation with cultures containing ¹⁴Cglucose as growth substrate revealed that 1 is synthesized de novo from glucose. Although the culture medium contained in addition to glucose 0.01 M phthalate or aconitate (buffers), and 0.6 mM L-asparagine (nutrient nitrogen), glucose was the sole source of veratryl alcohol carbon.

Introduction of the purified biosynthetic ¹⁴C-veratryl alcohol into fresh cultures resulted in 40% decomposition to ¹⁴CO₂ in 20 days, showing that the fungus not only makes the compound, it also degrades it.

Russell et al. [1] found veratryl alcohol and veratraldehyde in cultures of a ligninolytic fungus (*Polystictus* versicolor), but considered them to be degradation products of the lignin-related aromatics or wood meal present in the cultures. Reports of synthesis or decomposition of veratryl alcohol by microorganisms were not found.

EXPERIMENTAL

Culture conditions. Cultures were grown under conditions optimized for the metabolism of lignin [2]. Each 125-ml culture flask contained, in a total of 10 ml basal medium [2]: 0.6 mM NH₄NO₃ and 0.6 mM L-asparagine as nitrogen sources, and 56 mM D-glucose. The medium was buffered at pH 4.5 with 0.01 M Na phthalate or 0.01 M Na aconitate. Flasks were seeded with $2 \cdot 10^6$ conidia from 3-week-old malt agar slants. Incubation was at 39°, without agitation, in intermittent light and under an atmosphere of essentially 100% O₂ [2].

Isolation and identification of veratryl alcohol (1). Veratryl alcohol was detected in the cultures after 5-6 days, and was present in a concentration of ca 30 µg/ml after 12 days. It was extracted from the cultures with CHCl₄ and purified by PLC [Si gel; C_6H_6 -dioxane-HOAc (210:25:4)]. The product was identified as 1 by TLC on Si gel, using the above solvent (R_f 0.29) and also C_6H_6 -EtOAc (3:1) (R_f 0.20), and C_6H_6 -dioxane-HOAc (90:25:4) (R_f 0.67). 1 appeared as a purple spot on spraying with conc H_2SO_4 -formalin (9:1) followed by brief heating at 140°. The identity of the product with veratryl alcohol was corroborated by its conversion to veratraldehyde (TLC) on oxidation with DDQ [3] and by PMR spectroscopy. PMR (270 MHz, CDCl₃): δ 1.6 (1 H, s, OH), 3.88 (3 H, s, OCH₃), 3.90 (3 H, s, OCH₃), 4.63 (2 H, s, CH₂), 6.84 (1 H, d, J = 8 Hz, ortho coupling), 6.94 (1 H, d, J = 1.6 Hz, meta coupling) (aromatic protons).

Veratryl alcohol (1) from glucose-¹⁴C. 1 was isolated from cultures grown as above with glucose-[U-¹⁴C] (1.38 · 10⁶ dpm/ mmol). It comprised 60% of the radiolabeled material in CHCl₃ extracts of 12-day cultures. Following isolation by PLC as above, its concentration was determined by UV (λ_{max}^{EtOH} nm (log ε): 279 (3.43), [4]), and its radioactivity determined in a modified Bray's scintillation fluid [5]. The specific radioactivity of the product was determined to be 2.17 · 10⁶ dpm/mmol.

Decomposition of veratryl-¹⁴C alcohol. Veratryl-¹⁴C alcohol, isolated as above, was added in DMF to duplicate 1-day cultures (500 μ g 1 in 25 μ l DMF/culture). The cultures were grown as above (phthalate buffer). Evolved ¹⁴CO₂ was flushed from the flasks at 1-3 day intervals [2]. ¹⁴CO₂ was detected in 4-day cultures and the total trapped from the two cultures after 20 days amounted to 39 and 41% of the added radiolabel.

Acknowledgements—The authors thank L. F. Lorenz for skilful technical assistance. This work was supported in part by NSF grant PCM 76-11144.

REFERENCES

- 1. Russell, J. D., Henderson, M. E. K. and Farmer, V. C. (1961) Biochim. Biophys. Acta 52, 565.
- 2. Kirk, T. K., Schultz, E., Connors, W. J., Lorenz, L. F. and Zeikus, J. G. (1978) Arch. Microbiol. (in press).
- 3. Becker, H.-D. and Adler, E. (1961) Acta Chem. Scand. 15, 218.
- 4. Pew, J. C. (1963) J. Org. Chem. 28, 1048.
- Kirk, T. K., Connors, W. J., Bleam, R. D., Hackett, W. F. and Zeikus, J. G. (1975) Proc. Natl. Acad. Sci. (Wash.) 72, 2515.

^{*} Permanent address: Chalmers Tekniska Högskola, Institutionen för organisk kemi, Fack, S-402 20, Göteborg, Sweden.