A SIMPLE BIOGENETIC-TYPE SWTHESIS OF MGOOSALICIN. A NEM NEOLIGWN WITH ANTIALLERGY ACTIVITY ISOLATED FRON MAGOLIA SALICIFOLIA ${ }^{\dagger}$

KRNJI MORI, *a mAKOTO KOMATSU, ${ }^{\text {† }}$ a mASARD KIDO ${ }^{\text {b }}$ and KAZUYUKI NAKAGAMA ${ }^{\text {b }}$

${ }^{\text {a Department }}$ of Agricultural Chemistry, The University of Tokyo,
Yayoi 1-1-1, Bunkyo-ku, Takyo 113, Japan
${ }^{b}$ Laboratory of Natural Products Chemistry, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Kawauchi, Tokushima 771-01, Japan
(Received in Japan 31 August 1985)

Abstract

Magnosalicin [(土)-\{2R*, $\left.3 \mathbf{S}^{*}, 4 \underline{R}^{*}, 5 \underline{R}^{*}\right)-2,4$-dimethyl-3,5-bis(2',4',51-trimethoxyphenyl) tetrahydrofuranl was oynthesized in a single step in 15.6 \& yield from α-asarone by peracetic acid oxidation. The stareochemistry of (\pm)-2,4-dimethyl-3,5-bis(4'-methoxyphenyl)tetrahydrofuran, a product of peracetic acid oxidation of anethole, was shown to be same as that of magnosalicin ($2 \underline{R}^{*}, 3 \underline{S}^{*}, 4 \underline{R}^{*}, 5 \underline{I}^{*}$) by x-ray crystallographic analysis.

As a part of their studies on Chinese medicinal drug, Sankawa and his co-workers isolated a new racemic neolignan named magnosalicin 1a from Magnolia salicifolia Maxim. as an antiallergy compound. ${ }^{1}$ Buds of M. salicifolia (Japanese name: tamushiba, kamushiba or satoshiba) are known as an oriental medicinal drug (Japanese name: shin-i), which has been used for nasal allergy and nasal empyema. Magnosalicin showed a significant inhibitory effect to histamine release from rat peritoneal mast cells. Its structure as (\pm)-1a was established by X-ray crystallographic method. ${ }^{1}$ The novelty of its structure coupled with its biological activity made us to undertake a synthetic work on magnosalicin.

As a phenylpropane dimer, a biogenetic precursor of magnosalicin 1 a might be $\alpha-$ asarone 2 as suggested by Sankawa. 1 We therefore attempted the oxidation of α-asarone 2 with peracetic acid, and obtained magnosalicin $1 a$ in a single step as shown in Fig. 1. In 1979, Schmauder et al. isolated 2,4-dimethyl-3,5-bis(4'-methoxyphenyl)tetrahydrofuran as a racemic by-product of an industrial oxidation of anethole 3 with peracetic acid, and proposed its stereochemistry as the all-trans form A on the basis of its ${ }^{1} H$ NMR analysis. ${ }^{3}$ The yield of the neolignan-type compound was $5 \sim 10$ from anethole 3 . Although the yield was poor and the stereochemistry A assigned to the product was different from that of magnosalicin 1a, we decided to attempt an analogous oxidation of α-asarone 2 , hoping the isolation of 1 a as one of the oxidation products. α-Asarone 2^{2} in AcOH was oxidized with 0.5 eq of $40 \% \mathrm{AcOOH}$ at room temp. The product was purified by SiO_{2} chromatography and recrystallized to give slightly reddish crystals, m.p. $133 \sim 135^{\circ}$, in 15.6% yield. This was identified as magnosalicin itself by comparing its IR and $400 \mathrm{mHz}{ }^{1} \mathrm{H}$ NMR spectra with those of authentic 1a. The identity was further confirmed by a mixed m.p. determination with an authentic sample of $1 a$, which showed no m.p. depression. With this gratifying result, our synthesis of magnosalicịn 1a was completed in a single step from α-asarone.
$\dagger_{\text {Synthesin of Lignans -- II. Part I, Y. Takei, K. Mori and M. Mateui, Agric. Biol. Chem. 37, } 637 \text { (1973). The }}$ chemical experimental part of this work was taken from a part of the forthooming doctoral diseartation of M . Komateru. The X-ray crystallographic work was done by M. Kido and K. Nakagama.
$\#_{\text {Research Fellow on leave from Otsuka Pharmaceutical Co., Ltd. (1985-1987). }}$

2

Fig. 1. Synthesis of magnosalicin and related compounds.

In spite of the moderate yield, isolation of 1 a from the reaction mixture was not so difficult because 1a was the only crystalline product generated by this oxidation reaction.

The present oxidative coupling of α-asarone 2 should yield four diastereomers 1a~1d (each as a racemate) as shown in Fig. 1. It was hardly believable to assume the desired ia to be the sole product. We therefore turned our attention to scrutinize other stereoisomers $1 \mathrm{~b} \sim 1 \mathrm{~d}$ in the reaction mixture, and attempted the separation of an oily residue left after isolation of the crystalline magnosalicin la. Neither TLC nor medium pressure LC gave useful results. However, HPLC separation of the residual oil was successful in furnishing the expected three diastereomers, all of which showed very similar MS with M^{+} at $\underline{m} / \underline{z}=432\left(=C_{24} \mathrm{H}_{32} \mathrm{O}_{7}\right)$ and a base peak at $\underline{m} / \underline{z}=388$. The ratio of the products in a crude mixture of products before the removal of crystalline la was, in the increasing order of the HPLC retention time, magnosalicin 1a:I:II:III=13:13:23:10. In addition, a trace
amount of another isomer I^{\prime} was found to be present in I. The HPLC retention time of I was only very slightly longer than that of I, and the separation of 1 from I was impossible. The isomer I^{\prime} was presumably generated from 8 -asarone $[(\underline{Z})$-isomer of 2$]$, which was present as an impurity in our sample of a-asarone 2.

The ${ }^{1} \mathrm{H}$ NMR data of the diastereomers I~III as Listed in Table 1 gave the clue to deduce their stereochemistries. Of course, the unambiguously established 2,3-cis, 3,4trans, 4,5-trans configuration of magnosalicin la enabled us to use its NMR data as our standard for stereochemical argument. Difference between the chemical shift of the corresponding proton(s) of the diastereomers I~III and that of magnosalicin la afforded information on the stereochemistries of I-III. In the case of the isomer I, both an up-field shift $(\Delta \delta=-0.36)$ of the signal due to $C-4 \mathrm{CH}_{3}$ and a down-field shift ($\Delta \delta=+0.62$) of the signal due to $\mathrm{C}-4 \mathrm{H}$ could be explained by its 3,4-trans configuration, considering the long-range shielding effect of the aromatic ring at C-5. Other parts of the spectrum of I is similar to that of 1a. Therefore the structure $1 d$ (2,3-cis, 3,4 -trans, 4,5 -cis) was assigned to the isomer I. In the case of the isomer II, the signal due to $\mathrm{C}-2 \mathrm{CH}_{3}$ suffered a down-field shift ($\Delta \delta=+0.32$), while an up-field shift was observed for the signal due to $\mathrm{C}-4 \mathrm{CH}_{3}$. Consideration of the shielding effects of the aromatic rings enabled us to assign 1c (2,3-trans, 3,4-trans, 4,5-cis) to the isomer II. To the remai-

Table 1. ${ }^{1}$ H NMR spectral data of magnosalicin 1a, its stereoisoners $\mathbf{1 b} \mathbf{1 d}$, and

Chemical shifts δ and \pm values (Hz) of					
Protona	14*)	$\begin{aligned} & \left.\mathbf{r}^{\mathrm{b}}\right) \\ & (-\mathbf{a d}) \end{aligned}$	$\begin{aligned} & \left.\pi r^{b}\right) \\ & (-1 c\rangle \end{aligned}$	$\begin{aligned} & \left.\mathrm{II}^{\mathrm{b}}\right) \\ & (-\mathbf{1 b}) \end{aligned}$	4)
$\mathrm{c}-2 \mathrm{CX}_{3}$	$\begin{gathered} 0.90 \\ \left(d_{4} 6.5\right) \end{gathered}$	$\begin{gathered} 0.90 \\ (0,6.8) \end{gathered}$	$\begin{gathered} 1.22 \\ (d, 6.5) \end{gathered}$	$\begin{gathered} 1.27 \\ (\mathrm{a}, 6.0) \end{gathered}$	$\begin{gathered} 0.94 \\ (0,6.5) \end{gathered}$
CHACH_{3}	$\begin{gathered} 1.04 \\ \left(d_{8} 6,5\right) \end{gathered}$	$\begin{gathered} 0.68 \\ (4,6.8) \end{gathered}$	$\begin{gathered} 0.68 \\ (a, 6.8) \end{gathered}$	$\begin{gathered} 0.90 \\ (\mathrm{~d}, 6.5) \end{gathered}$	$\begin{gathered} 0.98 \\ (d, 6.5) \end{gathered}$
c-2 $\mathrm{H}^{\text {a }}$	4.60	4,80	4.77	4.35	4.43
	(d.5. 8, 5, 6.5)	(da. 7.5, 6.8)	(d9. 4.5, 6.5)	(104. 9.5, 6.0)	(69, 8.5.6.5)
	3.60	nor-aboervabie due	non-civearvable due	3.13	3.19
	(da, 9.5, 10.5)	to an $\alpha^{(1)} 3_{3}$ aignal	to an $\alpha \mathrm{cm}_{3}$ signal	(ad, 9,5, 10.5)	(da, 8,5, 10.5)
$0^{-4} \mathrm{y}^{\text {(}}$)	2.31	2.93	2.70	2.45	2.30
	(1007, $10.5,9.0,6.5$)	(daq, 8*5* 8.5, 6.8)	(ddq, 10.0, 7.2, 6.8)	(dice, 10.5, 9.5, 6.5)	(dax, 10.5, 9.5, 6.5)
$C^{-5} 8$	4.97	5.65	5.05	5.02	4.42
	($\mathrm{a}, 9.0$)	(d, 8.5)	(0.10 .0)	(d. 9,5)	(d, 9,5)
	3.79 (3n) 3.81 (38)		3.77 (3H)	3.82 (3)	
	3.82 (3H)	3.750 .3 .91	3.87 (3H)	3.84 (3⿴)	3,80 (3)
$\mathrm{Mr}-\mathrm{O}-\mathrm{CH}_{3}$	3.67 (34)	3. ${ }^{\text {a }}$	3.91 (98)	3.86 (3H)	3.82 (30)
	3.91 (34)		3.93 (3m)	3.91 (99)	
Ax-4	6.535 (2H)	2F non-obgarvable due to the stenala of 1 "	6.51 (1m)	6.53 (14)	
	6.540 (1H)		6.58 (1n)	6.56 (14)	6.91 (21, $a_{2} 7$ 7)
	6.69 (1H)	7.06 (1H)	6.99 (1H)	6.76 (1H)	7.10 (24, $\left.d_{2}, 7\right)$
	7.14 (1H)		7.05 (14)	7.08 (1H)	7.36 (28, d, 7)

s) Masared as a CXCl_{3} woln at 400 wht *
b) Noascred am a CXCl_{3} soin at 100 mtr .
c) Neaigrmenta ware made by decoupling experiments irradiating a mignal awe to $\mathrm{c}-2 \mathrm{ca}_{3}$.
d) Asaignownta ware mode by decoupling empariments irrodiating a signal ave to $\mathrm{C}-4 \mathrm{Cl}_{3}$.
ning isomer III, the structure 1b (all trans) was assigned, taking into account of a downfield shift ($\Delta \delta=+0.37$) of the $C-2 \mathrm{CB}_{3}$ signal and an up-field shift ($\Delta \delta=-0.47$) of the $c-3$ H signal. These stereochemical conclusion must be taken as tentative, because our deduction was based entirely on the analysis of the shielding effects caused by the aromatic rings. The all-trans isomer 1 b was not the major product, although it seemed to be the most stable one. Since the stereochemical conclusion was tentative, we dared not discuss the steric course of the reaction basing on the mechanism proposed in Fig. 1.

Finally it occurred to us that the stereochemical assignment A of Schmauder et al. ${ }^{3}$ might be wrong. They assigned the structure A to their oxidation product considering its ${ }^{1} \mathrm{H}$ NMR data only. We therefore repeated their oxidative coupling of anethole 3 , and obtained a crystalline product, m.p. $96 \sim 97^{\circ}$ ($1 \mathrm{it} .{ }^{3}$ m.p. $96 \sim 97^{\circ}$), in 3.8% yield. Its IR and mass spectra were in accord with the published data, ${ }^{3}$ and its gross structure as 2,4-dimethyl-3,5-bis(4'-methoxyphenyl)tetrahydrofuran was supported by its ${ }^{13} \mathrm{C}$ NMR spectrum and elemental analysis. Its $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data are listed in table 1 . There was remarkable similarity between this product and magnosalicin $1 a$ concerning the splitting patterns of the protons attached to the tetrahydrofuran ring. This strongly suggested that the oxidation product was not A but 4 with ($2 \mathrm{R}^{*}, 3 \underline{S}^{\star}, 4 \mathrm{R}^{\star}, 5 \mathrm{R}^{\star}$)-stereochemistry. This suggestion was unambiguously proved to be true by a single-crystal X-ray analysis of the oxidation product as described below.

The compound 4, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}$, formed monoclinic crystals from 1 - PrOH , space group $\mathrm{P} 21 / \mathrm{c}$, with $Z=4$ in unit cells of dimensions $a=10.313(5) \AA$, $b=16.519(9) \AA, c=10.447(4) \AA$, $B=98.20(4)^{\circ}, D X=1.18 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mu(M O K \alpha)=0.8 \mathrm{~cm} .^{-1}$ The cell dimensions and intensities were measured on a Syntex R3 four-circle diffractometer with graphite-monochromated mo $\mathrm{K} \alpha$ radiation with ω-scan mode within 2θ less than 40°. A total of 1639 independent reflections were collected, among which 1172 reflections [I21.960(I)] were stored as observed. The structure was solved by the direct method using MULTAN in Syntex XTL program. ${ }^{4}$ All H atoms except 5 atoms were found on difference Fourier maps. The refinement of atomic parameters was carried out by a block-diagonal least-squares method. Thermal parameters were refined anisotropically for all non-H atoms and isotropically for the H atoms. The

Plane 2. (0(1)-C(2)-c(3)-c(5))

Fig. 2. a. (left) The molecular structure of ($\left.2 R^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}\right)-4$ and
b. (right) the stereochemistry of the tetrahydrofuran ring moiety of 4.

Table 2. Deviations (\AA) of atoms from the least-squares planes

Plane 1. ($0(1)-C(2)-C(3)-C(4)-C(5))$

$O(1)$	$0.04 \AA$		
$C(2)$	0.12	$C(6)$	$1.48 \AA$
$C(3)$	-0.25	$C(8)$	0.40
$C(4)$	0.28	$C(7)$	-0.24
$C(5)$	-0.20	$C(16)$	0.59

Plane 2. (O(1)-C(2)-C(3)-C(5)) (Excluding C(4) aton from plane 1)

$O(1)$	$0.03 \AA$	$C(6)$	$1.24 \AA$
$C(2)$	0.03	$C(8)$	0.68
$C(4)$	-0.02	$C(7)$	0.47
$C(5)$	0.67	$C(16)$	0.83

final R-value was 0.089 . The ORTEP computer drawing of 4 is shown in Fig. 2a. Deviations of atoms from the least-squares planes 1 and 2 of the tetrahydrofuran ring of 4 are listed in Table 2 (see also Fig. 2b). Evidently, the stereostructure 4 was the correct one and A was excluded. It became clear that the crystalline product 4 obtained by oxidative coupling of anethole possesses the same ($\left.2 \underline{R}^{*}, ~ 3 \underline{S}^{*}, 4 \underline{R}^{*}, 5 \underline{R}^{*}\right)$-stereochemistry as that of magnosalicin 1a.

In summary, we synthesized magnosalicin la by a biomimetic single-step synthesis from α-asarone.

EXPERIMTENTRL

Abstract

All bps and mps were uncorrected IR spectra were measured on a Jasco IRA-102 spectroneter. NMR epectra were recorded with TMS as an internal standard at 100 mHz on a Jeol JNN FX- 100 spectrometar or at 400 MHz on a Jeol JMN FX- 400 Jeol JMS DX- 300 spectrometer at 70 eV. Puji davison $\mathrm{BW}-820$ MH was ueed for SiO_{2} column chromatography. eq). After the addition, the mixture was stirred for 40 min at room temp It was then diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ Boln was washed with sat NaHCO 3 soln $(x 2)$, water and brine, aried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and conoentrated in vacua The residue was chromatographed over $\mathrm{SiO}_{2}(50 \mathrm{~g})$. Elution with n-hexane-Etonc- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:1:2) gave crude la, which was recrystallized twice from other to give slightly redideh prisms of la (0.13 g. 15.6 \%), mop 133-135 (authentic 1a, m.p. 133-134 ${ }^{\circ}$; m.m.p. 132~134 ${ }^{\circ}$. No map depression was observed); vmax (nujol) 1615 (w), 1520 (s), 1470 (s), 1445 (m), 1405 (m), $1350(\mathrm{w}), 1335(\mathrm{w}), 1320(\mathrm{~m}), 1290(\mathrm{w}), 1265(\mathrm{w}), 1255(\mathrm{w}), 1205(\mathrm{vs}), 1185(\mathrm{~m}), 1155(\mathrm{w}), 1140(\mathrm{w}), 1120(\mathrm{~m})$, $1110(\mathrm{w}), 1070(\mathrm{~m}), 1055(\mathrm{~s}), 1045(\mathrm{~s}), 1035(\mathrm{~s}), 1015(\mathrm{w}), 1005(\mathrm{w}), 950(\mathrm{w}), 920(\mathrm{w}), 910(\mathrm{w}), 885(\mathrm{w}), 860(\mathrm{w}), 820(\mathrm{w})$, $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.31(1 \mathrm{H}, \mathrm{ddq}, \mathrm{J}=10.5,9.0$ and 6.5 Hz), $3.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5$ and 10.5 Hz), $3.79(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{g})$, $3.82(3 \mathrm{H}, \mathrm{s}), 3.87(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{g}), 4.60(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=8.5 \mathrm{and} 6.5 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{Jm}=\mathrm{Hz}), 6.535(1 \mathrm{H}$, s) , $6.540(1 \mathrm{H}, \mathrm{g}), 6.69(1 \mathrm{H}, 8), 7.14\left(1 \mathrm{H}, \mathrm{B}, 13 \mathrm{C}\right.$ NMR ($25 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $815.1,19.0,44.6,49.5,56.2$ (2 C), $56.4,56.6$, $56.7,57.1,76.0,80.7,97.6,97.8,111.5,113.2,119.7,121.7,142.8,143.5,148.2,149.0,151.8,152.4$: MS: w/2 432 (\boldsymbol{M}^{+}), 388, 357, 224, 220, 207, 205, 181 (base pesk), 165, 151. The spectral data were identical with those of an authentic sample. (Found: $C, 66,75, \mathrm{H}, 7.50$. Calc for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{7}: \mathrm{C}_{4} 66.65 ; \mathrm{H}_{4} 7.46$).

Isomers 1b, 1e and la of magnosalicin Before removing crystalline 1a, a crude mixture of the products was analyzed by HPLC (Colunn, Nucleceil $50-5,250 \mathrm{~mm} \times 46 \mathrm{~mm}$; Solvent, ntuxane-EtOAC-MeCH $=25,000: 10,000: 1$, Flow rate, $1.2 \mathrm{ml} / \mathrm{min}$

 $\left(\mathbf{M}^{+}\right), 388$ (base peak), 357, 220, 205, 181, 165, 151.

 at that temp and an additional anount of $40 * 1000 \mathrm{in}$ hoot ($4.7 \mathrm{ml}, 25 \mathrm{mmol}, 025 \mathrm{eq}$) was added. After stivring for 1.5 h_{4} the nixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The soln was waphed with water, sat mafiOn3 soln and brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and
 (4:1:2) firet eluted recovered 3 and then 41 g of an oil containing is further elution yielded 1001 g of move polar major product (dial monoacotate). The fraction cantaining 4 was dietilled to give 30 g of an oil, bup $135 \sim 160^{\circ} / 0.15$ Torr. The oil crymallized after storage in a refrigerator. This was twice recrystallised from \pm-prof to give 0.6 g (38 is) of 4 as
 1385 (w), 1305 (w), 1250 (vs), 1235 (m), 1170 (w), 1145 (w), 1120 (w), 1105 (w), 1070 (s), 1040 (s), 1020 (w), 1010 (w),
 0.94 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}$), 0.98 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}$), $2.30(1 \mathrm{H}, \mathrm{ddq}, \mathrm{J}=10.5,9.5$ and 6.5 Hz), $3.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5$ and 10.5 Hz), $3.80(3 \mathrm{H}, \mathrm{g}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=8.5$ and 6.5 Hz$), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 6.91(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7$ $\mathrm{Hz}), 7.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($25 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $614.6,19.1,46.7,55.2(2 \mathrm{C}), 56.1,77.4,87.5$, 1138 (4C), 127.6 (2C), 129.6(2C), 131.4, 133.4, 158.3, 159.2; MS: m/z 312 (M^{+}), 268 (base peak), 253, 237, 176, 161, 147,
 $76.89, \mathrm{H}, 7.74$ \%. The ieomere of 4 were not examined in detail.
x-ray crystallographic analysie of \& Summary of the work is described in the text. Supplementary materials are available on request.

Actrowiedgement - We are grateful to Prof. 4 Sankawa of this University for hie generous gift of an authentic eample of magnosalicin. Me thank Mr. K. Prribata of this University for the measurement of $400 \mathrm{MRt} \mathrm{I}_{\mathrm{H}}$ NRR spectra. Our thanks are due to Mr. I Sugai for his help in preparing the camera-ready manuscript. Financial support of this work by Otsuka pharmaceutical con Led, is acknowledged with thankes.

REFEREACES

1 T. Teuruga, Y. Eaizuka, J. Nakajima, Y. -T. Chum, H. Noguchi, Y. Iitaka, U Sankawa and ki Seto, Tetrahedron Lett. 25, 4129 (1984).
2 A. T. Strulgin, Can. J. Chem. 43, 3437 (1965).
3 H.-P. Sctmauder, D. Groger, D. Lohmann, H. Grunar, H. Foken and A. Zecturke, Pharmazie 34, 22 (1979).
4 G. Germain, P. Main and M. M. Wolfaon, Acta Crystallogr. B. 27, 368 (1971).
The atomic co-ardinates for thila work are available on request from the Director of the Cambridge crystallographic Data Centra, University Chemical Laboratory, Lensfield Road, Cambridga CB2 1EW, U. K. Any request ahould be accompanied by the full ilterature citation for the present papar.

