Enantioselective Total Synthesis of (+)-Stoechospermol Via Stereoselective Intramolecular (2+2) Photocycloaddition of the Chiral Butenolide ${ }^{1}$

Masahide Tanaka, Kiyoshi Tomioka, ${ }^{\dagger}$ and Kenji Koga*
Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, ${ }^{\dagger}$ Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567, Japan

Abstract

Enantioselective total synthesis of (+)-stoechospermol 2, a representative of spatane diterpenes having a cis,anti,cis-tricyclo[5.3.0.02,6]decane skeleton, was achieved by employing a stereo- and regioselective intramolecular (2+2) photocycloaddition of (S) - γ-hydroxymethyl $-\gamma$ -butenolide-derived ester 10.

A (2+2) photocycloaddition is a versatile methodology for constructing four membered-carbo- and heterocycles. ${ }^{2}$ An asymmetric photocycloaddition is one of the recent challenge in synthetic organic chemistry. ${ }^{3}$ Previously we have reported an asymmetric total synthesis of bourbonene sesquiterpenes 3 and 4 using an intermolecular asymmetric ($2+2$) photocycloaddition of a chiral butenolide with a cyclopentene derivative. 4 In the present article we describe a full detail of highly stereoselective intramolecular ($2+2$) photocycloaddition and application to an enantioselective total synthesis of stoechospermol 2, a representative of spatane diterpenes. $5,6,7$

 3: $R=0$
4: $\mathrm{R}=\mathrm{CH}_{2}$

Spatane diterpenes such as spatol 1 and stoechospermol 2 have been isolated from marine brown algae and known as natural products of unique structure characterized by a cis, anti,cis-tricyclo[5.3.0.02,6]decane ring system. In addition, $\mathbf{1}$ is known to be endowed with remarkable biological properties including a potent inhibition of cell replication. ${ }^{6}$ It is interesting in that spatane diterpenes, 1 and 2 , have the same carbocyclic skeleton as bourbonene sesquiterpenes such as 3 and 4,8 however, antipodal each other with regard to tricyclic carbon skeleton except for the configuration at the carbon attaching side chain.

As part of our project to engage in the enantioselective total synthesis of both spatane and bourbonene terpenes in optically pure forms, we designed asymmetric intermolecular ($2+2$) photocycloaddition of a chiral butenolide A with cyclopentene derivative. ${ }^{9}$ In that methodology, the least hindered approach of cyclopentene derivative to \mathbf{A} created the chiral centers of \mathbf{B} and \mathbf{C}, and resulted in the successful total synthesis of optically pure 3 and 4.4

The synthesis of spatane diterpenes of antipodal tricyclic carbon skeleton with bourbonene sesquiterpene required the reverse sense of stereoselectivity in the ($2+2$) photocycloaddition of the chiral butenolide. The method designed for this purpose is the intramolecular ($2+2$) photocycloaddition of \mathbf{D}, prepared from A^{\prime} and cyclopentenecarboxylic acid derivative. Because of highly stereo- and regioselective nature, the intramolecular cycloaddition has been applied into the natural products synthesis. 10 In our particular case, molecular models of transition states and cycloadducts indicate that the ester linkage between A^{\prime} and cyclopentene parts is expected to control regio- and stereochemistry of the cycloaddition, allowing the cyclopentene part to approach from the sterically more hindered face of the butenolide to afford E. Then, subsequent manipulations will convert E into ent-C that possesses the antipodal configuration with \mathbf{C}.

Stereochemistry of Intramolecular Photocycloaddition

The intramolecular ($2+2$) photocycloaddition reaction began with a model study using 7. The simple ester 7 was prepared by esterification of butenolide 511,12 with 6.13 On irradiation of 7 in acetonitrile using a low pressure mercury lamp at $15^{\circ} \mathrm{C}$, the cycloaddition afforded a single product 8 in 78% yield. The product was isolated by column chromatography, and the structure was assigned based on the proton nuclear magnetic resonance (NMR) and infra red (IR) spectra. The cis, anti, cis-arrangement of 8 was ascertained by the coupling constant of the carbonyl α-proton $\left(\mathrm{H}_{a}\right)$ with H_{b}. For the adduct 8 , signal of H_{a}

a) DCC-DMAP/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 82 \%$ for $7,96 \%$ for $10 ;$ b) $h \nu / \mathrm{CH}_{3} \mathrm{CN}, 78 \%$ for $8 ; 36 \%$ for 11 , 25% for $12 ;$ c) $\mathrm{CrO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HF}$-acetone- $\mathrm{H}_{2} \mathrm{O}, 69 \%$ from 11 to $\mathbf{1 3 , 4 9 \%}$ from 12 to 13

appeared at 2.67 ppm and its coupling constant with H_{b} is 3 Hz , which corresponds to the trans relationship. Furthermore, the existence of saturated δ-lactone is evidenced by the IR in which the corresponding carbonyl absorption appeared at $1725 \mathrm{~cm}^{-1}$.

Having established the stereo- and regiochemistry in the intramolecular ($2+2$) photocycloaddition of the simple ester 7, we turned our attention to the synthesis of spatane diterpene.

Intramolecular Photocycloaddition of 10

The ester 10, a diastereomeric mixture due to the racemic cyclopentene part, was prepared by esterification of optically pure (-)-5 with the corresponding racemic 9 which was prepared from methyl cyclopent-2-ene-1-carboxylate ${ }^{14}$ in four steps. 15 The irradiation of 10 under the same conditions for 7 afforded the two products 11 and 12 in 36 and 25% isolated yield, respectively. The stereochemistry of each adduct was determined based on the NMR. For the adduct 11 , the signal corresponding to H_{b} appeared at 2.81 ppm and its coupling constant with an adjacent proton attaching at the silyloxy bearing carbon was 0 Hz , indicating that the corresponding dihedral angle is about 90 deg. On the other hand, the adduct 12 showed the corresponding signal at 3.26 ppm with coupling constant of 7 Hz , indicating the dihedral angle of about 30 deg. Structures of 11 and 12 obtained by the Cache force field agree well the present assignment.

By the oxidation of silyloxyl group to ketone, both 11 and 12 were converted to the same ketone 13 , demonstrating that these two adducts differ only by the configuration of the carbon bearing silyloxyl group, and, hence, the steric course of the cycloaddition was governed only by the chiral center in the butenolide part not by one in cyclopentene part.

Since the configurations of the four membered rings of both cycloadducts 11,12 were confirmed, further transformation of the cycloadducts to the intermediate of the type ent-C was the next task.

Differentiation of Two Lactone Carbonyl Groups Affected by Remote α-Alkoxy Group

The transformation of \mathbf{E} to ent-C requires independent manipulations of the two lactone carbonyl groups, reduction the δ-lactone carbonyl to methyl group, and C - C bond formation at the γ-lactone carbonyl to methyl ketone. In the original design, the differentiation of these two carbonyl groups relies on the steric environment, the δ-lactone carbonyl suffering much hindrance by the quaternary α carbon-center than the γ-lactone carbonyl.

Upon treatment of 11 with methyllithium followed by acetal formation, two products 15 and 16 were obtained in 59 and 26% yield, respectively, and the major product was fortunately the desired 15.

However, the same treatment of 12 afforded 18 as a major product in 52% yield and 17 in only 7% yield, by the preferential reaction at the undesired δ-lactone part.

a) $\mathrm{MeL} / \mathrm{THF}$; b) $\mathrm{HC}(\mathrm{OMe})_{3}-\mathrm{PPTS} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, from $11: 59 \%$ for $\mathbf{1 5}, \mathbf{2 6 \%}$ for $\mathbf{1 6}$; from 12: 7\% for $17,52 \%$ for 18

We assumed that the unexpected selectivity observed for 12 could be ascribed to the absence of the blocking alkoxy group near the δ-lactone carbonyl group. Then we determined to invert the alkoxy configuration from β to α and place the alkoxy group near the δ-lactone carbonyl, in advance to the reaction with methyllithium.

The lactone 12 was reduce with DIBAH and subsequently acetalized. The silyl group was then deprotected with hydrogen fluoride affording 19 which was converted into α-benzyl ether 21 by the Mitsunobu inversion ${ }^{16}$ and following benzylation and oxidation.

To our delightful and surprise, the reaction of 21 with methyllithium afforded a single product 22 in high selectivity by the preferential reaction at the desired γ-lactone part.

The compound 15 was also converted to 22, the key intermediate in our synthesis.

a) DIBAH/THF, $\mathrm{HC}(\mathrm{OMe})_{3}-\mathrm{TsOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 62 \%$; b) aq. $\mathrm{HF} / \mathrm{MeOH}, 91 \%$; c) $\mathrm{PhCO}_{2} \mathrm{H}-\mathrm{DEAD}-\mathrm{PPh}_{3} / \mathrm{THF}$, $\mathrm{NaOH} / \mathrm{aq} . \mathrm{MeOH}, 96 \%$, BzlBr-NaH/DMF, 87\%; d) $\mathrm{AcOH} / a q$. THF, $\mathrm{CrO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{aq}$. acetone, 99%;
e) $\mathrm{MeLi} / \mathrm{THF}, \mathrm{HC}(\mathrm{OMe})_{3}-\mathrm{PPTS} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant; f) aq. $\mathrm{HF} / \mathrm{MeOH}, 74 \%$; g) $\mathrm{Bz} / \mathrm{Br}-\mathrm{NaH} / \mathrm{DMF}, 77 \%$

Origin of Chemoselectivity in 11 and 21 vs 12

It is quite interesting in that remote α-and β-alkoxy groups direct the preferential reaction at the γ and δ-lactone carbonyls, respectively. It is apparent from molecular mechanics (MM) structures calculated by Cache that α - and β-alkoxy groups do not cover any faces of the carbonyls. As shown by the MM structures, differences are the distance between the δ-lactone carbonyl- and ether-oxygens, $3.7 \AA$ in 11 and 21 and over $4.4 \AA$ in 12 , and the orientation of the lone pairs of ether oxygen, directing to δ-lactone carbonyl oxygen in 11 and 21.

It is reasonable to assume that lone pairs of ether oxygen would reduce the polarizability and, hence, reactivity of the δ-lactone carbonyl group of 11 and 21 , due to the negative charge around carbonyl oxygen. Indeed this hypothesis was confirmed by molecular orbital calculations (PM3, precise mode in Cache system) of the corresponding alcohol structure. LUMO coefficients of the γ-lactone carbonyl are much greater than those of the δ-lactone in 11 and 21 , on the other hand, in 12 the situation is reversed.

MM structure of 11 (21)

MM structure of $\mathbf{1 2}$

Construction of Tricyclo[5.3.0.02,6]decane

With the differentiation of two carbonyl groups achieved, the δ-lactone in 22 was reduced to angular methyl group of 23 in two steps. Then, construction of the tircyclodecane ring was achieved by aldol condensation 4 of diketone 24 , obtained from 23 in five steps, to give stereo- and regioselectively 25 as a single product. Hydrogenation of the double bond of 25 from the convex face created the $C(1)$ chiral center in the desired sense, and deoxygenation of carbonyl group of 26 and subsequent oxidation of cyclopentanol part into cyclopentenone afforded optically pure tricyclo[5.3.0.0 ${ }^{2,6}$]decane 28 , the key intermediate for the synthesis of spatane diterpenes.

a) DIBAH/toluene, quant; $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}-\mathrm{KOH} /$ diethylene glycol, 53%; b) $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{aq}$. $\mathrm{THF}, \mathrm{NaBH}_{4} /$ $\mathrm{MeOH}, \mathrm{NaIO} /$ /aq. AcOEt , MeLi/ether, $\mathrm{CrO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4} /$ aq. acetone, 67%; c) $\mathrm{KOBu}-t / t-\mathrm{BuOH}, 85 \%$; d) $\mathrm{H}_{2}-10 \% \mathrm{Pd}$-C/ether, quant; e) $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ /riethylene glycol, 54%; $\mathrm{CrO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ /aq. acetone, quant; f) $\mathrm{PhSeCl} / \mathrm{AcOEt}^{2} \mathrm{NaIO} / \mathrm{aq} . \mathrm{MeOH}, 42 \%$.

Total Synthesis of (+)-Stoechospermol 2

Having accomplished the construction of the desired optically pure key intermediate 28, the remaining was conversion to 2 . Reduction of 28 with DIBAH gave stereoselectively 29 as a single product by the attack of hydride from the less hindered face. For the introduction of the $\mathrm{C}(5)$ hydroxyl group in correct configuration, 30, obtained by the Mitsunobu inversion of 29 and following hydrolysis, was stereoselectively oxidized into epoxide 31. Regioselective cleavage of oxirane ring by lithium aluminum hydride and protection of the resultant hydroxyl group afforded 32. Tosylation of 32 followed by substitution with sodio diethyl malonate proceeded with inversion of the $\mathbf{C}(7)$ configuration affording 34 ,

a) DIBAH/ether, quant; b) $\mathrm{PhCO}_{2} \mathrm{H}$-DEAD-PPh $/ \mathrm{THF}, \mathrm{NaOH} / a q$. $\mathrm{MeOH}, 71 \%$; c) $\mathrm{MCPBACH}_{2} \mathrm{Cl}_{2}, 81 \%$; d) 2 -methoxypropene-PPTS, LiAlH_{4} /ether, $\left.\mathrm{MOMCl}-(i-\mathrm{Pr})_{2} \mathrm{NEt}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{HCl}, 83 \% ; \theta\right) \mathrm{TsCl} / \mathrm{Py}, \mathrm{NaCH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2} /$ DME, 60\%; f) LDA-Vitride/DME, 88\%; g) MsCI/2,6-lutidine, LiBr/DMF, 90%; h) n-BuLi-phenyl prenyl sulfide/ THF, Li-EtNH2/ether, 33\%; i) HCl/aq. MeOH, 71\%
in which the configuration at the $C(7)$ was properly established. Reduction of the malonic ester moiety as its enolate afforded allylic alcohol 35,17 which was then converted into bromide 36 . By reaction with lithiated phenyl prenyl sulfide and following desulfurization, 1836 was converted into 38 . Finally, deprotection of 38 completed the total synthesis to provide 2 as crystalline solid. NMR, IR, and MS spectra of synthetic (+)-2 were in good agreement with those reported for natural (+)- 2 isolated from marine brown algae.

Conclusion

By employing highly regio- and stereoselective intramolecular (2+2) photocycloaddition as a key step, optically pure tricyclo[5.3.0.0 ${ }^{2,6}$]decane ring was constructed from optically pure butenolide, and this was successfully applied to the first total synthesis of optically pure natural stoechospermol. Combined with previously reported intermolecular ($2+2$) photocycloaddition, 4 intramolecular version made it possible to access the optically pure tricycio[5.3.0.02,6]decanes in both enantiomers from the single chiral butenolide as has been demonstrated in the present total synthesis of optically pure stoechospermol.

Experimental ${ }^{19}$

(-)-(R)-4-Hydroxymethylbut-2-en-4-olide 5 A solution of (-)-(R)-4-trityloxymethylbut-2-en-4olide ${ }^{11}(3.0 \mathrm{~g})$ and $12 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$ in $\mathrm{MeOH}(300 \mathrm{~mL})$ was stirred at rt for 2 h . Concentration and purification by column chromatography (ether) afforded $5(0.83 \mathrm{~g}, 90 \%$) as pale brown solid which was used in the next step without further purification. $[\alpha]_{\mathrm{D}}^{20}-125^{\circ}\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3600-3300$, $1785,1760 \mathrm{~cm}^{-1}$. NMR $8: 2.99(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.77\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13,5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHO}\right), 3.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13,4$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CHO}\right), 5.16\left(1 \mathrm{H}, \mathrm{br}, \mathrm{OCH}_{2} \mathrm{CHO}\right), 6.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6,2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHO}), 7.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CHO}$).

Confirmation of optical purity of (-)-5 A solution of (-)-5 (119 mg) in EtOH was hydrogenated over 5% Pd-C (20 mg) under H_{2} at rt for 4 h . Filtration, concentration, and purification by column chromatography (ether) gave (+)-4-hydroxybutanolide ($116 \mathrm{mg}, 96 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{26}+31.9^{\circ}$ (c $3.24, \mathrm{EtOH})\left([\alpha]_{\mathrm{D}}^{26}+31.3^{\circ}(\mathrm{c} 2.92, \mathrm{EtOH})\right.$). 12 The spectroscopic data were identical with those of the reported. ${ }^{12}$
(-)-(R)-4-(Cyclopent-1-ene-1-carbonyloxymethyl)but-2-en-4-olide 7 Dicyclohexylcarbodiimide (DCC) ($433 \mathrm{mg}, 2.1 \mathrm{mmol}$) was added to a stirred solution of (-) $5(191 \mathrm{mg}, 1.68 \mathrm{mmol}), 6(200 \mathrm{mg}, 1.79$ mmol), and 4-dimethylaminopyridine (DMAP) (15 mg) in dichloromethane ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (3 mL) at $0^{\circ} \mathrm{C}$. The whole was stirred at rt for 2 h , and acetic acid (AcOH) (0.2 mL) was added. After the precipitate was filtered off, the filtrate was washed successively with $10 \% \mathrm{HCl}$, and satd. $\mathrm{NaHCO} \mathrm{H}_{3}$, then dried. Concentration and column chromatography (AcOEt-hexane 1:2) afforded $7(285 \mathrm{mg}, 82 \%$) as a colorless oil. $[a]_{\mathrm{D}}^{20}-113^{\circ}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right.$). IR (neat): $1750,1710,1625,1600 \mathrm{~cm}^{-1}$. NMR $\delta: 1.92$ (2 H , quintet, $\mathrm{J}=8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.50\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.40\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5,12 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHOCO}\right), 4.47(1 \mathrm{H}$, $\left.\mathrm{dd}, \mathrm{J}=4,12 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHOCO}\right), 5.2-5.4(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOCO}), 6.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2,6 \mathrm{~Hz}, \mathrm{OCCH}=\mathrm{CH}), 6.74(1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}=\mathrm{CCO}_{2}\right), 7.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1,6 \mathrm{~Hz}, \mathrm{OCCH}=\mathrm{CH}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 98\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}\right)$.
(-)-(1S,5R,9S,10R,13S)-3,12-Dioxatetracyclo[8.2.1.0.5,905,13]tridecan-4,11-dione 8 A solution of $7(90 \mathrm{mg})$ in acetonitrile $(4.5 \mathrm{~mL})$ was internally irradiated with 10 W low pressure mercury lamp at $15^{\circ} \mathrm{C}$ for 3 h . Concentration and column chromatography (AcOEt-benzene 1:2) afforded 8 (70 $\mathrm{mg}, 78 \%$) as colorless prisms of $\mathrm{mp} 128-130^{\circ} \mathrm{C}$ (AcOEt). [$\left.\alpha\right]_{\mathrm{D}}^{20}-34.0^{\circ}\left(\mathrm{c} 0.77, \mathrm{CHCl}_{3}\right)$. IR (KBr): 1760 , $1725 \mathrm{~cm}^{-1}$. NMR $\delta: 1.7-2.3\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3,7 \mathrm{~Hz}, \mathrm{CHCO}), 2.94(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$, CHCHOCO), $3.05\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{CHCHCO}\right), 4.39\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1,13 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 4.6-4.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}\right)$. MS m/z: $208\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}: \mathrm{C}, 63.45 ; \mathrm{H}, 5.81$. Found $\mathrm{C}, 63.73 ; \mathrm{H}, 5.86$.

[^0]hydroxyester ($5.7 \mathrm{~g}, 40 \mathrm{mmol}$), tert-butyldimethylsilyl chloride ($7.4 \mathrm{~g}, 49 \mathrm{mmol}$), and imidazole ($3.4 \mathrm{~g}, 50$ mmol) in DMF (45 mL) was stirred at rt for 2 h and diluted with benzene (500 mL). After successive washing with water and satd. NaCl , the organic layer was dried. Concentration afforded crude silyl ether of the hydroxyester (10.9 g), and this was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL}$). After addition of $1 \mathrm{~N} \mathrm{NaOH}(40$ $\mathrm{mL}, 40 \mathrm{mmol}$), the whole was stirred at rt for 12 h . After concentration, the residue was acidified with $10 \% \mathrm{HCl}$, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$. The extract was washed with water and dried. Concentration afforded $9\left(8.2 \mathrm{~g}, 84 \%\right.$ from hydroxyester) as colorless needles of $\mathrm{mp} 80-81.5^{\circ} \mathrm{C}$ (AcOEthexane). IR (KBr): $3600-2400,1680,1630 \mathrm{~cm}^{-1}$. NMR $\delta: 0.10\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.5-$ $1.9\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right) 2\right), 2.1-2.9\left(3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right), 4.8-5.0(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}), 6.5-6.6\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CCO}_{2} \mathrm{H}\right), 7.90-$ $8.40(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$. MS m/z: $242\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 59.46 ; \mathrm{H}, 9.15$. Found C, 59.31; H , 9.29.
(-)-(R)-4-(3-tert-Butyldimethylsilyloxycyclopent-1-ene-1-carbonyloxymethyl)but-2-en-4olide $10 \mathrm{DCC}(4.41 \mathrm{~g}, 21 \mathrm{mmol})$ was added to a stirred solution of (-) $-5(2.44 \mathrm{~g}, 21 \mathrm{mmol}), 9(5.18 \mathrm{~g}, 21$ $\mathrm{mmol})$, and DMAP (0.31 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The whole was stirred at $0^{\circ} \mathrm{C}$ for 2 h , and AcOH $(2 \mathrm{~mL})$ was added. Work up afforded (-) $\mathbf{- 1 0}\left(6.94 \mathrm{~g}, 96 \%\right.$) as a coloriess oil. $[\alpha]_{\mathrm{D}}^{20}-55.8^{\circ}\left(\mathrm{c} 1.19, \mathrm{CHCl}_{3}\right)$. IR (neat): 1780, $1720 \mathrm{~cm}^{-1}$. NMR $\delta: 0.08\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.6-2.0\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right)$, 2.1-2.7 ($\left.3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right), 4.42\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHO}\right), 4.8-5.0\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHO}\right), 5.2-5.3(1 \mathrm{H}, \mathrm{m}$, CHOSi), $6.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6,2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}, 6.61(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}), 7.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6,1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH})$.
(-)-(1S,5S,8S,9S,10R,13S)-8-tert-Butyldimethylsilyloxy-3,12-dioxatetracyclo-
[8.2.1.0.5,905,13]tridecan-4,11-dione 11 and (+)-(1S,5S,8R,9S,10R,13S)-8-tert-Butyldi-methylsilyloxy-3,12-dioxatetracyclo[8.2.1.0.5,905,13]tridecan-4,11-dione 12 According to the same procedure for 7, (-)-10 (102 mg) was irradiated to give a mixture of 11 and 12 as an oil. Column chromatography (AcOEt-benzene $1: 3$) afforded (-)-11 (37 mg, 36\%) as colorless plates of mp 203-204 ${ }^{\circ} \mathrm{C}$ (AcOEt-hexane) and (+)-12 ($26 \mathrm{mg}, 25 \%$) as colorless needles of mp 154-155.5 ${ }^{\circ} \mathrm{C}$ (AcOEt-hexane). (+)11: $[\alpha]_{\mathrm{D}}^{20}-32.6^{\circ}\left(\mathrm{c} 1.13, \mathrm{CHCl}_{3}\right)$. IR (KBr): $1770,1720 \mathrm{~cm}^{-1}$. NMR $\left.\delta: 0.08\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)\right)_{2}\right), 0.88(9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 1.7-2.2\left(4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right), 2.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3,7 \mathrm{~Hz}, \mathrm{CHCO}), 2.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}, \mathrm{CHCHCO}), 2.94$ $\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHCH}\right), 4.2-4.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}, \mathrm{OCH}_{2} \mathrm{CHO}\right), 4.7-4.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHO}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}:$ $343\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Si}$: $\mathrm{C}, 60.32 ; \mathrm{H}, 7.74$. Found $\mathrm{C}, 60.10 ; \mathrm{H}, 7.75$. (+)-12: $[\alpha]_{\mathrm{D}}^{20}$ $+8.85^{\circ}\left(\mathrm{c} 1.04, \mathrm{CHCl}_{3}\right)$. IR (KBr): $1770,1720 \mathrm{~cm}^{-1}$. NMR $\delta: 0.08\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.6-2.6\left(4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right), 2.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3,7 \mathrm{~Hz}, \mathrm{CHCO}), 3.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3,7 \mathrm{~Hz}, \mathrm{CHCHCO}), 3.01(1 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{J}=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHCH}\right), 4.3-4.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}, \mathrm{OCH}_{2}\right), 4.7-4.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHO}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 323\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Si}$: $\mathrm{C}, 60.32 ; \mathrm{H}, 7.74$. Found $\mathrm{C}, 60.07 ; \mathrm{H}, 7.81$.
(+)-(1S,5S,9S,10R,13S)-3,12-dioxatetracyclo[8.2.1.05,9.05.13]tridecan-4,8,11-trione 13 a) From (-)-11: A solution of (-)-11 ($142 \mathrm{mg}, 0.42 \mathrm{mmol}$), Jones reagent ($0.3 \mathrm{~mL}, 0.8 \mathrm{mmol}$), and $40 \% \mathrm{HF}$ $(0.02 \mathrm{~mL}$) in acetone (3 mL) was stirred at rt for 19 h . After addition of isopropyl alcohol (IPA) (1 mL), the whole was stirred at rt for 0.5 h , and neutralized with NaHCO_{3}. After filtration and concentration, the residue was taken up into acetone and the insoluble material was again removed by filtration. Concentration and column chromatography (AcOEt-benzene 2:1) afforded (+)-13 (49 mg, 69\%) as colorless needles of $\mathrm{mp} 188.5-190^{\circ} \mathrm{C}$ (AcOEt-hexane). $[\alpha]_{\mathrm{D}}^{20}+158^{\circ}(\mathrm{c} 1.06$, acetone). IR (KBr): 1770 , $1720 \mathrm{~cm}^{-1}$. NMR $\delta: 2.0-2.3(1 \mathrm{H}, \mathrm{m}), 2.50\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,12 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.6-2.9,2.9-3.1$ (each 2 H m$), 3.40$ ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2,8 \mathrm{~Hz}, \mathrm{CHCHO}$), 4.46 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14,2 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 4.7-5.0 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHO}$). MS m/z: 222 (M+). Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{5}-1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.28 ; \mathrm{H}, 4.67$. Found $\mathrm{C}, 58.29 ; \mathrm{H}, 4.47$.
b) From (+)-12: Similarly (+)-12 was converted in 49% yield into (+)-13 as colorless needles of mp $188-189^{\circ} \mathrm{C}$ (AcOEt-hexane). [$\left.\alpha\right]_{\mathrm{D}}^{20}+157^{\circ}(\mathrm{c} 0.91$, acetone).
(+)-(1S,5R,8S,9S,10R,13R)-8-tert-Butyldimethylsilyloxy-11-methoxy-11-methyl-3,12-dioxatetracyclo[8.2.1.05,9.05,13]tridecan-4-one 15 and (-)-($15,5 S, 8 S, 9 S, 10 R, 13 S)$-8-tert-Butyldimethylsilyloxy-4-methoxy-4-methyl-3,12-dioxatetracyclo[8.2.1.0.5,905,13]tridecan-11-one 16 A solution of MeLi (1.16 M in ether, $3.32 \mathrm{~mL}, 3.85 \mathrm{mmol}$) was added to a solution of (-)-11 $(1.04 \mathrm{~g}, 3.08 \mathrm{mmol})$ in THF (170 mL) at $-78^{\circ} \mathrm{C}$. The whole was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , and quenched with satd. $\mathrm{NH}_{4} \mathrm{Cl}$ and satd. NaCl . After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \times 5)$, the extract was washed with satd NaCl and dried. After concentration, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{3}(2.9$ $\mathrm{mL}, 27 \mathrm{mmol}$) and pyridinium p-toluenesulfonate (PPTS) (45 mg) were added, and the whole was stirred at rt for 17 h . After addition of satd. NaHCO_{3}, the organic layer was separated, and then the water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 1)$. The combined organic layer was dried and concentrated.

Chromatography of the residue (AcOEt-hexane $1: 10$) afforded (-) $\mathbf{- 1 6}(0.30 \mathrm{~g}, 26 \%$) as colorless needles of $\mathrm{mp} 122-123^{\circ} \mathrm{C}$ (hexane), (- -15 ($0.67 \mathrm{~g}, 59 \%$) as a colorless oil, and recovered (-) $11(0.19 \mathrm{~g}, 18 \%$
 $\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right) 3\right.$), $1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 1.6-2.1(5 \mathrm{H}, \mathrm{m}), 2.4-2.6(1 \mathrm{H}, \mathrm{m}), 2.66(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}$, $\mathrm{CHCH}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}$), $3.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.9-4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}, \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}\right), 4.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2,13 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CHO}$), $4.64\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3,13 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$. $\mathrm{MS} \mathrm{m} / \mathrm{z}: 368\left(\mathrm{M}^{+}\right)$. HRMS m$/ \mathrm{z}$: Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si}$ $\left(\mathrm{M}^{+}+1\right): 369.2096$. Found 369.2121. (-)-16: [a $]_{\mathrm{D}}^{20}-41.2^{\circ}\left(\mathrm{c} 0.82, \mathrm{CHCl}_{3}\right.$). IR (neat): $1760 \mathrm{~cm}^{-1}$. NMR δ : $0.05\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 1.4-1.6(1 \mathrm{H}, \mathrm{m}), 1.7-2.1(3 \mathrm{H}, \mathrm{m})$, 2.41 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4,7 \mathrm{~Hz}, \mathrm{CHCO}$), 2.5-2.7 ($2 \mathrm{H}, \mathrm{m}$), 3.19 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.7-3.9 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH}, \mathrm{CHCHO}$), 4.14 (1 H , brs, $\mathrm{OCH}_{2} \mathrm{CHO}$), $4.60\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2,7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHO}\right)$. MS m$/ \mathrm{z}: 368\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 61.92 ; \mathrm{H}, 8.75$. Found C, 62.05; H, 8.93.
(-)-(1S,5S,8R,9S,10R,13S)-8-tert-Butyldimethylsilyloxy-11-methoxy-11-methyl-3, 12-di-oxatetracyclo[8.2.1.0.5,905,13]tridecan-4-one 17 and (-)-(1S,5S,8R,9S,10R,13S)-8-tert-butyidimethylsilyloxy-4-methoxy-4-methyl-3,12-dioxatetracyclo[8.2.1.0.5,905,13]tridecan-11-one 18 According to the same procedure for 15, (-)-17 and (-)-18 were prepared from (+)-12 as colorless oils in 7% and 52% yield, respectively. (-)-17: $[\alpha]_{\mathrm{D}}^{20}-10.5^{\circ}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)$. IR (neat): $1720 \mathrm{~cm}^{-1}$. NMR $\delta: 0.02,0.04$, and $0.07\left(6 \mathrm{H}, 3 \mathrm{~s},\left(\mathrm{CH}_{3}\right)_{2}\right), 0.86\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.24,1.37\left(3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 1.4-$ $2.3(5 \mathrm{H}, \mathrm{m}), 2.4-2.8(2 \mathrm{H}, \mathrm{m}), 3.14,3.24\left(3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{OCH}_{3}\right), 3.2-3.3(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}), 4.1-4.8(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}\right)$. MS m/z: $368\left(\mathrm{M}^{+}\right.$). HRMS m/z: Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}\left(\mathrm{M}^{+}\right): 368.2020$. Found 368.2051 . (-)-18: $[\alpha]_{\mathrm{D}}^{20}-15.7^{\circ}\left(\mathrm{c} 0.72, \mathrm{CHCl}_{3}\right)$. IR (neat): $1770 \mathrm{~cm}^{-1}$. NMR $\delta: 0.0-0.1\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87$ and 0.90 $\left(9 \mathrm{H}, 2 \mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.12,1.16\left(3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right), 1.3-2.3(5 \mathrm{H}, \mathrm{m})$, $3.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right)$, 3.4-3.7 (2H, m), 3.6-3.8 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiOCHCHCHCHCHO}$), 3.9-4.3 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHO}$). HRMS m/z: Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si}$ $\left(M^{+}\right): 369.2098$. Found 369.2130.
(+)-(1S,5R,8R,9S,10S,13S)-4,11-dimethoxy-3,12-dioxatetracyclo[8.2.1.0.5,805,13]tridecan8 -ol 19 DIBAH (1.76 M in hexane, $0.30 \mathrm{~mL}, 0.53 \mathrm{mmol}$) was added to a solution of (+) $\mathbf{- 1 2}$ ($60 \mathrm{mg}, 0.18$ mmol) in THF (6 mL) at $-78^{\circ} \mathrm{C}$. The whole was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . After addition of acetone (1 mL). the mixture was warmed to rt . After concentration, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL). $\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{3}(1 \mathrm{~mL})$ and p-toluenesulfonic acid (0.2 g) were added, and the whole was stirred at rt for 30 min . Benzene (20 mL) was added, and the mixture was washed successively with 5% aq. HCl , water, satd. aq. NaHCO_{3}, and satd. aq. NaCl , then dried. Concentration and chromatography (AcOEt-benzene 1:40) gave the acetal ($41 \mathrm{mg}, 62 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{24}+7.13^{\circ}\left(\mathrm{c} 1.01, \mathrm{CHCl}_{3}\right.$). IR (neat): $1140,1050 \mathrm{~cm}^{-1}$. NMR $\delta: 0.02,0.03\left(6 \mathrm{H}, 2 \mathrm{~s},\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.5-1.7(2 \mathrm{H}, \mathrm{m}), 1.7-2.0(2 \mathrm{H}, \mathrm{m}), 2.27(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}=5,7 \mathrm{~Hz}, \mathrm{CHCH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right), 2.47\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHCH}\right), 2.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5,7 \mathrm{~Hz}, \mathrm{OCHCHCH}), 3.36$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.7-3.8(2 \mathrm{H}, \mathrm{m}, \mathrm{SiOCH} . \mathrm{CHCHO}), 3.9-4.2\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHCH}, \mathrm{CH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right)$, $4.76(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CCH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right)$. MS m$/ \mathrm{z}$: $370(\mathrm{M}+$). A solution of the acetal (75 mg) and 40% aq HF in $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at rt for 3 h . After neutralization with satd. NaHCO_{3}, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 $\mathrm{mL} \times 3$), and then the combined organic layer was dried. Concentration afforded $19(47 \mathrm{mg}, 91 \%)$ as a colorless oil. [$\alpha]_{\mathrm{D}}^{24} 0.00$ (c 0.75, CHCl_{3}). IR (neat): $3400 \mathrm{~cm}^{-1}$. NMR 8: 1.4-2.1 (4H, m, ($\left.\mathrm{CH}_{2}\right)_{2}$), $2.36(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=5 \mathrm{~Hz}, \mathrm{CHCHCH}), 2.52(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}), 2.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5,7 \mathrm{~Hz}, \mathrm{CH}), 3.32,3.33$ (each $3 \mathrm{H}, \mathrm{s}$, OCH_{3}), 3.79 ($2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CHCH}$), $4.0-4.3$ ($3 \mathrm{H}, \mathrm{m}$, $\mathrm{SiOCHCHCHCHCHO}, \mathrm{CCH}\left(\mathrm{OCH}_{3}\right) \mathrm{O}$), $4.84(1 \mathrm{H}, \mathrm{s})$. HRMS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right): 256.1311$. Found 256.1356.

(-)-(1S,5R,8S,9S,10S,13S)-8-Benzyloxy-4,11-dimethoxy-3,12-dioxatetracyclo-

[8.2.1.0.5,805,13]tridecan-8-ol 20 Diethyl azodicarboxylate (DEAD) ($0.04 \mathrm{~mL}, 0.26 \mathrm{mmol}$) was added to a solution of $19(47 \mathrm{mg}, 0.18 \mathrm{mmol})$, benzoic acid ($35 \mathrm{mg}, 0.29 \mathrm{mmol}$), and triphenylphosphine ($84 \mathrm{mg}, 0.32 \mathrm{mmol}$) in THF (1.5 mL), and the whole was stirred at rt for 30 min . After concentration and dilution with $\mathrm{MeOH}(2 \mathrm{~mL}), 15 \% \mathrm{aq}$. $\mathrm{NaOH}(0.2 \mathrm{~mL}, 0.75 \mathrm{mmol})$ was added, and the whole was stirred at rt for 17 h . After addition of satd. NaCl , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$, and the combined extracts were dried. Concentration and chromatography (AcOEt-benzene 1:1) afforded 8hydroxyl compound ($45 \mathrm{mg}, 96 \%$) as a colorless oil. IR (neat): $3400 \mathrm{~cm}^{-1}$. NMR $\delta: 1.50-2.80(8 \mathrm{H}, \mathrm{m}$), $3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70-3.90(2 \mathrm{H}, \mathrm{m}), 3.9-4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2}\right), 4.25(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}(\mathrm{OMe}) \mathrm{O}), 4.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{OMe}) \mathrm{O}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 2256\left(\mathrm{M}^{+}\right)$. A solution of the alcohol ($22 \mathrm{mg}, 0.086$ mmol) in DMF (0.4 mL) was added to a suspension of NaH (50% in oil, $10 \mathrm{mg}, 0.21 \mathrm{mmol}$) in DMF (0.1 mL). Benzyl bromide ($0.02 \mathrm{mmol}, 0.17 \mathrm{mmol}$) was added, and the mixture was stirred at rt for 1.5 h . After addition of satd. NaCl , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$, and the combined extracts were dried. Concentration and chromatography (ether-benzene 1:15) gave (-)-20 ($26 \mathrm{mg}, 87 \%$) as
a colorless oil. $[\alpha]_{\mathrm{D}}^{20}-24.6^{\circ}\left(\mathrm{c} \mathrm{1.13}, \mathrm{CHCl}_{3}\right)$. IR (neat): $1150,1050 \mathrm{~cm}^{-1}$. NMR $\delta: 1.54-2.24(5 \mathrm{H}, \mathrm{m})$, 2.4$2.6(2 \mathrm{H}, \mathrm{m}), 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.7-3.9\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2}\right), 4.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}$, $\mathrm{OCH}), 4.26(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{OMe}) \mathrm{O}), 4.41\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 4.44\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 4.88$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{OMe}) \mathrm{O}), 7.16\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. HRMS m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}(\mathrm{M}+): 346.1778$. Found 346.1723.
(-)-(1S,5R,8S,9S,10S,13S)-8-Benzyloxy-3,12-dioxatetracyclo[8.2.1.0.5,905,13]tridecan-4,11dione 21 A solution of (-)-20 ($189 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{AcOH}(8 \mathrm{~mL}$), water (8 mL), and THF (20 mL) was heated under reflux for 18 h , and then concentrated. The residue was dissolved in acetone (5 mL), and then Jones reagent ($0.4 \mathrm{~mL}, 1.1 \mathrm{mmol}$) was added. The mixture was stirred at rt for 1 h , and then quenched with IPA. After addition of 10% aq. HCl , the mixture was extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL} \times 3$), the combined extracts were dried. Concentration gave (-)-21 ($169 \mathrm{mg}, 99 \%$) as colorless needles of mp 208$209^{\circ} \mathrm{C}$ (AcOEt). [a] $]_{\mathrm{D}}^{24}-51.9^{\circ}\left(\mathrm{c} 0.54, \mathrm{CHCl}_{3}\right)$. IR (KBr): $1770,1720 \mathrm{~cm}^{-1}$. NMR 8: 1.7-2.7 (5H, m), 2.8$3.1(2 \mathrm{H}, \mathrm{m}), 3.98\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OCH}\right), 4.3-4.5\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2}\right), 4.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}$, $\left.\mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2}\right), 4.6-4.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 7.31\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}:$ $314\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}: \mathrm{C}, 68.78 ; \mathrm{H}, 5.77$. Found $\mathrm{C}, 68.54 ; \mathrm{H}, 5.80$.

(-)-(1S,5R,8S,9S,10S,13S)-8-Benzyloxy-11-methoxy-11-methyl-3,12-dioxatetracyclo-

[8.2.1.0.5,905,13]tridecan-4-one 22 a) From (-)-21: MeLi (1.90 M in ether, $0.16 \mathrm{~mL}, 0.22 \mathrm{mmol}$) was added to a stirred solution of (-)-21 ($89 \mathrm{mg}, 0.28 \mathrm{mmol}$) in THF (10 mL) at $-78^{\circ} \mathrm{C}$, and the whole was stirred at $-78^{\circ} \mathrm{C}$ for 25 min , and then quenched with satd. $\mathrm{NH}_{4} \mathrm{Cl}$ and satd. NaCl . The mixture was extracted with AcOEt ($15 \mathrm{~mL} \times 5$). The combined extracts were washed with satd. NaCl , dried, and then concentrated. A solution of this residue, $\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{3}(2 \mathrm{~mL})$, and PPTS (20 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at rt for 16 h . After addition of satd. NaHCO_{3}, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$, and the combined extracts were dried. Concentration and chromatography (AcOEt-hexane 1:2) afforded (-)-22 ($24 \mathrm{mg}, 25 \%$) as a colorless oil and recovered (-)-21 ($67 \mathrm{mg}, 75 \%$ recovery). $[\alpha]_{\mathrm{D}}^{22}-9.83{ }^{\circ}$ (c 1.20 , CHCl_{3}). IR (neat): $1730 \mathrm{~cm}^{-1}$. NMR $\delta: 1.43$ ($2.6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $1.55\left(0.4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.7-2.9(7 \mathrm{H}, \mathrm{m}), 3.24$ $\left(2.6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.48\left(0.4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OCH}\right), 4.15(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6,2 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CHO}$), $4.41\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13,2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHO}\right), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 4.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13,2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 7.1-7.5\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. HRMS m / z : Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right): 344.1621$. Found 344.1551 .
b) From (-)-15: A solution of (-)-15 (0.67 g) and $40 \% \mathrm{aq}$. HF in $\mathrm{MeOH}(15 \mathrm{~mL})$ was stirred at rt for 5 h. After addition of satd. NaHCO_{3} and concentration, the residue was taken up into satd. NaCl , and extracted with CHCl_{3} ($50 \mathrm{~mL} \times 3$). The combined extracts were dried. Concentration gave desilylated 15 ($344 \mathrm{mg}, 74 \%$) as colorless solid of $\mathrm{mp} 174-175^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{20}-6.36^{\circ}\left(\mathrm{c} 0.66, \mathrm{CHCl}_{3}\right.$). IR (KBr): 3480, 1690 cm^{-1}. NMR $\delta: 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 1.6-2.3(4 \mathrm{H}, \mathrm{m}), 2.3-2.7(4 \mathrm{H}, \mathrm{m}), 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.06(2 \mathrm{H}$, $\left.\mathrm{br}, \mathrm{OCH}_{2} \mathrm{CHO}, \mathrm{CHOH}\right), 4.40\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2,12 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CHO}\right), 4.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2,12 \mathrm{~Hz}, \mathrm{OCH}, \mathrm{CHO})$. MS $\mathrm{m} / \mathrm{z}: 254\left(\mathrm{M}^{+}\right)$. HRMS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 254.1154. Found 254.1211. A solution of desilylated (-)-15 ($344 \mathrm{mg}, 1.35 \mathrm{mmol}$) in DMF (4 mL) was added to a stirred suspension of $\mathrm{NaH}(50 \%$ in oil, $105 \mathrm{mg}, 2.2 \mathrm{mmol}$) in DMF (1 mL) at $0^{\circ} \mathrm{C}$ and the whole was stirred at rt for 1 h . Benzyl bromide $(0.24 \mathrm{~mL}, 2.1 \mathrm{mmol})$ was added to the mixture at $0^{\circ} \mathrm{C}$ and the whole was stirred at rt for 16 h . After addition of satd. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 4)$. The combined extracts were successively washed with $10 \% \mathrm{HCl}$, water, and satd. NaHCO_{3}, then dried. Concentration and chromatography (AcOEt-hexane $1: 3$) afforded (-)-22 ($0.39 \mathrm{~g}, 77 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}-10.2^{\circ}\left(\mathrm{c} 1.24, \mathrm{CHCl}_{3}\right)$.
(+)-(1S,2S,6S,7S,8S)-8-Benzyloxy-3-hydroxymethyl-5-methoxy-1,5-dimethyl-4-oxatricyclo[5.3.0.02,6]decane 23 DIBAH (1.76 M in hexane, $0.99 \mathrm{~mL}, 1.74 \mathrm{mmol}$) was added to a solution of (-)$22(380 \mathrm{mg}, 1.1 \mathrm{mmol})$ in toluene (20 mL) at $-78^{\circ} \mathrm{C}$, and the whole was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and 15% $\mathrm{NaOH}(10 \mathrm{~mL})$ was added. After extraction with ether ($50 \mathrm{~mL} \times 3$), the combined extracts were washed with satd. NaCl and dried. Concentration gave hemiacetal (0.38 g , quant.) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}+23.3^{\circ}(\mathrm{c}$ $0.55, \mathrm{CHCl}_{3}$). IR (neat): $3400 \mathrm{~cm}^{-1}$ NMR d: $1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 1.5-2.3(6 \mathrm{H}, \mathrm{m}), 2.42-2.77(2 \mathrm{H}$, m), 3.19 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.5-4.2 (4H, m, $\mathrm{OCH}_{2} \mathrm{CHO}^{2} \mathrm{CHOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 4.3-4.8 (3H, m, HOCHO, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.20 ($5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5}$). HRMS m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right): 346.1781$. Found 346.1803. A solution of the hemiacetal ($0.38 \mathrm{~g}, 1.1 \mathrm{mmol}$), $80 \% \mathrm{~N}_{2} \mathrm{H}_{4} \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and KOH (300 mg) in diethylene glycol (10 mL) was heated at $140^{\circ} \mathrm{C}$ for 70 min , allowed to warm up to $200^{\circ} \mathrm{C}$ during 30 min , and heated at $200^{\circ} \mathrm{C}$ for 1 h , then cooled to rt . After addition of satd. NaCl , the mixture was extracted with ether ($30 \mathrm{~mL} \times 5$). Combined extracts were washed with satd. NaCl , then dried. Concentration and chromatography (AcOEtbenzene 1:3) gave (+)-23 (192 mg, 53%) as a colorless oil. [$\alpha]_{\mathrm{D}}^{20}+51.7^{\circ}\left(\mathrm{c} 1.04, \mathrm{CHCl}_{3}\right.$). IR (neat): 3450 cm^{-1}. NMR $\delta: 1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 1.4-2.4(8 \mathrm{H}, \mathrm{m}), 3.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.5-3.8$
($2 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}_{2} \mathrm{CHO}$), 3.8-4.2 (2H, m, $\mathrm{HOCH}_{2} \mathrm{CHO}^{2} \mathrm{CHOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $4.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 7.22 (5 H , s, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$. MS m/z: $301\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right)$. HRMS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right): 301.1804$. Found 301.1834.
(+)-(1S,4S,5S)-6,7-Diacetyl-4-benzyl-1-methylbicyclo[3.2.0]heptane 24 A solution of (+)-23 (28 mg) and $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}\left(0.05 \mathrm{~mL}\right.$) in 50% aq. THF (1 mL) was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . To this solution was added $15 \% \mathrm{NaOH}(0.07 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(10 \mathrm{mg}, 0.26 \mathrm{mmol})$, and the mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 1.5 h , and acetone (1 mL) was added. The mixture was concentrated, then water (1 mL), AcOEt (1 mL), and $\mathrm{NaIO}_{4}(80 \mathrm{mg}$) was added to the residue. After stirring at rt for 2 h , the mixture was taken up into $\mathrm{AcOEt}\left(20 \mathrm{~mL}\right.$), washed with water, $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and satd. NaCl , successively, then dried, and then concentrated. A solution of $\mathrm{MeLi}(0.93 \mathrm{M}$ in ether, $1.4 \mathrm{~mL}, 1.3 \mathrm{mmol}$) was added to a solution of the residue in ether (0.5 mL), and the whole was stirred at rt for 2 h . After addition of satd. $\mathrm{NH}_{4} \mathrm{Cl}$ and satd. NaCl , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined extracts were dried, and concentrated to give an oil (30 mg). This oil was dissolved in acetone (1 mL). Jones reagent ($0.1 \mathrm{~mL}, 0.17$ mmol) was added at $0^{\circ} \mathrm{C}$. The whole was stirred at $0^{\circ} \mathrm{C}$ for 2 h , and IPA (1 mL) was added. After neutralization with satd. NaHCO_{3} and filtration, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with satd. NaCl , and then dried. Concentration and chromatography (AcOEt-benzene $1: 15$) afforded (+)$24(17 \mathrm{mg}, 67 \%)$ as a colorless oil $[\alpha]_{\mathrm{D}}^{20}+5.0^{\circ}\left(\mathrm{c} 1.60, \mathrm{CHCl}_{3}\right)$. IR (neat): $1710 \mathrm{~cm}^{-1}$. NMR $\delta: 1.20(3 \mathrm{H}, \mathrm{s}$, CH_{3}), 1.6-2.3 ($4 \mathrm{H}, \mathrm{m}$), $2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6,9 \mathrm{~Hz}, \mathrm{CHAc}), 2.97$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CHCHO}), 3.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{AcCHCHAc}), 3.72\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CHOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.42,4.54$ (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.24\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. HRMS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right): 300.1723$. Found 300.1718.
(-)-(1S,2S,6S,7S,8S)-8-Benzyloxy-1,5-dimethyltricyclo[5.3.0.02,6]dec-4-en-3-one 25 A solution of (+)-24 ($96 \mathrm{mg}, 0.32 \mathrm{mmol}$) and $\mathrm{KOBu}^{\mathrm{t}}(53 \mathrm{mg}, 0.41 \mathrm{mmol}$) in tert-BuOH (1.4 mL) was heated at $75^{\circ} \mathrm{C}$ for 10 min . After addition of water, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$ and the combined extracts were dried. Concentration and chromatography (ether) afforded (-)-25 (77 mg, 85\%) as a colorless oil. [$\alpha]_{\mathrm{D}}^{20}-227^{\circ}\left(\mathrm{c} 0.97, \mathrm{CHCl}_{3}\right.$). IR (neat): $1685,1610 \mathrm{~cm}^{-1}$. NMR $\delta: 1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.4-2.3$ ($5 \mathrm{H}, \mathrm{m}$), $2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 2.3-2.6(2 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}, \mathrm{CHO}), 4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.00(1 \mathrm{H}$, $\mathrm{br}, \mathrm{C}=\mathrm{CHO}$), $7.31\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. HRMS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}(\mathrm{M}+): 282.1620$. Found 282.1622.
(-)-(1S,2S,5R,6S,7S,8S)-8-Hydroxy-1,5-dimethyltricyclo[5.3.0.02,6]decan-3-one 26 A solution of (-)-25 (10 mg) in ether (2 mL) was hydrogenated over $5 \% \mathrm{Pd}-\mathrm{C}(2 \mathrm{mg})$ under an H_{2} at rt for 3 h. Filtration and concentration give (-)-26 (7 mg, quant.) as colorless prisms of mp $113.5-115^{\circ} \mathrm{C}$ (etherhexane). $[\alpha]_{\mathrm{D}}^{20}-325^{\circ}\left(\mathrm{c} 0.96, \mathrm{CHCl}_{3}\right)$. IR (neat): $3440,1700 \mathrm{~cm}^{-1}$. NMR $\delta: 1.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.11(3 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.5-2.7(11 \mathrm{H}, \mathrm{m}), 4.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}, \mathrm{CH} \mathrm{OH}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 194\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} 1 / 8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 73.33 ; \mathrm{H}, 9.36$. Found C, $73.15 ; \mathrm{H}, 9.34$.
(+)-($1 R, 2 S, 6 R, 7 S, 10 R$)-6,10-dimethyltricyclo[5.3.0.02,6]decan-3-one 27 A solution of (-)-26 ($16 \mathrm{mg}, 0.082 \mathrm{mmol}$), $80 \% \mathrm{~N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL}$), and $\mathrm{KOH}(22 \mathrm{mg})$ in triethylene glycol (0.5 mL) was heated at $140^{\circ} \mathrm{C}$ for 1.5 h and allowed to warm up to $210^{\circ} \mathrm{C}$ during 30 min , and heated at $210{ }^{\circ} \mathrm{C}$ for 3.5 h . After addition of water, the mixture was extracted with ether ($10 \mathrm{~mL} \times 5$). The combined extracts were washed with satd. NaCl and dried. Concentration and chromatography gave the corresponding alcohol (8 $\mathrm{mg}, 54 \%$) as a colorless oil. [$\alpha]_{\mathrm{D}}^{20}+16.9^{\circ}\left(\mathrm{c} 0.70, \mathrm{CHCl}_{3}\right.$). IR (neat): $3360 \mathrm{~cm}^{-1}$. NMR $\delta: 0.95(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.1-2.2(13 \mathrm{H}, \mathrm{m}), 3.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}, \mathrm{CHOH}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 180\left(\mathrm{M}^{+}\right)$. HRMS m / z : Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}: 180.1511$. Found 180.1500. Jones reagent ($0.04 \mathrm{~mL}, 0.067 \mathrm{mmol}$) was added to the alcohol ($6 \mathrm{mg}, 0.033 \mathrm{mmol}$) in acetone $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 50 min . After addition of IPA (0.1 mL) and satd. NaHCO_{3}, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined extracts were dried, and concentrated to afford (+) $-27(6 \mathrm{mg} \text {, quant.) as a colorless oil. [} \alpha]_{\mathrm{D}}^{20}$ $+121^{\circ}\left(\mathrm{c}_{0.60} \mathrm{CHCl}_{3}\right)$. IR (neat): $1735 \mathrm{~cm}^{-1}$. NMR $\delta: 0.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH} 3), 1.1-$ 2.2 ($9 \mathrm{H}, \mathrm{m}$), 2.3-2.8 (3H, m, CHCOCH_{2}). HRMS m/z: Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}$: 178.1358. Found 178.1368.
(+)-(1R,2S,6S,7S,10R)-6,10-dimethyltricyclo[5.3.0.02,6]dec-4-en-3-one 28 A solution of (+)27 ($23 \mathrm{mg}, 0.13 \mathrm{mmol}$) and phenylselenyl chloride ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$) in AcOEt (1 mL) was stirred at rt for 45 min and then concentrated. After addition of $\mathrm{NaHCO}_{3}(15 \mathrm{mg})$, water (0.3 mL), $\mathrm{MeOH}(3 \mathrm{~mL})$, and $\mathrm{NaIO}_{4}(100 \mathrm{mg})$, the whole was stirred at rt for 1.5 h . The mixture was filtrated and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$, and then washed with satd. NaCl , and dried. Concentration and chromatography (AcOEt-hexane $1 ; 5)$ afforded $28(10 \mathrm{mg}, 42 \%)$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{20}+214^{\circ}\left(\mathrm{c} 1.78, \mathrm{CHCl}_{3}\right)$. IR (neat): 1700, 1580
cm^{-1}. NMR $\delta: 1.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.07\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.2-2.6(8 \mathrm{H}, \mathrm{m}), 6.16,7.51$ (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH})$. HRMS m/z: Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 176.1199. Found 176.1186.

Abstract

(-)-(1R,2S,3R,6R,7S,10R)-6,10-Dimethyltricyclo[5.3.0.02,6]dec-4-en-3-ol 29 DIBAH (1.8 M in hexane, $3.3 \mathrm{~mL}, 5.8 \mathrm{mmol}$) was added to a stirred solution of (+) -28 ($400 \mathrm{mg}, 2.3 \mathrm{mmol}$) in ether (10 mL) at $-78^{\circ} \mathrm{C}$, and the whole was stirred at $-78^{\circ} \mathrm{C}$ for 50 min . After addition of $15 \% \mathrm{NaOH}$, the mixture was extracted with ether ($30 \mathrm{~mL} \times 3$). The combined extracts were washed with satd. NaCl and dried. Concentration afforded (-)-29 (403 mg , quant.) as colorless needles of $\mathrm{mp} 134-135^{\circ} \mathrm{C}$ (hexane). $[\alpha]_{\mathrm{D}}^{18}-68.8$ ${ }^{\circ}\left(\mathrm{c} 1.02, \mathrm{CHCl}_{3}\right)$. IR (KBr): $3400,1610 \mathrm{~cm}^{-1}$. NMR $\delta: 0.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.1-$ $2.0(6 \mathrm{H}, \mathrm{m}), 2.0-2.4(2 \mathrm{H}, \mathrm{m}), 2.58(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7,1 \mathrm{~Hz}, \mathrm{CHOH}), 5.60,5.72$ (each 1 H , dd, $\mathrm{J}=5,1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}$). MS m/z: $178\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 80.85 ; \mathrm{H}, 10.18$. Found C , 80.74; H, 10.48.

(+)-(1R,2S,3S,6R,7S,10R)-6,10-Dimethyltricyclo[5.3.0.02,6]dec-4-en-3-ol 30 A solution of $(-)-29(403 \mathrm{mg}, 2.3 \mathrm{mmol})$, triphenylphosphine ($0.90 \mathrm{~g}, 3.44 \mathrm{mmol}$), benzoic acid ($0.42 \mathrm{~g}, 3.44 \mathrm{mmol}$), and DEAD ($0.54 \mathrm{~mL}, 3.44 \mathrm{mmol}$) in THF (8 mL) was stirred at $0^{\circ} \mathrm{C}$ for 5 h and then concentrated. The residue was dissolved in ether, and washed with satd. NaHCO_{3} and satd. NaCl , successively, then dried, then concentrated. The residue and $15 \% \mathrm{NaOH}(2 \mathrm{~mL}, 7.5 \mathrm{mmol})$ in $\mathrm{MeOH}(17 \mathrm{~mL})$ was stirred at rt for 13 h . After concentration, the residue was dissolved in ether, washed with satd. NaCl , and then dried. Concentration and chromatography (ether-hexane $1: 20$) gave (+) -30 ($310 \mathrm{mg}, 71 \%$) as colorless needles of $\mathrm{mp} 89.5-90.5^{\circ} \mathrm{C}$ (hexane). [$\left.\alpha\right]_{\mathrm{D}}^{18}+83.4^{\circ}\left(\mathrm{c} 0.35, \mathrm{CHCl}_{3}\right.$). IR (KBr): $3200 \mathrm{~cm}^{-1}$. NMR $\delta: 1.01(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.1-2.1(8 \mathrm{H}, \mathrm{m}), 2.25(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{CHOH}), 5.83(1 \mathrm{H}$, ddd, $\mathrm{J}=5,2,1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCHOH}$), $5.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCHOH})$. Ms m/z: $178\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O} \cdot 1 / 10 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 80.03 ; \mathrm{H}, 10.19$. Found $\mathrm{C}, 80.08 ; \mathrm{H}, 10.31$.
(+)-(1R,2S,3R,4R,5S,6R,7S,10R)-4,5-Epoxy-6,10-dimethyltricyclo[5.3.0.02,6]decan-3-ol 31 A solution of (+)-30 ($350 \mathrm{mg}, 2.1 \mathrm{mmol}$) and MCPBA ($70 \%, 0.81 \mathrm{~g}, 3.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) was stirred at rt for 18 h and then concentrated. The residue was diluted with ether (100 mL) and washed with satd. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, satd. NaHCO_{3}, and satd. NaCl , then dried. Concentration and chromatography (etherbenzene $1: 20$) gave (+) $\mathbf{3 0}$ ($336 \mathrm{mg}, 81 \%$) as colorless needles of $\mathrm{mp} 77-79{ }^{\circ} \mathrm{C}$ (hexane). $[\alpha]_{\mathrm{D}}^{18}+78.2^{\circ}$ (c $1.02, \mathrm{CHCl}_{3}$). IR (KBr): $3340 \mathrm{~cm}^{-1}$. NMR $\delta: 0.95\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.1-2.3(8 \mathrm{H}$, m), $3.40(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{CH}(\mathrm{O}) \mathrm{CHCHOH}), 3.82(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}(\mathrm{O}) \mathrm{CHCHOH}), 3.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}, \mathrm{CHOH})$, $4.07(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$. MS m/z: 194 (M+). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 72.84 ; \mathrm{H}, 9.37$. Found C, 72.99; H, 9.28.
(-)-(1R,2S,3S,5R,6R,7S,10R)-5-Methoxymethyl-6,10-dimethyltricyclo[5.3.0.02,6]decan-3-ol 32 A solution of (+)-31 ($306 \mathrm{mg}, 1.58 \mathrm{mmol}$) and PPTS (70 mg) in isopropenyl methyl ether (5 mL) was stirred at rt for 1 h . After addition of satd. NaHCO_{3}, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The extracts were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and then concentrated. The residue and lithium aluminum hydride ($160 \mathrm{mg}, 4.2 \mathrm{mmol}$) in ether (10 mL) was stirred at rt for 2 h . . After successive addition of water (0.15 $\mathrm{mL}), 15 \%$ aq. $\mathrm{NaOH}(0.16 \mathrm{~mL})$, water (0.48 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (solid), the precipitate was filtered off, and the filtrate was concentrated. A solution of the residue, chloromethyl methyl ether (1.5 mL), and diisopropylethylamine (5 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at rt for 42 h . After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$, the mixture was washed with $5 \% \mathrm{HCl}$, water, and satd. NaHCO_{3}, then dried. Concentration and chromatography (AcOEt-hexane $1: 5$) afforded (-) $-32\left(314 \mathrm{mg}, 83 \%\right.$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}-22.4^{\circ}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$. IR (neat): $3400 \mathrm{~cm}^{-1}$. NMR $\delta: 0.92\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.1-2.4(10 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}$, br), $3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{CHOCH}_{2}\right), 3.6-3.9(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 4.50,4.64$ (each $1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 240\left(\mathrm{M}^{+}\right)$. HRMS m/z: Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{H}\right): 239.1644$. Found 239.1597.
(-)-(1R,2S,3S,5R,6R,7S,10R)-5-Methoxymethoxy-6,10-dimethyltricyclo[5.3.0.02,6]decan-3yl p-toluenesulfonate 33 A solution of ($-\mathbf{-} \mathbf{- 3 2}(310 \mathrm{mg}, 1.3 \mathrm{mmol}$) and p-toluenesulfonyl chloride (1.2 $\mathrm{g}, 6.5 \mathrm{mmol}$) in pyridine (10 mL) was stirred at rt for 69 h . After addition of water (50 mL), the mixture was successively washed with $10 \% \mathrm{HCl}$, water, and satd. NaHCO_{3}, then dried. Concentration gave (-)-33 (507 mg , quant.) as a colorless oil. [$\alpha]_{\mathrm{D}}^{20}-21.7^{\circ}\left(\mathrm{c} 1.45, \mathrm{CHCl}_{3}\right.$). IR (neat): $1600,1355,1175 \mathrm{~cm}^{-1}$. NMR $\delta: 0.69\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.0-2.1(10 \mathrm{H}, \mathrm{m}), 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{C}_{3} \mathrm{Ar}\right), 3.28(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3,4 \mathrm{~Hz}, \mathrm{CH}), 4.45,4.52$ (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.3-4.7(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOTs})$, $7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Ar}), 7.68\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}\right.$, Ar). HRMS m/z: Calcd for $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{M}^{+}\right): 394.1814$. Found 394.1839.
(-)-Diethyl ($1 S, 2 R, 3 R, 5 R, 6 R, 7 S, 10 R$)-5-methoxymethoxy-6,10-dimethyltricyclo[5.3.0.0 2, 6]decan-3-ylmalonate 34 Diethyl malonate (2.2 mL) was added to a stirred suspension of $\mathrm{NaH}(50 \%$ in oil, $700 \mathrm{mg}, 15 \mathrm{mmol})$ in DME $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, then a solution of (-)-33 ($507 \mathrm{mg}, 1.3$ mmol) in DME (20 mL) was added, and the whole was heated under reflux for 54 h . After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, the mixture was successively washed with $5 \% \mathrm{HCl}$, water, satd. NaHCO 3 , and satd. NaCl , then dried. Concentration and chromatography (AcOEt-benzene 1:10) afforded (-)-34 (237 mg, 45\%) and recovered (-)-33 ($125 \mathrm{mg}, 25 \%$ recovery). $[\alpha]_{\mathrm{D}}^{23}-54.4^{\circ}\left(\mathrm{c} 0.64, \mathrm{CHCl}_{3}\right.$). IR (neat): $1750,1730 \mathrm{~cm}^{-1}$. NMR $\delta: 0.80(3 H, d, J=6 ~ H z, ~ C H 3), ~ 0.96\left(3 H, s, \mathrm{CH}_{3}\right), 1.24,1.27$ (each $\left.3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.6-2.1$ ($10 \mathrm{H}, \mathrm{m}$), 2.6-3.1 ($1 \mathrm{H}, \mathrm{m}$), $3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.26\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{CHCH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 3.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4$ $\mathrm{Hz}, \mathrm{CHO}$), $4.15\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 4.20\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 4.54,4.64$ (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right)$. HRMS m/z: Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right):$382.2353. Found 382.2353.

(-)-(1S,2R,3R,5R,6R,7S,8R)-5-(1-Hydroxyprop-2-en-2-yl)-3-methoxymethoxy-2,8-di-

methyltricyclo[5.3.0.02,6]decane $35 n-\mathrm{BuLi}(1.50 \mathrm{M}$ in hexane, $0.68 \mathrm{~mL}, 1.02 \mathrm{mmol}$) was added to a solution of diisopropylamine ($0.15 \mathrm{~mL}, 1.04 \mathrm{mmol}$) in DME (2 mL) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min . A solution of (-) $-34(273 \mathrm{mg}, 0.71 \mathrm{mmol})$ in DME (4 mL) was added to the mixture at $0^{\circ} \mathrm{C}$, and the whole was stirred at $0^{\circ} \mathrm{C}$ for 10 min , and then Vitride (3.5 M in toluene, $1.09 \mathrm{~mL}, 3.8$ mmol) was added. The whole was heated under reflux for 2.5 h . After successive addition of acetone (0.5 mL), ether (6 mL), and water (0.7 mL) at $0^{\circ} \mathrm{C}$, the precipitate was filtered off. Concentration and chromatography (AcOEt-benzene $1: 7$) gave (-)-35 ($177 \mathrm{mg}, 88 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}-60{ }^{\circ}(\mathrm{c} 0.3$, CHCl_{3}). IR (neat): $31001645 \mathrm{~cm}^{-1}$. NMR $\delta: 0.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.0-2.1(10 \mathrm{H}$, m), 2.6-3.0 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2} \mathrm{OH}\right), 3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.54\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{CHOCH}_{2} \mathrm{OCH}_{3}\right), 3.94$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.48,4.60\left(\right.$ each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.83\left(1 \mathrm{H}, \mathrm{br}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.09\left(1 \mathrm{H}, \mathrm{br}, \mathrm{C}=\mathrm{CH}_{2}\right)$. HRMS m / z : Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right):$280.2038. Found 280.2049.
(-)-(1S,2R,3R,5R,6R,7S,8R)-3-(1-Bromoprop-2-en-2-yl)-5-methoxymethoxy-6,10-dimethyltricyclo [5.3.0.02,6]decane 36 A solution of (-)-35 ($120 \mathrm{mg}, 0.43 \mathrm{mmol}$) and methanesulfonyl chloride ($0.08 \mathrm{~mL}, 1.03 \mathrm{mmol}$) in 2,6-lutidine (1 mL) was stirred at $0^{\circ} \mathrm{C}$ for 4 h , and diluted with benzene (30 mL). After successive washing with $5 \% \mathrm{HCl}$, water, satd. NaHCO_{3}, and satd. NaCl , the organic layer was dried. Concentration afforded mesylate of (-) $\mathbf{- 3 5}(158 \mathrm{mg}$, quant) as a yellow oil. A solution of the mesylate (185 $\mathrm{mg}, 0.43 \mathrm{mmol}$) and lithium bromide ($350 \mathrm{mg}, 4.0 \mathrm{mmol}$) in DMF (1 mL) was heated at $50^{\circ} \mathrm{C}$ for 30 min . After dilution with benzene (30 mL), the mixture was successively washed with water and satd. NaCl , then dried. Concentration and chromatography (benzene) gave (-)-36 (133 mg, 90\%) as a colorless oil. [$\alpha]_{\mathrm{D}}^{25}$ $-24^{\circ}\left(\mathrm{c}^{\circ} .15, \mathrm{CHCl}_{3}\right)$. IR (neat): $1635 \mathrm{~cm}^{-1}$. NMR $\delta: 0.86\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.00(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} 3), 1.2-2.0$ ($9 \mathrm{H}, \mathrm{m}$), $2.14\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3,13 \mathrm{~Hz}, \mathrm{OCHCH}_{2}\right), 3.1-3.4\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}\left(\mathrm{CH}_{2} \mathrm{Br}\right)=\mathrm{CH}_{2}\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.63$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}, \mathrm{CHO}), 3.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.57,4.68$ (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1 \mathrm{~Hz}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.28\left(1 \mathrm{H}, \mathrm{br}, \mathrm{C}=\mathrm{CH}_{2}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 283,281\left(\mathrm{M}+\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$. HRMS m/z: Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Br}$ $\left(\mathrm{M}+-\mathrm{CH}_{3}\right): 329.0941$. Found 329.0943.
(-)-(1S,2R,3R,5R,6R,7S,8R)-3-Methoxymethoxy-2,8-dimethyl-5-(6-methyl-3-phenylthio-hept-1,5-dien-2-yl)tricyclo[5.3.0.02,6]decane 37 n - $\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $0.38 \mathrm{~mL}, 0.57 \mathrm{mmol}$) was added to a solution of phenyl prenyl sulfide ($0.10 \mathrm{~mL}, 0.58 \mathrm{mmol}$) in THF (2.5 mL) at $-78^{\circ} \mathrm{C}$, and the whole mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min . A solution of (-) $\mathbf{- 3 6}(120 \mathrm{mg}, 0.35 \mathrm{mmol}$) in THF (2.5 mL) was added to this mixture, and stirred at $-78^{\circ} \mathrm{C}$ for 25 min . After addition of satd. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$, and the combined extracts were dried. Concentration and chromatography (benzene-hexane $1: 2$) gave (-) $\mathbf{- 3 7}$ ($72 \mathrm{mg}, 46 \%$) as a colorless oil. $[\alpha]_{D}^{25}-26.4^{\circ}(\mathrm{c} 0.84$, CHCl_{3}). IR (neat): $31001640 \mathrm{~cm}^{-1}$. NMR $\delta: 0.6-0.9\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.1-2.5(18 \mathrm{H}, \mathrm{m})$, 2.7-3.0 ($1 \mathrm{H}, \mathrm{m}$), $3.31\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.32\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{CHO}), 3.9-4.2(1 \mathrm{H}, \mathrm{m}$, CHSPh), 4.4-5.1 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}, \mathrm{C}=\mathrm{CH}, \mathrm{OCH}_{2} \mathrm{O}$), 7.1-7.5 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$). HRMS m/z: Calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right): 440.2749$. Found 440.2783.
(-)-(1S,2R,3R,5R,6R,7S,8R)-3-Methoxymethoxy-2,8-dimethyl-5-(6-methylhept-1,5-dien-2yl) tricyclo[5.3.0.02,6]decane 38 Lithium ($30 \mathrm{mg}, 4.3 \mathrm{mmol}$) was added to ethylamine (10 mL) at -78 ${ }^{\circ} \mathrm{C}$. To a blue colored solution was added a solution of (-)-37 (70 $\mathrm{mg}, 0.16 \mathrm{mmol}$) in ether (2 mL), and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 25 min . After addition of satd. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with ether ($15 \mathrm{~mL} \times 3$). The combined extracts were washed with satd. NaCl , and then dried. Concentration and chromatography (benzene-hexane $1: 3$) gave (-)-38 ($38 \mathrm{mg}, 72 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{21}-10.2^{\circ}(\mathrm{c}$ $0.55, \mathrm{CHCl}_{3}$). IR (neat): $3100,1640 \mathrm{~cm}^{-1}$. NMR $\delta: 0.86\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.2-2.1$
($13 \mathrm{H}, \mathrm{m}$), $1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.13(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3,14 \mathrm{~Hz}, \mathrm{CH}), 2.7-3.0(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.36$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}, \mathrm{CHO}$), 4.55 and 4.67 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{OCH} 2 \mathrm{O}$), $4.83(1 \mathrm{H}$, br, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.74\left(1 \mathrm{H}, \mathrm{br}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C})$. HRMS m$/ \mathrm{z}$: Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 332.2715. Found 332.2735.
(+)-Stoechospermol 2 A solution of (-)-38 (11 mg) and $10 \% \mathrm{HCl}(0.1 \mathrm{~mL})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 4 h . Concentration and chromatography (benzene) gave (+) $-2(6.8 \mathrm{mg}, 71 \%$) as a colorless solid of $\mathrm{mp} 64-64.5^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{22}+39.1^{\circ}\left(\mathrm{c} 1.13, \mathrm{CHCl}_{3}\right) .[\alpha]_{\mathrm{D}}^{27}+38.5^{\circ}(\mathrm{c} 0.47, \mathrm{EtOH})$. IR $\left(\mathrm{CHCl}_{3}\right)$: $3600,3080,1640 \mathrm{~cm}^{-1}$. NMR $\delta: 0.86\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.2-1.7(4 \mathrm{H}, \mathrm{m}), 1.60$ and 1.68 (each $3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}$), 1.7-2.1 (9H, m), 2.1-2.2 ($1 \mathrm{H}, \mathrm{m}$), $2.25(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=4,14 \mathrm{~Hz}, \mathrm{HOCHCH}), 2.9-$ $3.1\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{CH}_{2}\right), 3.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{CHOH}), 4.75$ and 4.84 (each $\left.1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}\right), 5.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{C}$). MS m/z: $288\left(\mathrm{M}^{+}\right)$. HRMS m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}\left(\mathrm{M}^{+}\right): 288.24450$. Found 288.2449.

References and Notes

1) Stereoselective Reactions. Part 25.
2) Baldwin, S. M. Organic Photochemistry 1981, 5, 123.
3) Several asymmetric ($2+2$) photocycloadditions have been reported: Partridge, J. J; Chadha, . N. K.; Uskokovic, M. R. J. Am. Chem. Soc. 1973, 95, 532; Williams, J. R.; Callahan, J. F. J. Org. Chem. 1980, 45, 4475, 4479; Baldwin, S. W.; Crimmins, M. T. J. Am. Chem. Soc. 1982, 104, 1132; Jarosz, S.; Zamojski, A. Tetrahedron 1982, 38, 1447, 1453; Tolbert, L. M.; Ali, M. B. J. Am. Chem. Soc. 1982, 104, 1742, Bruneel. K.; Keukeleire, D. D.; Vandevelle, M. J. Chem. Soc. Perkin Trans. 1 1984, 1967; Salomon, R. G.; Sachinvala, J. D.; Raychaundhuri, S. R.; Miller, D. B. J. Am. Chem. Soc. 1984, 106, 2211; Lange, G. L.; Decicco, C.; Tan, S. L.; Chamberlain, G. Tetrahedron, Lett. 1985, 26, 4707; Lange, G. L.; Lee, M. ibid. 1985, 26, 6163; Herzol, H.; Koch, H.; Sharf, H.-D.; Runsink, J. Tetrahedron 1986, 42, 3547, Meyers, A. I.; Fleming, S. A. J. Am. Chem. Soc. 1986, 106, 306; Lange, G. L.; Decicco, C. P. Tetrahedron, Lett. 1988, 29, 2613.
4) Tomioka, K.; Tanaka, M.; Koga, K. Tetrahedron Lett. 1982, 23, 3401; Tomioka, K.; Tanaka, M.; Koga, K. Chem. Pharm. Bull. 1989, 37, 1201. Other synthesis of bourbonenes: White, J. D.; Gupta, D. N. J. Am. Chem. Soc. 1968, 90, 6171; Brown, M. J. Org. Chem. 1968, 33, 162; Heathcock, C. H.; Bodger, R. A. J. Chem. Soc. Chem. Commun. 1968, 1510; Yoshihara, K.; Ohta, Y.; Sakai, T.; Hirose, Y. Tetrahedron Lett. 1969, 2263; Uyehara, T.; Ohnuma, T.; Sato, T.; Kato, K. J. Chem. Soc. Chem. Commun. 1981, 127.
5) A preliminary communication: Tanaka, M.; Tomioka, K.; Koga, K. Tetrahedron Lett. 1985, 26, 3035. Total synthesis of spatol: Idem, ibid. 1985, 26, 6109.
6) Isolation of spatol: Gerwick, W. H.; Fenical, W.; Engen, D. V.; Clardy, J. J. Am. Chem. Soc. 1980, 102, 7991; Gerwick, W. H.; Fenical, W. J. Org. Chem. 1983, 48, 3325. Related spatanes: Fernandes, S. L.; Kamat, S. Y. Tetrahedron Lett. 1980, 21, 2249; Gerwick, W. H.; Fenical, W.; Sultanbawa, M. U. S. J. Org. Chem. 1981, 46, 2233; Silva, S. M. D.; Gamage, S. K. T.; Kumar, N. S.; Balasubramanian, S. Phytochemistry 1982, 21, 944; Ravi, B. N.; Wells, R. J. Aust. J. Chem. 1982, 35, 129.
7) Synthesis of spatane diterpenes. a) Salomon, R. G.; Sachinvala, N. D.; Raychaudhari, S. R.; Miller, D. B. J. Am. Chem. Soc. 1984, 106, 2211; b) Salomon, R. G.; Basu, B.; Roy, S.; Sharma, R. B. Tetrahedron, Lett. 1989, 30, 4621; c) Dauben, W. G.; Kowalczyk, B. A. ibid. 1990, 31, 635; d) Salomon, R. G.; Basu, B.; Roy, S.; Sachinvala, N. D. J. Am. Chem. Soc. 1991, 113, 3096.
8) Krepinsky, J.; Samek, Z.; Sorm, F.; Lamparsky, D.; Ochsner, P.; Navas, Y.-R. Tetrahedron 1967, S8, 53; Gianotti, C.; Schwang, H. Bull. Soc. Chim. France 1968, 2452.
9) Application of chiral butenolide to the asymmetric synthesis of natural products: a) Tomioka, K. Advances in Pharmaceutical Sciences, The Research Foundation for Pharmaceutical Sciences, Vol. 1, 1985, 121; b) Tomioka, K. Yakugakuzasshi 1984, 104, 1009; c) Tomioka, K.; Kawasaki, H.; Iitaka,
Y.; Koga, K. Tetrahedron Lett. 1985, 26, 903; d) Tomioka, K.; Sugimori, M.; Koga, K. Chem. Pharm. Bull. 1986, 34, 1501; e) Tomioka, K.; Cho, Y.-S.; Sato, F.; Koga, K. J. Org. Chem. 1989, 53, 4094.
10) Review: Oppolzer, W. Acc. Chem. Res. 1982, 15, 135; Intramolecular photocycloaddition in total synthesis of natural products: Pearlman, B. A. J. Am. Chem. Soc. 1979, 101, 6398; Coates, R. M. Senter, R. D.; Baker, W. R. J. Org. Chem. 1982, 47, 3598; Intramolecular asymmetric (2+2) photocycloadditon: Musser, A. K.; Fuchs, P. L. J. Org. Chem. 1982, 47, 3121.
11) Tomioka, K.; Sato, F.; Koga, K. Heterocycles 1982, 17, 311; Tomioka, K.; Ishiguro, T.; Iitaka, Y.; Koga, K. Tetrahedron 1984, 40, 1303.
12) Since butenolide is easily racemizable, butenolide was converted to the known butanolide for confirmation of optical purity. Taniguchi, M.; Koga, K.; Yamada, S. Tetrahedron 1974, 30, 3547.
13) Cook, A. H.; Linstead, R. P. J. Chem. Soc. 1934, 956; Baker, W.; Leeds, W. G. J. Chem. Soc. 1948, 977; McElvain, S. M.; Starn, Jr., R. E. J. Am. Chem. Soc. 1955, 77, 4571; Dev, S. J. Indian Chem. Soc. 1956, 33, 769; Jorgensen, S. B.; Berg, A. Acta, Chem. Scand. 1966, $20,2192$.
14) Jorgensen, S. B.; Berg, A. Acta, Chem. Scand. 1966, $20,2192$.
15) We are grateful to Prof. T. Ibuka, Kyoto University for his kind information on the preparation.
16) Mitsunobu, O. Synthesis, 1981, 1.
17) Marshall, J. A.; Anderson, N. H.; Hochstetler, A. R. J. Org. Chem. 1967, $32,113$.
18) Bielmann, J. F.; Ducep, J. B. Tetrahedron 1971, 27, 5861.
19) Cache system was used for MM and MOPAC calculations on Macintosh supported by IBM workstation. Organic extract was dried over MgSO_{4}. Silica gel chromatography was used. Melting points were measured using Büchi 510 melting point apparatus and are not corrected. Optical rotations were taken with a JASCO DIP-181 automatic polarimeter. Infra red spectra were taken with a JASCO Infrared spectrometer Model DS-402G and a JASCO IRA-I Grating Infrared Spectrometer. Proton nuclear magnetic resonance spectra were taken with a JEOL FX-100 Spectrometer at 100 MHz , or with a Hitachi R-24B Spectrometer at $60 \mathrm{MHz} . \mathrm{CDCl}_{3}$ was used as a solvent unless otherwise noted. Chemical shifts are expressed in ppm relative to internal tetramethylsilane. Abbreviations are as follows: s, singlet; t, triplet; q, quartet; m, multiplet; br, broad. Mass spectra were taken with a JEOL JMS DX-300 MS spectrometer.
(Received in Japan 31 August 1994; accepted 22 September 1994)

[^0]: (\pm)-3-tert-Butyldimethylsilyloxy-1-cyclopentane-1-carboxylic acid 9 A solution of methyl 2-cyclopentene-1-carboxylate (14) ($13.8 \mathrm{~g}, 0.11$ mole) and $85 \% m$-chloroperbenzoic acid (MCPBA) (24 g , 0.12 mole) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL}$) was stirred at rt for 15 h . After concentration, the residue was taken up into ether (200 mL) and washed successively with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, satd. $\mathrm{NaHCO} \mathrm{N}_{3}$, and satd. NaCl , then dried. Concentration gave methyl 2,3-epoxycyclopentane-1-carboxylate ($10.4 \mathrm{~g}, 92 \%$) as a pale yellow oil. IR (neat): $1735 \mathrm{~cm}^{-1}$. NMR $\delta: 1.5-2.3\left(4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right), 2.7-3.0\left(0.5 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 3.0-3.2(0.5 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCO}_{2} \mathrm{CH}_{3}$), 3.4-3.7 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{O}) \mathrm{CH}\right), 3.71\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.75\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 142$ $\left(\mathrm{M}^{+}\right)$. A solution of above epoxy ester ($11.3 \mathrm{~g}, 80 \mathrm{mmol}$) and sodium methoxide (8 mmol) in $\mathrm{MeOH}(4$ mL) was stirred at rt for 2.5 h and acidified by $10 \% \mathrm{HCl}$. After concentration, the residue was taken up into AcOEt (100 mL), and washed successively with satd. NaHCO_{3} and satd. NaCl , then dried. Concentration gave methyl 3-hydroxy-1-cyclopentene-1-carboxylate ($10.4 \mathrm{~g}, 92 \%$) as a yellow oil. IR (neat): $3400,1720,1630 \mathrm{~cm}^{-1}$. NMR $\delta: 1.6-2.9\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OH}\right.$ and $\left.\left(\mathrm{CH}_{2}\right)_{2}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.8-5.0(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{C} \underline{\mathrm{H}}(\mathrm{OH}) \mathrm{C}=\mathrm{C}\right), 6.64\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CCO}_{2}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 142\left(\mathrm{M}^{+}\right)$. A solution of above

