FLUORINATION OF POLYHALOGRNATED UNSATURATED COMPOUNDS WITH

 VANADIUM PRENTAPLUORIDEv.v.BARDIN*, A.A.AVRAMENKO, G.G.PURIN, V.A.KRASIINIKOV, A.I.KARELIN, P.P.TUSHIN

Institute of Organio Chemistry, 630090,Novosibirsk (U.S.S.R.)
and V.A.PETROV

Institute of Organo-element Compounds, 117813, Moboow (U.S.S.R.)

SUNOARY

Vanadium pentafluoride reacts with polyfluorinated and polychlorinated olefins, alkadienes, cycloalkenes and cyclodienes in CFCl_{3} or without a solvent at -25° to $100^{\circ} \mathrm{C}$, forming products of addition of two fluorine atoms across the $C=C$ bond.

INTRODUCTION

Earlier we have reported fluorination of hexafluorobenzene, deoafluorodiphenyl, ootafluoronaphthalene [1], pentafluoropyridine, 3-ohlorotetrafluoropyridine, perfluoroanthracene [2] and pentafluorobenzene derivatives $C_{6}{ }_{5}{ }_{5} X(X=H, D$, Alk, OAlk, $\mathrm{OH}, \mathrm{CN}, \mathrm{NO}_{2}$) [1-4] by vanadium pentafluoride. This paper presents the results of our studies on the reastions of vanadium pentafluoride with polyhalogenated olefins, dienes, oyoloalkenes and oyolohexadienes.

RESULIS AND DISCUSSION

Polyhalogenated alkenes and cycloalkenes

Pluorination of terminal fluoroolefins by vanadium pentafluoride proceeds readily at -30 to $-20^{\circ} \mathrm{C}$ in CFCl_{3} solution. The only reaotion produots are the respective polyfluoroalkanes (Table 1) formed in high yields.

The reactivity of tetrachloroethylene "5" towards VF_{5} does not differ from that of teminal fluoroolefins.It reacts With VF_{5} at $-20^{\circ} \mathrm{C}$ to give $1,2-\mathrm{difluorotetrachloroethane} \mathrm{"6"}$. No ohlorine exohange for fluorine is observed.

Perfluoromethylvinyl ether "7" is more stable against vanadium pentafluoride than alkenes "1", "3" and "5". Its transformation to perfluoroethylmethyl ether "8" takes place only at $40^{\circ} \mathrm{C}$, but even at that temperature the reaction rate is low.
$\underset{\substack{\text { "7" }}}{\mathrm{CP}_{2}=\mathrm{CP}-\mathrm{OCF}_{3}}+\underset{\substack{\text { "8" }}}{\mathrm{VF}_{5}} \longrightarrow \underset{3}{ } \longrightarrow \mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{OCF}_{3}$
This is in agreement with the data on the electrophilio fluoromerouration of perfluoropropylene and ether "7" by meroury difluoride in HF . The addition of Hg_{2} to perfluoropropylene proceeds at $75^{\circ} \mathrm{C}(24 \mathrm{~h})$ [5], whereas with compound " 7 " HgF_{2} reacts only at $150^{\circ} \mathrm{C}$ (20 h) [6]. At the same time, the radioal fluorination of polyhaloolefins by fluorine is known to give rise to a large amount of fluorodimerization products [7]. In the fluorinations of unsaturated compounds by vanadium pentafluoride, however, not a single product of this type has been found.

Internal iluoroolefins reaot with vanadium pentafluoride at higher temperatures than the terminal ones. The reaotivity

TABLE 1
Fluorination of polyhaloalkenes and -oyoloalkenes

Compound mmol	$\begin{gathered} \mathrm{d} \mathrm{VF}_{5} \\ \mathrm{mmol} \end{gathered}$	$\begin{gathered} \mathrm{CFCl}_{3} \\ \mathrm{ml} \end{gathered}$	$\begin{aligned} & \text { Temperature } \\ & { }_{\mathrm{o}}^{\mathrm{C}} \end{aligned}$	Time min	Method	Alkene conversion \%	Products yield \%
"1" 23	49	17	-20	30	A	90	"2" 81
"3" 23	82	20	-20	30	A	100	"4" 83
"5" 8.4	22.0	2	-20	30	A	48	"6" 72
"7" 7	27	2	40	180	c	50	"8" 40
"9" 5.7	17.0	-	60	240	C	50	"10"94
"11"7.7	28.0	-	150	240	C	9	"10"86
"12"6.5	27.0	-	100	300	C	100	"2" 46
"13"6.9	13.0	4	-20	15	A	42	"14"66
"15"9.3	20.5	-	25	60	C	56	"16"32
"15"6.2	25.0	-	60	180	C	74	"16"59
"17"2.2	13.7	-	60	120	B	68	"18"62
"19"1.4	4.8	-	25	120	B	81	"20"60
"19"2.5	8.2	-	60	120	B	90	"20"74
"21"13.9	42.5	-	25	120	B	87 ois	"23"16
						trans	"23"56
"22"6.8	19.0	-	25	120	B	64	"24"89
"22"10.1	48.0	-	60	180	B	94	"24"95
"25"5.6	18.0	-	150	240	B	0	
"25"1.5	6.8	-	250	180	B	65	"27"91
"26"2.6	8.3	-	250	420	B	0	
"28"0.8	1.6	0.6	25	30	B	29	"29"62
							"30"35
"31"6.9	6.9	10	-20	20	A	20	"33"96
"31"34 171		40	-20	20	A	85	"33"36
							"34"32
							"35"19
"32"6.8	6.8	10	-20	20	A	22	"33"93
							"34" 2.2
							"35" 0.8

TABLE 1 (oont.)

"32"10	40	10	-20	20	A	98	"33"66
							"34"20
							"35"11
"36"0.65	2.0	2	-20	15	A	100	"38"85
"39"2.2	9.6	-	25	60	B	69	"40"35
							"41"55

of fluoroolefins with two perfluoroalkyl groups at the $\mathrm{C}=\mathrm{C}$ bond is higher than that of fluoroolefins with three or four perfluoroalkyl groups. Thus at $60^{\circ} \mathrm{C}$, alkene " 9 " undergoes 50\% conversion to perfluoro-2-methylpentane "10" during 4 h whereas the conversion of its isomer " $111^{\prime \prime}$ even at $150^{\circ} \mathrm{C}$ during the same time does not exceed 9\%.

To complete iluorination of alkene "9", the reaotion should be conducted at $150-170^{\circ} \mathrm{C}$.

Substitution of vinyl fluorines by ohlorine raises the Iluorination rate of polyhaloalkenes. This is readily evident in the case of the reaction of "12" and "13" with VF_{5}. The former is iluorinated at $100^{\circ} \mathrm{C}$ while the latter reacts quickly at a temperature as low $-20^{\circ} \mathrm{C}$.

The reaotivity of polyfluorinated oyoloalkenes is similar to that of internal olefins and seems to be slightly dependent
on oyole size. Perfiuorooyolobutene "15" reaots with VF_{5} at $20-22^{\circ} \mathrm{C}$, though after 1 h conversion of this oycloalkene is 50%. At $50-60^{\circ} \mathrm{C}$ the iluorination is more efficient. At the same time, 4-bromononafluorooyolohexene "17" does not react with VF_{5} at $25^{\circ} \mathrm{C}$, but is iluorinated at $50-60^{\circ} \mathrm{C}$, giving bromoundeoafluorooyolohexane in 62% yield.

All unmarked bonds to fluorine.

Substitution of vinyl fluorines by ohlorine inoreases the fluorination rate of $C=C$ bonds in oyoloalkenes. For example, in contrast to cycloalkene "17", chlorononafluorocyclohexene "19" is easily fluorinated at $25^{\circ} \mathrm{C}$, forming chloroundecafluorocyclohexane "20". Agitating vanadium pentafluoride with 1,2-diohloroootafluorooyolohexene "22" or 1,2-diohlorohexafluorooyolopentene "21" at $25^{\circ} \mathrm{C}$ leads to the formation of $1,2-\mathrm{dich}$ loroperfluorocycloalkanes. At $50-60^{\circ} \mathrm{C}$ the conversion of cyclohexenes "19" and "22" is 90-94\%, whereas for oyclohexene "17" it is only 68\%. The reaction mixtures contained no products of ohlorine substitution by fluorine or bromine substitution by fluorine.

$\begin{array}{lll}\mathrm{n}=1 & \text { "21" } & \text { "23" (ois: trans=1:3.5) } \\ \mathrm{n}=2 & \text { "22" } & \text { "24" }\end{array}$
Substitution of Vinyl fluorines by perfluoroalkyl groups sharply slows down iluorination of the double bond. This tendenoy olearly shows itself on passing from bromooyolohexene "17" to 4(5)-bromoperfluoro-1-methyloyolohexene "25" and to perfluoro $4,4,0]$ bicyolodecene "26". Cyclohexene "25" is
iluorinated at $250^{\circ} \mathrm{C}$, whereas compound "26" is stable to VF_{5} at this temperature.

"25"
"27"

"26"

The reaction of vanadium pentafluoride with 1-methylnonafluorocyclohexene "28" proceeds in a more complex way, via fluorination of the double bond and substitution of one hydrogen by pluorine.

It is worthwhile to note here that the reaction of $2,3,4,5,6$-pentafluorotoluene with vanadium pentafluoride also leads to the formation of pentafluorobenzyl fluoride, along with the products of fluorination of their aromatio ring [4].

It is interesting to compare the reactivity of the perIluorinated $\mathrm{C}=\mathrm{C}$ bond and the aromatic ring. For that purpose we studied the reaotion of VF_{5} with perfluoro-3-propenylbenzene "31" and perfluoro-1-propenylbenzene "32". With a deficiency of VF_{5}, both fluorinations prooeed with a high regioseleotivity, almost the only product being perfluoropropylbenzene "33". In an excess of VF_{5}, the products of further fluorination "34" and "35" are formed.

As shown above, the internal perfluoroalkenes are fluorinated by VF_{5} at a higher temperature than the terminal ones. Hence, easy fluorination of $C=C$ bond of compound "32" seems to be due to conjugation of the olefinic fragment with the aromatio ring. This is in agreement with the results of fluorinations of isomerio perfluoro-1,2- and 1,4-dihydronaphthalenes "36" and "37". The former is transformed exolusively to perfluorotetralin "38", whereas iluorine addition to the olefinio fragment of the latter proceeds concurrently with fluorination of the aromatio ring [1].

"37"

At the same time, the reaction of VF_{5} with perfluoro-1-phenylcyolohexene "39" oocurs only at the aromatio ring. This is explained by the absence of conjugation of the $\mathrm{C}=\mathrm{C}$ bond of the cyolohexenyl fragment with the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group beoause of their non-coplanarity. The negative induotive effect of the pentafluorophenyl group also leads to increased deactivation of the olefinio iragment in compound "39" as compared with that in compounds "32", "36" and "37" (of. the relative reactivity of oyclohexenes "17" and "25").

Polyhalogenated aliphatic dienes and cyclohexadıenes

In view of our results on the reaotions of VF_{5} with polyhalogenated alkenes and cycloalkenes, it seems reasonable to suggest that the fluorination rate of the $C=C$ bond in nonconjugated aliphatic or cyolic dienes is chielly governed by the nature and number of substituents at the sp ${ }^{2}$-hybrid carbon atoms and does not depend on mutual disposition of olefinic fragments. To confirm this supposition, we have studied fluorination of polyfluorinated oyclohexadienes by vanadium pentafluoride.

Treatment of the CPCl_{3} solution of perfluoro-1,4-oyolohexadiene " $42^{\prime \prime}$ with 4 equivalents of VF_{5} at $-25^{\circ} \mathrm{C}$ leads to the formation of perfluorocyolohexene "43" (Table 2).
Increase of temperature from -25 to $25^{\circ} \mathrm{C}$ raises conversion of diene "42" from 26 to 100\%, but the only product of fluorination remains oyolohexene "43". Substitution of one of vinyl fluorines in oompound "42" by hydrogen or ohlorine leads to inoreased fluorination rate of this olefinio fragment as compared with the CF=CF fragment. 1-H-Heptafluoro-1,4-oyclohexadiene "44" is fluorinated at $-25^{\circ} \mathrm{C}$ to form predominantly 4-H-nonafluorocyclohexene "45". Pluorination of 1-ohlorohepta-fluoro-1,4-oyolohexadiene "46" proceeds in a similar way. With vinyl fluorine in diene "42" substituted by the trifluoromethyl group, fluorination occurs only at $20-25^{\circ} \mathrm{C}$ to give exolusively perfluoro-1-methyloyolohexene "50".

TABLE 2
Fluorination of polyhalo-1,3-butadienes and polyfluorooyolohexadienes

Compound	$\mathrm{VF}_{5}, \mathrm{mmol}$ Temperature, ${ }^{\mathrm{O}} \mathrm{C}$ Method	Products,
mmol	$\left(\mathrm{CFCl}_{3}, \mathrm{ml}\right)$ (Time, min)	(Alkane conversion, $\%)$

$X=\mathbf{F}$	"42"	"43"	87	-	
H	"44"	"45"	75	"47"	4
Cl	"46"	"48"	59	"19"	27
CP_{3}	"49"	-		"50"	92

At $25^{\circ} \mathrm{C}$ the products of iluorination of diene "46" in excess VF_{5} are oyolohexene "48" and chloroundecafluorooyolohexane "20" which is formed in these conditions from 1-ohlorononailuorocyolohexene (see above).

1-Methylheptafluoro-1,4-cyolohexadiene "51" does not
react with VF_{5} at $-25^{\circ} \mathrm{C}$, and at $20-25^{\circ} \mathrm{C}$ it is transformed to a mixture of 4-methylnonafluorooyolohexene, methylundecafluorocyolohexane and 1-fluoromethylnonafluorocyclohexene.

The two latter compounds are the produots of iluorination of 1-methylnonafluorooyolohexene "28".

Thus the relative rate of fluorination of the formally independent non-equivalent olefinic fragnents of 1,4-oyolohexadiene derivatives aotually depends on the donating or accepting ability of a substituent at the $C=C$ bond. However it should be borne in mind that 1-X-heptafluoro-1,4-oyolohexadienes react with VF_{5} at a lower temperature than the respective 1 -X-nonafluorocyclohexenes. For example, fluorination of the $\mathrm{CF}=\mathrm{CCl}$ bond in oyolohexadiene "46" ocours at $-25^{\circ} \mathrm{C}$, and in cyclohexene "19" at $+25^{\circ} \mathrm{C}$. Simultaneously the CF=CF bond is iluorinated, though to a less extent, whereas fluorine addition to this fragment in polyfluorooyolohexenes is observed only at $50-60^{\circ} \mathrm{C}$.

Fluorination of perfluoro-1,3-oyolohexadiene "53" at $-25^{\circ} \mathrm{C}$ leads to perfluorocyolohexene. Other polyfluorinated 1,3-oyolohexadiene derivatives are ourrently not readily available, and their reaotions $\mathrm{wi}^{\text {th }} \mathrm{VF}_{5}$ have not been studied.

The terminal polyhalo-1,3-alkadienes reaot with vanadium pentafluoride in the same conditions as terminal alkenes. The reaction of VF_{5} with 2-ohloropentafluoro-1,3-butadiene "54" proceeds ohiefly by fluorine 1,4-addition (formation of alkene "12"). As polyfluoroalkane "2" is formed from "12" under more drastic conditions (see above), it seems to be here the product of sequential 1,2-addition of iluorine.

Treatment of perchloro-1,3-butadiene "55" with VF_{5} at $-25^{\circ} \mathrm{C}$ leads to the formation of $1,2,3,4$-tetrafluorohexachlorobutane "56" and 1,1,2,4-tetrafluorohexachlorobutane "57" in about equal yields. A special experiment has shown that there is no mutual conversion of compounds "56", "57" under the reaotion conditions. This indioates the parallel routes of their formation though the mechanism of their formation is still unolear.

As a result of studies on the reactions of vanadium pentafluoride with polyhalogenated compounds, we oan build the following series of $\mathrm{C}=\mathrm{C}$ bond reactivity variation depending on substituents :
$O F_{2}=O P R_{F}>\quad R_{P} C P=C F R_{F}>\quad\left(R_{F}\right)_{2} C=O P R_{P}>\quad\left(R_{F}\right)_{2} \mathrm{C}=0\left(R_{P}\right)_{2}$

$>\mathrm{C}=\mathrm{C}<\mathrm{X} \quad: \quad \mathrm{X}=\mathrm{H} \geqslant \mathrm{Cl}>\mathrm{CH}_{3}>\mathrm{F}>\mathrm{R}_{\mathrm{F}} \geqslant \mathrm{OR}_{\mathrm{F}}$
It is readily evident that the relative reactivity of polyhalogenated unsaturated compounds with VF_{5} olearly indicates the eleotrophilio nature of this fluoride. However it seems untimely to judge about the iluorination meohanism.

EXPPERIMFNTIAL

The NMR spectra were recorded on a Varian A56/60A (${ }^{1} \mathrm{H}$ at $60 \mathrm{MHz},{ }^{19} \mathrm{~F}$ at 56.4 MHz) and WP 200 SY instruments (${ }^{19} \mathrm{~F}$ at $188,31 \mathrm{MHz})$. The internal standard is TMS $\left({ }^{1} H\right)$ and $C_{6} \mathrm{~F}_{6}\left(\mathrm{~F}^{19}\right)$. The IR speotra were recorded on a Specord IR 75 instrument in CCl_{4} solutions; mass-speotra, on a Finnigan MAT-2800 instrument.

Vanadium pentafluoride was synthesized by treatment of vanadium with fluorine in a flow system in a nickel reaotor. Before use VF_{5} was distilled [ref.].

TABLE 3
NNR speotral data

Compound ${ }^{19}{ }^{\text {F }}$ chemical shifts (ppm)	Coupling constants (Hz$)$

$\overline{a_{\delta(H)}} 1.61,{ }^{b_{\delta}}(H) 5.24,{ }^{\circ} \delta(H) 1.98$, $d_{\text {The }}{ }^{19}$ F NMR spectrum has been interpreted by M.V.Galakhov.
TABLR 4
IR speotral data

Compound	$v\left(\mathrm{~cm}^{-1}\right)$
"29" [8]	$\begin{aligned} & 3021,2959(\mathrm{C}-\mathrm{H}), 1454,1393,1368,1321,1300, \\ & 1249,1197,1159,1094,1043,996,927,917 \end{aligned}$
"30"(n.0.)	```2961, 2909 (C-H), 1706 (CF=CCH2 F), 1535, 1514, 1501, 1388, 1350, 1330, 1301, 1232, 1176, 1136, 1120, 1087, 1052, 1039, 985, 956, 932```
"34"(n.0.)	```1771 (CP=CF), 1702 (CF=CC 3F7), 1495, 1393, 1360, 1345, 1281, 1257, 1242, 1211, 1194, 1167, 1149, 1125, 1110, 1091, 1079, 1058, 1033, 982, 932```
"35"(n.0.)	```1695 (CF=CC3 P7), 1551, 1535, 1530, 1513, 1503, 1367, 1333, 1301, 1279, 1247, 1233, 1187, 1150, 1134, 1121, 1093, 1077, 1037, 977, 935```
"48"(n.0.)	1742 ($\mathrm{PC}=\mathrm{CF}$), 1357, 1285, 1246, 1229, 1220, 1179, 1145, 1104, 1070, 1037, 1017, 955, 855
"52"(n.o.)	```3019, 2954 (C-H), 1747 (PC=CF), 1367, 1311, 1298, 1243, 1193, 1164, 1140, 1115, 1086, 1060, 1038, 1007, 948, 923, 910```
"57"(n.0.)	$\begin{aligned} & 1540,1160,1125,1110,1084,1032,1005,964, \\ & 918,873,695,641 \end{aligned}$

TABLE 5
Analytioal data

Compound	Found/Calculated				Formula	$x^{+} \times$
	c	H	Cl	F		
"4"(n.c.) ${ }^{\text {b }}$	20.1		15.8	64.2	$\mathrm{C}_{8} \mathrm{Cl}_{2} \mathrm{~F}_{16}$	
	20.4		15.1	64.5		
"29" [8]	28.3	1.1		70.5	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~F}_{11}$	
	28.3	1.0		70.6		
"30"(n.0.)					$\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{~F}_{10}$	275.9964
						275.9997
"34"(n.0.)					$\mathrm{C}_{9} \mathrm{~F}_{14}$	373.9754
						373.9776
"35"(n.c.)					$\mathrm{C}_{9} \mathrm{~F}_{15}{ }^{\circ}$	392.9815°
						392.9760
"48"(n.c.)					$\mathrm{C}_{6} \mathrm{ClP}_{9}\left({ }^{35} \mathrm{Cl}\right) 277.9542$	
						277.9545
"52"(n.0.)	32.5	1.3		66.1	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~F}_{9}$	
	32.6	1.2		66.3		
"57"(n.c.) ${ }^{\text {d }}$	15.0		64.0	21.1	$\mathrm{C}_{4} \mathrm{Cl}_{6} \mathrm{P}_{4}$	
	14.2		63.2	22.5		

[^0] ${ }^{\circ}\left(\mathbf{M}^{+}-19\right), \mathrm{d}_{\text {B.p. }} 192-194^{\circ} \mathrm{C}$.

Pluorination with Vanadium Pentafluoride

Method A. An unsaturated compound and CPCl_{3} were placed into a polychlorotrifluoroethylene reactor provided with a Teflon stirrer and Teflon-coated thermocouple, and the mixture was cooled to -25 to $-20^{\circ} \mathrm{C}$. Then a solution of VF_{5} in an equal amount of CFCl_{3} was added portionwise, during stirring, at suoh a rate as to keep the temperature down at $-20^{\circ} \mathrm{C}$. The mixture was then agitated and poured onto ice. The organic layer was separated, washed with cold water, dried over MgSO_{4} or CaCl_{2}, and the solvent was distilled off. Known compounds were identified by using NNR and GLC analysis with addition or authentio samples: in all cases, identical values were recorded. New compounds were isolated by preparative GLC.
Method B. Into a 10 ml nickel tube, vanadium pentafluoride was placed, cooled to -20 to $-10^{\circ} \mathrm{C}$, and a fluorinated unsaturated compound (or its CPCl_{3} solution) was added. The tube was hermetioally olosed and shaken at the above temperature. The tube was cooled to -20 to $-10^{\circ} \mathrm{C}$ and the reaction mixture poured onto ioe. Then the mixture was treated as desoribed above.
Method C. The reaction was carried out as desoribed under Method B (without a solvent), but after having been kept for some time, the reaction products were distilled off from the tube to the trap $\left(-78^{\circ} \mathrm{C}\right)$. Then they were treated with water, dried and analysed.

Tables 3, 4 and 5 show the IR and NRR speotra and the analytioal data of new oompounds.

REFERENCES

1 V.V.Bardin, A.A.Avramenko, G.G.Furin, G.G.Yakobson, V.A.Krasilnikov, P.P.Tushin and A.I.Karelin, J.Pluorine Chem., 28 (1985) 37.
2 G.G.Furin, V.V.Bardin and A.A.Avramenko, The 5th Regular Meeting of Soviet-Japonese Fluorine Chemists. 25-26 JaN. 1988, Tokyo, Japan, IV-1.
3 A.A.Avramenko, V.V.Bardin, A.I.Karelin, V.A.Krasilnikov, P.P.Tushin, G.G.Furin and G.G.Yakobson, Zh.Org.Khim., 21 (1985) 822;Chem.Abstr.,103 (1985) 141551.

4 A.A.Avramenko, V.V.Bardin, A.I.Karelin, V.A.Krasilnikov, P.P.Tushin, G.G.Furin and G.G.Yakobson, Zh.Org.Khtm., $\underline{22}$ (1986) 2584; Chem. Abstr., 107 (1987) 217151.
5 W.T.Miller, M.B.Freedman, J.H.Fied and H.G.Koch, J.Am. Chem.Soc., 83 (1961) 4105.
6 E.P.Lurie, B.I.Dyatkin and I.L.Knunyants, Zh.Org.Khim., 7 (1971) 1835, Chem. Abstr., 76 (1972) 13451.
7 W.T.Miller, J.O.Stoffer, G.Fuller and A.C.Cirrie, J.Am.Chem.Soc., 86 (1964) 51.

8 Methylundecafluorocyolohexane has been desoribed in ref. [9] (m.p., b.p., elemental analysis, ${ }^{1} \mathrm{H}$ NNR), but no IR and ${ }^{19} \mathrm{~F}$ NMR spectra have been given.
9 D.R. Sayers, R.Stephens and J.C.Tatlow, J.Chem.Soc., (1964) 3035.

[^0]: NOTE : a ${ }^{\text {Prom }}$ high-resolution mass-spectrum, b.p. $140-141^{\circ} \mathrm{C}$,

