A SIMPLE SYNTHESIS OF METHYL $11(S)$ - AND $12(S)-H E T E$

George Just* and Zhi Yuan Wang Department of Chemistry, McGill University

Montreal, PQ , Canada H3A 2 K 6

ABSTRACT: Starting from D-arabinose, we describe a synthesis of $11 S$ and 12SHETE methyl esters.

A simple retrosynthetic analysis indicates that either enantiomer of 8, 9, 11 and l2-hydroxyeicosatetraenoic acids (HETE's) can, in principle, be constructed from a chiral intermediate corresponding to B, if it wcre available as the dialdehyde synthon B^{\prime}, and phosphoranes corresponding to $A, C, D(\underline{7})$ and $E(\underline{6})$.

9-HETE

11-HETE

12-HETE

Phosphoranes corresponding to A and E are readily available ${ }^{l}$. Those corresponding to C and D have been described ${ }^{2,3}$. A rapid one-pot synthesis of non-3z-enylidenetriphenylphosphorane ("C") is outlined in the companion paper. In the following, we detail the synthesis of $11(S)-\mathrm{HETE}^{4}$ and $12(\mathrm{~S})-\mathrm{HETE}^{5}$ methyl
esters, using arabinose as the chiral starting material. In contrast to most carbohydrates, it is readily available in both D and L form.

The synthesis of the D-2-deoxypentose dithioacetal 1 has been described by wong and Gray ${ }^{6}$ and allows for its large-scale easy preparation from arabinose. Transformation to its t-butyldiphenylsilyl ether $\underline{2}^{7},[\alpha]_{\mathrm{D}}^{20}+13.7^{\circ}\left(\mathrm{CHCl}_{3}\right)$, using the method of Hannessian and co-workers ${ }^{8}$, followed by hydrolysis with trifluoroacetic acid/tetrahydrofuran (THF)/water (1:2:1, 3.5 mL per 1 mmol of $\left.\underline{2}, 20-25^{\circ}, 6 \mathrm{~h}\right)$ gave diol $\underline{3}^{7},[\alpha]_{\mathrm{D}}^{20}+24.7^{\circ}\left(\mathrm{CHCl}_{3}\right)$, which was obtained in 78\% yield after flash chromatography (EtOAc-petroleum ether, 1:4). Treatment of 3 with 3.5 eq of sodium periodate in THF-acetone-water (2:1:2.5, 7 mL per 1 mmol of $\underline{3}^{\text {) }}$ at 20° for $15-20 \mathrm{~min}$. gave aldehyde $\underline{4}^{7}$ as an oil in 72% yield. Reaction of $\underline{4}$ with formylmethylenetriphenylphosphorane in dry benzene at 70° for 6 h gave α, β-unsaturated aldehyde $\underline{5}$, which was obtained in 79% yield after purification ${ }^{9}$. In contrast to aldehyde $\underline{4}, \underline{9}$ and 11 , $\underline{5}$ was quite stable and could be stored at $0-10^{\circ}$ for weeks. This material corresponds to fragment B in $11(\mathrm{~s})$ and $12(\mathrm{~s})$-HETE.

Coupling of $\underline{5}$ with dianion $\underline{7}^{3}$ gave, after methylation with dimethyl
sulfate in situ, ester 10^{7} in 75% yield after chromatography. Hydrolysis of the dithioacetal function ${ }^{10}$ provided unstable aldehyde 11^{11} in 61\% yield after rapid chromatography purification. It was immediately treated with hexyltriphenylphosphorane to give 14 in 42% yield. Although both 14 Z and 14 E isomers were obtained, they could not easily be separated at this stage. Hydrolysis of the silyl ether function with 1.9 eq of $n-\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in THF at 45° for 4 h gave a mixture of the 14 Z (major) and 14 E (minor) isomer of $12(S)-H E T E$ methyl ester, which were easily separated by flash chromatography ${ }^{12}$.

Further purification by HPLC (7.5\% EtOAc in hexane, Microporasil) gave pure $15^{13},[\alpha]_{D}^{22}+1.3^{\circ}\left(\mathrm{C} 0.3\right.$ in $\left.\mathrm{CHCl}_{3}\right),[\alpha]_{\mathrm{D}}^{25}+1.5^{\circ}\left(\mathrm{c} 0.2 \text { in } \mathrm{CHCl}_{3}\right)^{5}$. An attempt was made to determine enantiomeric purity by forming the Mosher ester ${ }^{15}$ of 15, and comparing it to the one derived from d,1-12-HETE methyl ester kindly provided by Dr. Julian Adams. Unfortunately, the diastereomeric Mosher esters derived from racernic 15 appeared as a single peak on HPLC using two different systems. Proton n.m.r. of the Mosher ester of 15 was consistent with the formation of one diastereomer only. The overall yield of 15 , based on crystalline arabinose dithioacetal ${ }^{6}$, was 5.7%

For the synthesis of $11(S)$-HETE methyl ester, a very similar sequence was used: α, β-unsaturated aldehyde $\underline{5}$ was first treated with $\underline{6}$ to provide $\underline{8}$ in 58% yield ${ }^{14}$. Condensation of highly unstable aldehyde 9 , which was obtained after removal of the dithioacetal function of $\underline{8}$ as described above, with $\underline{7}$ gave, after methylation in situ, ester 12 and its olefinic isomers in 52% yield. Hydrolysis of the silyl ether function of 12 and its isomers with $n-\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in THF gave a mixture of 13 and isomers, which was easily separated by chromatography ${ }^{12}$. After further purification by HPLC (7.5\% AcOEt in hexane. Microporasil), pure $11(S)-H E T E$ methyl ester 13 was obtained in 3.2% overall yield, based on crystalline arabinose dithioacetal. It was in all respects identical to 13 previously prepared ${ }^{4 b}$.

ACKNOWLEDGFMENTS

We wish to thank the Natural Sciences and Engineering Research Council of Canada, and Merck Frosst Canada Inc. for generous financial support, Drs. Robert Zamboni and Julian Adams of Merck Frosst for help in carrying out the HPLC separations and providing a sample of racemic 12-HETE, Dr. Orval Mamer, McGill University Biomedical Mass Spectrometry Unit, for an excellent service, and the referee for some very useful criticism.

REFERENCES AND NOTES

1. (4-Carboxybutyl)triphenylphosphonium bromide is available from Aldrich.
2. E.J. Corey, Y. Arai and C. Mioskowski, J. Am. Chem. Soc., 1979, $\underset{\sim}{101}$, 6748 .
3. R. Zamboni, S. Milette and J. Rokach, Tetrahedron Lett., 1983, 4899.
4. a) G. Just and C. Luthe, Tetrahedron Lett., 1982, 1331-1334.
b) G. Just, C. Luthe and M.T.P. Viet, Can. J. Chem., 1983, 61, 712.
c) E.J. Corey and J. Kang, J. Am. Chem. Soc., 1981, $\underset{\sim}{103}, 4618$.
5. E.J. Corey, H. Niwa and J. Knolle, J. Am. Chem. Soc., 1978, $\underset{\sim}{100} 1942$.
6. M.Y.H. Wong and G.R. Gray, J. Am. Chem. Soc., 1978, 100, 3548.
7. All compounds were characterized by $200 \mathrm{MHz}{ }_{\mathrm{H}}^{\mathrm{l}} \mathrm{n.m} . \mathrm{r}_{\mathrm{N}}$. and mass spectra.
8. S. Hanessian and P. Lavallee, Can. J. Chem., 1975, 53, 2975.
9. IR $\left(\mathrm{CHCl}_{3}\right): 1690 \mathrm{~cm}^{-1}(\mathrm{C}=0) ;{ }^{1} \mathrm{H}$ n.m.r. $200 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta: 1.07$ ($\mathrm{s}, 9 \mathrm{H}$, CMe_{3}), 1.19 (t of $\mathrm{d}, 6 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{3}$), $1.80-2.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CHS}$) , 3.74 (t, CHS), 4.73 ($\mathrm{q}, \mathrm{CHOSi}$), 6.01 (q of $\mathrm{d}, \mathrm{CH}=\mathrm{CHCHO}$), 6.65 $(\mathrm{q}, \mathrm{CH}=\mathrm{CHCHO}), 7.24-7.72(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.34(\mathrm{~d}, \mathrm{CHO}) ; \mathrm{MS}(\mathrm{m} / \mathrm{e}, 70 \mathrm{eV}):$ $472\left(\mathrm{M}^{+}\right), 415\left(\mathrm{M}^{+}-\mathrm{CMe}_{3}\right), 410\left(\mathrm{M}^{+}-\mathrm{EtSH}\right), 381\left(\mathrm{M}^{+}-\mathrm{Et}-\mathrm{EtSH}\right), 353$ $\left(\mathrm{M}^{+}-\mathrm{CMe}_{3}-\mathrm{EtSH}\right), 327\left(\mathrm{M}^{+}-\mathrm{CH}=\mathrm{CHCHO}-\mathrm{EtSEt}\right), 323\left(\mathrm{M}^{+}-149\right.$, $\mathrm{OHCCH}=\mathrm{CHCH}=\stackrel{+}{\mathrm{O}} \mathrm{SiPh}_{2} \mathrm{CMe}_{3}$), $\left.135\left(\stackrel{\text { ¢ }}{\mathrm{C}}(\mathrm{SEt})_{2}\right) ;{ }_{\alpha}\right]_{\mathrm{D}}^{20}=-16.1^{\circ}$ (c 2.0 in CHCl_{3}); chromatography: silica gel (Kieselgel $60 \mathrm{HF}_{254}$), petroleum ether-EtOAc 35:1.
10. E.J. Corey and B.W. Erickson, J. Org. Chem., 1971, 36, 3553.
11. ${ }^{1} \mathrm{H}$ n.m.r. $200 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \mathrm{d}: 1.09\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.64$ (t of $\mathrm{d}, 2 \mathrm{H}$, $\left.C_{3}-H\right), 2.27\left(t, 2 H, C_{2}-H\right), 2.51$ (t of $d, 2 H, C_{13}-H$), $2.72\left(t, 2 H, C_{7}-H\right)$, $3.60\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 4.67\left(\mathrm{q}, \mathrm{C}_{12}-\mathrm{H}\right), 5.10-5.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{5}, 6,8^{-\mathrm{H})}, 5.60(\mathrm{q}\right.$, $\left.C_{11}-H\right), 5.80\left(t, C_{9}-H\right), 6.22\left(q, C_{10}-H\right), 7.36(m, 6 H, p, m-A r-H), 7.62$ $(\mathrm{m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{Ar}-\mathrm{H}), 9.66(\mathrm{t}, \mathrm{CHO}) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 1715 \mathrm{~cm}^{-1}(\mathrm{C}=0), 1725 \mathrm{~cm}^{-1}$ $(\mathrm{O}-\mathrm{C}=0)$; $\mathrm{MS}(\mathrm{m} / \mathrm{e} 70 \mathrm{eV}): 504\left(\mathrm{M}^{+}\right), 473\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right), 447\left(\mathrm{M}^{+}-\mathrm{CMe}_{3}\right)$, 225 (447-222, $\mathrm{Ph}_{2} \mathrm{Si}=\stackrel{+}{\mathrm{O}}-\mathrm{CH}=\mathrm{CH}_{2}$), 199 ($225-\mathrm{HC} \equiv \mathrm{CH}$).
12. Silica gel (Kieselgel $60 \mathrm{HF}_{254}$ from BDH), petroleum ether-EtOAC 10:l.
13. ${ }^{1} \mathrm{H}$ n.m.r. $200 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta: 0.88$ (br.t, $3 \mathrm{H}, \mathrm{C}_{\left.20^{-H}\right)} \mathrm{H}$, 1.31 (m, 6 H , $\mathrm{C}_{\left.17,18,19^{-H}\right)}, 1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 1.80(\mathrm{~d}, \mathrm{OH}), 2.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{16}-\mathrm{H}, 2 \mathrm{H}\right.$,
 $3.66\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 4.24\left(\mathrm{br} . \mathrm{m}, \mathrm{C}_{12}-\mathrm{H}\right), 5.30-5.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{5} .6,8.14^{-\mathrm{H})}\right.$,
 (d of $\left.\mathrm{d}, \mathrm{C}_{10}-\mathrm{H}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{e} 70 \mathrm{eV}): 316\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 303\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right), 223$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right)$, $14 \mathrm{I}\left(\mathrm{M}^{+}-223\right.$, loss of $\mathrm{MeO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right){ }_{3} \mathrm{CH}=\mathrm{CHCH} 2 \mathrm{CH}=$ $\mathrm{CH}=\mathrm{CH}), 191\left(223-\mathrm{CH}_{4} \mathrm{O}\right), 107(191-84)$.
14. ${ }^{1} \mathrm{H}$ n.m.r. $200 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta: 0.88\left(\mathrm{t}, 3 \mathrm{H},\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{3}\right), 1.09\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right)$, 1.12 ($t, 3 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{3}$), 1.15 ($t, 3 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{3}$), $1.27\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right){ }_{3} \mathrm{CH}_{3}\right)$, 1.68-2.12 (m, $4 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{3}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$), 2.29 (q of $\mathrm{d}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$), $2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHS}\right), 3.79(\mathrm{t}, \mathrm{CHS}), 4.17$ ($\left.\mathrm{q}, \mathrm{CHOSi}\right)$, $5.34\left(\mathrm{~m}, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 5.50$ ($\left.\mathrm{q}, \mathrm{CH}=\mathrm{CHCHOSi}\right), 5.79$ ($\mathrm{t}, \mathrm{CH}=\mathrm{CHCH}_{2}$), 6.09 $(q, C H=C H C H O S i), 7.34(m, 6 H, p, m-A r-H), 7.66$ (t of $t, 4 H, O-A r-H)$; MS (m/e, 70eV): $540\left(\mathrm{M}^{+}\right), 483\left(\mathrm{M}^{+}-\mathrm{CMe}_{3}\right), 421\left(\mathrm{M}^{+}-\mathrm{CMe}_{3}-\mathrm{HSEt}\right)$, $417\left(\mathrm{M}^{+}-\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 360\left(483-\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right){ }_{4} \mathrm{CH}_{3}\right), 199$ $\left(\stackrel{+}{\mathrm{O}}=\mathrm{SiHPh}_{2}\right) ;[\alpha]_{\mathrm{D}}^{20}=-27^{\circ}$ (c 2.10 in CHCl_{3}).
15. J.A. Dale, D.L. Dull, and H.S. Mosher, J. Org. Chem., 1969, 34, 2543.
(Received in USA 17 December 1984)
