Synthesis of trialkylaluminum derivatives by the reaction of non-solvated aluminum hydride with α -olefins

V. V. Gavrilenko

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russian Federation. Fax: +7 (095) 135 5085. E-mail: bre@ineos.ac.ru

Hydroalumination of α -olefins by non-solvated polymeric aluminum hydride (AlH₃)_n occurs at 120–140 °C. Mechanochemical activation accelerates this reaction. The addition of catalytic amounts of the prepared R₃Al forms to the reaction system decreases the temperature of the process to 90–100 °C. The greatest initiation effect is observed when *ate*-complexes of the MAlR₄ type (M = Li, Na) are used: the reaction occurs with a higher rate already at 60–90 °C affording R₃Al free of admixtures of carbalumination products and dimers of α -olefins.

Key words: trialkylaluminum derivatives, synthesis; hydroalumination of α -olefins, mechanochemical activation, catalytic activation.

Hydroalumination of α -olefins is one of the most important reactions in the synthesis of organoaluminum compounds. Lithium aluminum hydride and aluminum hydride (AH) in the form of the (AlH₃)₃·OEt₂ solvate have first been prepared by Schlesinger.¹ Later² the reaction of these hydrides with α -olefins at 100–110 °C was studied. This reaction affords organoaluminum compounds of the LiAlR₄ and LiR₃AlH type (for β -branched olefins). The use of the AH solvate gives a mixture of R₃Al and R₃Al·OEt₂ (2 : 1). It is known that the elimination of Et₂O from the R₃Al etherate poses a certain problem, which impedes the synthesis of individual trialkylaluminum derivatives.

Non-solvated AH in the form of a solid polymeric substance was prepared³ in 1976 by crystallization from a mixed solvent (ether—benzene) in the presence of additives (LiAlH₄ and LiBH₄, 5 mol.% each). Aluminum hydride is insoluble in many inorganic and most part of organic solvents and is inert toward α -olefins under standard conditions. In this work, we studied the reaction of α -olefins with AH to develop preparative methods for the synthesis of R₃Al.

We found that heating of AH to $150-200 \,^{\circ}$ C in a sealed ampule resulted in its decomposition and formation of the aluminum mirror. The corresponding R₃Al were observed in the presence of olefins (Scheme 1). The noncatalytic addition of AH to olefins begins in any case at 120–140 °C simultaneously with the fast thermal decomposition of AH. This is confirmed by the kinetic studies of the thermal decomposition of AH ⁴ and analysis of the mass spectra of its thermolysis products containing the Al⁺, AlH⁺, AlH₂⁺, AlH₃⁺, AlH₄⁺, and Al₂H₆⁺ species.⁵

Scheme 1

$$(AIH_3)_n + 3 H_2C = CHR \longrightarrow n (RCH_2CH_2)_3Al$$

 $R = n - C_6 H_{13}, n - C_5 H_{11}, Bu^n, n - C_7 H_{15}$

Mechanical activation accelerates the process.

Further it turned out that the prepared R_3Al forms added to the reaction mixture (AH + olefin) decreased the temperature of the process to 100–110 °C and even to 80–90 °C under mechanochemical activation.^{6,7} The role of the R_3Al additives in this reaction is the destruction of the crystalline lattice of AH and alkyl-hydride exchange according to Scheme 2.

Scheme 2

$$(AIH_3)_n \longrightarrow (AIH_3)_{n-1} + AIH_3 \xrightarrow{2 R_3AI}$$
$$\longrightarrow (AIH_3)_{n-1} + 3 R_2AIH$$

The R₂AlH formed in this reaction readily reacts with α -olefins already at 60–100 °C. Using the reactions of AH with isobutylene, hex-1-ene, and dec-1-ene^{6,7} as examples, the corresponding R₃Al were obtained from hept-1-ene, oct-1-ene, and non-1-ene. Side processes can occur at the reaction temperature >100 °C: elimination of α -olefins and their dimerization.

Another route of activation of the reaction of AH with olefins, which simultaneously decreases the temperature of the process, is associated with the use of catalytic addi-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1100-1102, May, 2003.

1066-5285/03/5205-1161 \$25.00 © 2003 Plenum Publishing Corporation

tives of the MAIR₄-type complexes. They are easily synthesized by the reaction of alkaline metals with R_3AI . In fact, it turned out that in the presence of NaAlEt₄ (5 mol.%) AH readily reacts with hex-1-ene already at 60–70 °C. This can be explained by the fact that NaAlEt₄ reacts with AH to form Et₂AlH and NaEt₂AlH₂ (Scheme 3) likely through the intermediate complex NaAlEt₄ •AlH₃.

Scheme 3

 $(AlH_3)_n + NaAlEt_4 \longrightarrow$

 \longrightarrow (AIH₃)_{n-1} + NaEt₂AIH₂ + Et₂AIH

The products of this reaction (see Scheme 3) are further added to α -olefins to form NaAlR₄ and R₃Al. Then the cycle repeats but with a sharp increase in the reaction rate, because both catalysts, viz., R₃Al and NaAlR₄, begin to work. This results in the evolution of a great amount of heat, which should be removed by cooling or controlling the rate of olefin addition to the reaction mixture in order to prevent the "thermal explosion." The MR₃AlH complexes easily obtained from the corresponding metal hydrides and R₃Al can be used instead of MAIR₄ for the initiation of olefin hydroalumination. In a separate experiment on the reaction of $(AlH_3)_n$ with NaAlEt₄ at 100-125 °C, we detected 64% Et₃Al and 36% Et₂AlH in the liquid reaction products after they were distilled in vacuo. The extraction of the solid residue with toluene and THF produced NaEt₂AlH₂ and NaAlH₄ (60 : 40), which confirms the scheme proposed for the process.

It should be mentioned that the LiAlH₄ additives (5-10%) can be used instead of NaAlR₄ as the catalyst of the process. These additives react with α -olefins already at 100–120 °C ² to form LiAlR₄, after which the reaction smoothly ceases at 60–100 °C. Mixtures of NaAlH₄ and R₃Al, which readily form a mixture of NaR₂AlH₂ and R₂AlH, are also efficient as the catalyst of this process.

Thus, the methods developed for the synthesis of R_3Al from non-solvated AH and α -olefins in the presence of MAIR₄, MR₃AlH, and R₃Al produce individual trialkylaluminum derivatives free of admixtures of R₂AlH, olefin dimers, and carbalumination products. The MAIR₄ catalyst, which remained in the reaction mixture, can easily be transformed into R₃Al by the addition of the calculated amount of aluminum halides.

Experimental

All experiments were carried out in an inert atmosphere (nitrogen or argon). Hydrocarbon solvents and ethers were dried over hydrides (NaH, LiAlH₄), distilled, and stored over Na or Ca. Commercially available olefins were stored over anhydrous Na₂SO₄ and distilled with the NaAlEt₄ additive (1–5%).

LiAlH₄ used for the synthesis of AlH₃ was recrystallized from an ether—toluene mixture. Technical AlCl₃ (purity 98–99%) was purified by heating to 180 °C with addition of 10–15% Al powder (trade mark A-1) and 1–8% Mg powder Mg (MPF-4) and sublimation *in vacuo*. Aluminum hydride was synthesized according to a known procedure³ (purity of the product was 95–98%); NaAlEt₄ was prepared by the reaction of Et₃Al with metallic Na⁸ and recrystallized from toluene. Aluminum was analyzed by complexometric titration (using eriochrome as an indicator⁹) and gravimetrically (precipitation with hydroxyquinoline). Hydride hydrogen was determined by the gas volumetric method. Purity of olefins and paraffins after R₃Al hydrolysis was monitored by GLC on an LKhM-8MD instrument (2 m × 4 mm, 5% SE-30 on Chromaton (acid washed) with a particle size of 0.2 mm).

The syntheses of $Bu_{3}^{i}Al$, (C₆H₁₃)₃Al and (C₁₀H₂₁)₃Al from (AlH₃)_n and olefins have been described previously.⁷

Tri(*n***-octyl)aluminum.** A (synthesis without promoters). A 100-mL three-necked flask equipped with a reflux condenser, a dropping funnel, and a thermometer was loaded with $(AIH_3)_n$ (1.65 g, 0.055 mol, calculated for 100% purity) suspended in octane (30 mL), and the mixture was heated to 120 °C. At first, a portion of olefin (33%) was added from the dropping funnel containing oct-1-ene (19.3 g, 0.173 mol, ~10% excess). After 30 min, the temperature of the mixture raised to 125 °C (reflux). Then the temperature was decreased to 100-110 °C, and the remained olefin was added during 3-4 h. The mixture was kept for 1 h at 90-100 °C, cooled, and filtered through a glass filter no. 4. Octane and excess octene were distilled off in vacuo below 80 °C (7 Torr). A light liquid product was obtained (14.3 g, 91%). Found (%): Al, 7.08. C₂₄H₅₁Al. Calculated (%): Al, 7.36. The obtained product (13.1 g) was oxidized with dry air in heptane (50 mL), hydrolyzed, dried above Na₂SO₄, and distilled at 82-83 °C (7 Torr). n-Octyl alcohol (12.0 g) was isolated, $n_{\rm D}^{20}$ 1.4292 (cf. Ref. 10: b.p. 196 °C, $n_{\rm D}^{20}$ 1.4303).

B (synthesis with the activation of the process by adding R_3Al in a ball mill). A vertical ball mill¹¹ (capacity 150 mL, 70 g of balls 3–4 mm in diameter) was loaded with $(AlH_3)_n$ (1.10 g, 0.036 mol), octane (30 mL), Bu_3^iAl (1 g, 0.005 mol), and oct-1-ene (19.5 g, 0.174 mol). The reaction mixture was gradually heated to 100 °C with permanent stirring (temperature jump to 115 °C), cooled, and stored for 2 h at 90–100 °C. The balls and blend were separated, and the residue was washed with octane (2×20 mL). A light filtrate was evaporated at 80–90 °C (7 Torr) to a constant weight. The target product was obtained in 88.6% yield (16.9 g). Found (%): Al, 7.11. $C_{24}H_{51}Al$. Calculated (%): Al, 7.36.

C (synthesis with activation by NaBuⁱ₃AlH). A mixture of $(AlH_3)_n$ (1.65 g, 0.055 mol), NaBuⁱ₃AlH (2.25 g, 0.013 mol), and octane (30 mL) were heated to 80 °C for 1 h, and oct-1-ene (9.7 g) was added. The temperature spontaneously raised to 100 °C for 20 min. The reaction mixture was cooled, and oct-1-ene (15 g) was additionally added (totally 24.7 g) from a dropping funnel at 90 °C for 0.5—1 h. A light product, *viz.*, $(C_8H_{17})_3Al + NaAl(C_8H_{17})_4$ mixture (27.1 g), was obtained after standard treatment. Found (%): Al, 7.02. C₂₄H₅₁Al. Calculated (%): Al, 7.36.

D (synthesis with activation by LiAlH₄). A known procedure³ was used to obtain γ -AlH₃ in a mixture with excess LiAlH₄ (without washing off LiAlH₄ with ether). This mixture (1.60 g, 1.2 g of AlH₃ + 0.4 g of LiAlH₄), octane (30 mL), and oct-1-ene (8 g) were used for the reaction. The reaction mixture was heated to 100–110 °C for 1 h, and oct-1-ene (12 g) was added for 2 h at 90–100 °C. Then the mixture was filtered. Excess octene and octane were removed *in vacuo* at 60–70 °C (1 Torr), and AlCl₃ (0.45 g) was added to the residue. The mixture was heated at 80 °C, and LiCl was filtered off. Compound (C_8H_{17})₃Al was obtained in 89% (14.3 g). Found (%): Al, 7.12. $C_{24}H_{51}$ Al. Calculated (%): Al, 7.36.

Tri(*n*-heptyl)aluminum. A ball mill (150 mL, 70 g of balls 3–4 mm in diameter) was loaded with $(AlH_3)_n$ (1.65 g, 0.055 mol), heptane (25 mL), hept-1-ene (18.0 g, 0.183 mol), and Buⁱ₃Al (1 g, 0.005 mol), and the mixture was stirred for 3 h at 90–100 °C. The reaction product was filtered off, and a precipitate was washed with heptane (10 mL). Heptane and excess heptene were removed *in vacuo*. A light liquid product (16.1 g, 91.0%) was obtained. Found (%): Al, 8.18. C₂₁H₄₅Al. Calculated (%): Al, 8.32. This product (14.0 g) in heptane (30 mL) was oxidized with dry air followed by hydrolysis to afford *n*-heptyl alcohol (14.3 g), b.p. 174–175 °C, n_D^{20} 1.4223 (*cf.* Ref. 10: b.p. 175 °C, n_D^{20} 1.4231).

Tri(*n*-hexyl)aluminum. A mixture of AlH₃ (1.65 g, 0.055 mol), toluene (10 mL), NaAlEt₄ (0.98 g), and hex-1-ene (16.8 g, 0.21 mol) was heated in a flask equipped with a reflux condenser and a thermometer at the reflux temperature of the mixture. After 20 min, the temperature raised from 80 to 100 °C and then gradually decreased to 70–80 °C. After 2 h, the reaction mixture was cooled and filtered off, and a precipitate was washed with hexane (10 mL). The solvents and excess hexene were removed *in vacuo* at 60–80 °C (7 Torr), and 15.1 g of the product were obtained. Found (%): Al, 9.41. C₁₈H₃₉Al. Calculated (%): Al, 9.55.

Tri(*n*-**nonyl**)aluminum. A mixture of $(AIH_3)_n$ (1.53 g, 0.051 mol), NaBuⁱ₂AIH₂ (1.7 g, 0.01 mol), and non-1-ene (32.0 g, 0.253 mol) was heated in a ball mill to 100 °C and then stored for 1.5 h at 90–100 °C. After separation of the balls and filtration, residues of nonene were removed *in vacuo*. A transparent product (18.5 g) was obtained. Powdered AlCl₃ (0.35 g, 0.026 mol) was added to the product, and the mixture was heated with stirring for 1.5 h at 80–90 °C. The formed NaCl was separated by filtration. The probe of the hydrolysis product for halogen (AgNO₃) was negative. Found (%): Al, 6.22. C₂₇H₅₇Al. Calculated (%): Al, 6.61.

Reaction of (AlH_3)_n with NaAlEt₄. A three-necked flask was loaded with $(AlH_3)_n$ (3.1 g) and NaAlEt₄ (9.8 g). The mixture was heated to 125 °C for 1 h (to the homogeneous state) and then stored for 2 h at 100 °C. Liquid products (5.8 g) were

distilled off *in vacuo* (1 Torr) at 70–80 °C. Their composition after hydrolysis and determination of the amounts of ethane and hydrogen (7.5 : 1.0) corresponded to the ratio $Et_3Al : Et_2AlH =$ 1.76 : 1.00. The extraction of a solid residue with toluene gave NaEt₂AlH₂ (3.1 g), m.p. 83–85 °C (*cf.* Ref. 12: 84–88 °C) and then, after the treatment with THF, NaAlH₄ was extracted (2 g). Found (%): H, 7.25. NaAlH₄. Calculated (%): H, 7.41.

References

- A. E. Finholt, B. C. Bond, and H. I. Schlesinger, J. Am. Chem. Soc., 1947, 69, 1199.
- K. Ziegler, H. G. Gellert, H. Martin, K. Nagel, and J. Schneider, *Justus Liebigs Ann. Chem.*, 1954, 589, 91.
- F. M. Brower, N. E. Matzek, P. F. Reiger, H. W. Rinn, C. B. Roberts, D. L. Schmidt, J. A. Snover, and K. Terada, *J. Am. Chem. Soc.*, 1976, **98–99**, 2450.
- 4. P. J. Herley, O. Chestofferson, and R. Irwin, *J. Phys. Chem.*, 1981, **85**, 1874.
- 5. M. Hara, K. Domen, and T. Onishi, J. Phys. Chem., 1991, 95, 6.
- V. V. Gavrilenko, Abstr. of XIIth Fechem Conf. of Organomet. Chem. (August 31–September 5, 1997), Prague (Czech Republic), Pos. 97.
- 7. V. V. Gavrilenko, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 1708 [*Russ. Chem. Bull.*, 1997, **46**, 1630 (Engl. Trans.)].
- H. Lehmkuhl and K. Ziegler, Methoden zur Herstellung und Umwandlung von organischen Aluminium Verbindungen, in Houben-Weyl, Methoden der organische Chemie. Band XIII/4. Metallorganische Verbindungen, Georg Thieme Verlag, Stuttgart, 1970, 314.
- 9. G. Schwarzenbach, *Die chemische Analyse*, *Bd. 45 (Die komplexometrische Titration)*, Ferdinand Enke, Stuttgart, 1955, 73.
- Dictionary of Organic Compounds, Eds. J. Heilborn and H. M. Bunbury, Chapman and Hall, London, 1946.
- 11. H. Clasen, Angew. Chem., 1961, 73, 322.
- 12. N. M. Alpatova, V. V. Gavrilenko, Yu. M. Kessler, O. R. Osipov, and D. N. Maslin, *Kompleksy metalloorganicheskikh*, gidridnykh i galoidnykh soedinenii alyuminiya [Complexes of Organometallic Aluminum Hydrides and Halides], Nauka, Moscow, 1970, 297 pp. (in Russian).

Received October 7, 2002; in revised form January 22, 2003