

Photolysis of nitric acid in solid nitrogen

WheiJen Chen, WenJui Lo, BingMing Cheng, and YuanPern Lee

Citation: The Journal of Chemical Physics **97**, 7167 (1992); doi: 10.1063/1.463541 View online: http://dx.doi.org/10.1063/1.463541 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/97/10?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in Nitrogen isotope exchange between nitric and nitrous acids J. Chem. Phys. **71**, 3570 (1979); 10.1063/1.438813

LightInduced cistrans Isomerization of Nitrous Acid Formed by Photolysis of Hydrazoic Acid and Oxygen in Solid Nitrogen J. Chem. Phys. **33**, 1008 (1960); 10.1063/1.1731324

Isotope Enrichment Factors for Nitrogen15 in the Nitric OxideNitric Acid Exchange System J. Chem. Phys. **31**, 232 (1959); 10.1063/1.1730299

Nitrogen Isotopic Fractionation between Nitric Acid and the Oxides of Nitrogen J. Chem. Phys. **30**, 1206 (1959); 10.1063/1.1730157

Molecular Structure of Nitrogen Dioxide and Nitric Acid by Electron Diffraction J. Chem. Phys. **8**, 738 (1940); 10.1063/1.1750810

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 82.40.156.237 On: Fri. 23 May 2014 10:28:39

Photolysis of nitric acid in solid nitrogen

Whei-Jen Chen, Wen-Jui Lo, Bing-Ming Cheng,^{a)} and Yuan-Pern Lee^{b)} Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, Taiwan 30043, Republic of China

(Received 16 June 1992; accepted 7 August 1992)

The large shifts $(-30.5 \text{ and } +41.7 \text{ cm}^{-1}$, respectively) of the IR absorption lines of nitric acid (HONO₂) in a N₂ matrix in the v_1 (OH stretching) and v_3 (HON bending) vibrational modes, relative to those observed for HONO₂ in an Ar matrix, indicate a strong interaction between HONO₂ and N₂. Photolysis of HONO₂ in solid Ar produced predominantly HOONO, whereas relatively intense lines of N₂O and HONO were observed after photolysis of HONO₂ in solid N₂ with a mercury lamp, with the relative yield of HOONO decreased by more than a factor of 10. Possible photochemical processes are discussed.

I. INTRODUCTION

The reaction of $OH + NO_2$ to form nitric acid (HONO₂)

$$OH + NO_2 + M \to HONO_2 + M$$
 (1a)

is important in the atmosphere. There has been speculation that peroxynitrous acid (HOONO) might also be formed via a second reaction channel^{1,2}

$$OH + NO_2 + M \rightarrow HOONO + M.$$
 (1b)

However, the search for the IR absorption of HOONO in the gaseous reaction of OH with NO₂ was unsuccessful; when Burkholder *et al.*³ used a high-resolution Fouriertransform infrared (FTIR) spectrometer coupled with a rapid-flow multipass absorption cell they failed to observe any IR absorption in the range 1850–3850 cm⁻¹ that they could ascribe to HOONO.

Recently when we irradiated HONO₂ in solid Ar at 12 K with various sources of ultraviolet light we observed IR absorption of HOONO.⁴ IR absorption lines at 3545.5, 1703.6, 1364.4, 952.0, and 772.8 cm⁻¹ were assigned to various vibrational modes of HOONO on the basis of isotopic shifts. Under certain experimental conditions a second set of lines displaced 5–18 cm⁻¹ from the former lines toward greater wave number were also observed; they were attributed to HOONO in a less stable site in the Ar matrix.

The observed vibrational frequencies of v_1 (OH stretching) and v_3 (HON bending) of HONO₂ in solid Ar, although similar to those in the gas phase, were quite different from those reported previously for HONO₂ in solid N₂ by Guillory and Bernstein.⁵ These anomalous matrix shifts indicate a strong interaction between HONO₂ and N₂. These conditions warrant an investigation whether the photochemistry of HONO₂ isolated in solid N₂ differs from that in solid Ar as a consequence of the strong interaction between matrix guest and host. We found that the yield of HOONO was small after photolysis of HONO₂ in the N₂ matrix and that there were additional products of photol-

ysis, N_2O and HONO. We report here these observations and compare the photochemistry of HONO₂ in solid Ar and N_2 .

II. EXPERIMENT

The experimental setup is a typical matrix-isolation/ FTIR arrangement described previously.⁴ The sample support was a CsI window cooled to 12 K. Windows of KBr and fused silica were mounted on the vacuum shroud along the axes of the IR (probe) and the photolysis beams, respectively. Various photolysis light sources have been employed: a low-pressure Hg lamp, a 100 W medium-pressure Hg lamp, a Nd-YAG laser (266 nm and 355 nm, 10 Hz, Spectra Physics, Model DCR-11 or DCR-2), a XeCl excimer laser (308 nm, 10-50 Hz, Lambda Physik, LPX105), and a KrF excimer laser (248 nm, 10-200 Hz, Lambda Physik, LPX120i). The photolysis radiation was projected from either the same side or the opposite side of the deposition surface. When the photolysis radiation was projected from the opposite side of the deposition surface, the CsI target window served as a filter. We placed proper filters in front of the Hg lamp in order to select the emission of the desired wavelength.

IR absorption spectra of the matrix were recorded before and after irradiation by means of a FTIR spectrometer (Bomem DA3.002) equipped with a KBr beam splitter and a narrow-range Hg/Cd/Te detector cooled with liquid N₂ to cover the spectral range 700-4000 cm⁻¹. Occasionally, a wide-range Hg/Cd/Te detector was used to extend the range to 500 cm⁻¹, although its detectivity is relatively poor. Typically 300-500 scans were collected and the spectral resolution was 0.5 cm⁻¹.

UV absorption spectra were recorded with an optical multichannel analyzer (EG&G, OMAIII with a 1420BR array detector). A deuterium lamp (Hamamatsu, 150W, model L1835) was used as a light source. The emission, passed through a neutral density filter and the matrix sample, was dispersed with a monochromator (Jobin Yvon, HR320) before detection. The reciprocal linear dispersion of the monochromator is 2.5 nm/mm, and the slit width was 40 μ m. Each frame of the optical multichannel analyzer (OMA) spectrum covered the wavelength range of

^a'Present address: Synchrotron Radiation Research Center, Hsinchu, Taiwan, R. O. C.

^{b)}To whom correspondence should be addressed. Also affiliated with the Institute of Atomic and Molecular Science, Academia Sinica, Taiwan, R. O. C.

FIG. 1. IR absorption spectra of matrix samples of HONO₂/Ar (1/5000, trace A) and HONO₂/N₂ (1/5000, trace B).

 \sim 43 nm; five frames of the spectra were combined to cover the spectral range 200–400 nm.

The molar fraction of nitric acid in Ar or N₂ was varied from 1/1000 to 1/10000 for IR detection and 1/100 to 1/1000 for UV detection. Typically approximately (4–8) $\times 10^{-3}$ mol of gas mixture was deposited with a flow rate (4–9) $\times 10^{-3}$ mol h⁻¹ during a period 30–60 min. In a few experiments, special care was taken to eliminate trace H₂O from the system. However, the experimental results of the matrices with trace H₂O and without H₂O showed no differences.

The various anhydrous isotopic species of HONO₂ were prepared by mixing concentrated (98%) sulfuric acid (or deuterated sulfuric acid) with sodium nitrate (99.5%, ¹⁴N or ¹⁵N species). The product was distilled under vacuum and stored at 195 K in the dark. HONO was prepared by reacting NaNO₂ with concentrated sulfuric acid. The isotopic purity of D₂SO₄ and Na¹⁵NO₃ was 99%. Ar (99.9995%) and N₂(99.999%) were used without further purification.

III. RESULTS AND DISCUSSION

A. IR absorption of HONO₂ in Ar and N₂ matrices

The observed IR absorption spectra of three isotopic species of $HONO_2$ isolated in solid N_2 are within experi-

mental uncertainties of those reported previously by Guillory and Bernstein.⁵ Figure 1 shows the IR absorption spectra of HONO₂ isolated in solid Ar and N₂. The OHstretching (v_1) mode shifted from 3522.3 to 3491.8 cm⁻¹ whereas the HON-bending (v_3) mode shifted from 1304.4 to 1346.1 cm⁻¹, as the matrix host was altered from Ar to N₂. Table I compares the fundamental vibrational frequencies of HONO₂ in the gas phase,⁶⁻¹¹ in solid N₂, and in solid Ar. The matrix shifts (from the values in the gas phase) for the OH stretching (v_1) and HON bending (v_3) are only -27.7 and 1.9 cm⁻¹ for the Ar matrix, respectively, whereas the shifts increase to -58.2 (-1.6%) and 43.6 cm⁻¹ (3.3%) for the N₂ matrix.

These matrix shifts much exceed what one normally expects for closed-shell molecules isolated in an inert medium.¹² The opposite direction of the shifts for v_1 and v_3 suggests that the OH group of HONO₂ interacts with another molecule. As the interaction weakens the O–H bond, consequently the vibrational frequency of OH stretching decreases; as it also restricts the motion of the H atom, hence the HON bending frequency increases. The possibility of the formation of dimers of HONO₂ in the N₂ matrix, which also give the same trend in the frequency shifts, is eliminated because the spectrum remained constant when the mole ratio was varied from 10^{-3} - 10^{-4} . Guillory and Bernstein⁵ previously reported a change in vibrational

Assignments	HONO ₂				HO ¹⁵ NO ₂			DONO ₂				
	Gas ^b	N ₂ ^c	N ₂ ^a	Ar ^d	Gas ^b	N ₂ ^c	N ₂ ^a	Ar ^a	Gas ^b	N ₂ ^c	N ₂ ^a	Ar ^a
v ₁ , HO stretch	3550	3490	3491.8	3522.3 3519.3	3550	3488	3491.5	3522.2 3519.0	2622	2574	2576.5	2601.5 2599.1
v_2 , NO ₂ <i>a</i> stretch	1709.6°	1697	1698.3	1699.4 1696.2	1672	1659	1663.2	1663.8 1660.7	1687	1669	1669.2	1678.6 1674.9
v ₃ , HON bend	1302.5 ^f	1343	1346.1	1304.4	1321	1339	1341.5	1289.6	1014	1031	1032.4	1013.4
v_4 , NO ₂ s stretch	1325.6 ^f	1311	1311.9	1321.4 1318.7	1327	1294	1295.0	1317.5 1314.2	1308	1311	1311.1	1310.4
v ₅ , ON stretch	879.1 ⁸	902	903.1	896.9 889.5	871	892	892.8	888.8 876.6	888	905	906.0	894.2 884.5
v _o , NO ₂ scissors	646.8 ^h	660	664.1	656.6	647	658	662.4	į	641	660	k	j
v_7 , ONO ₂ in-plane bend	580.3 ^h	597	597.5	588.0	578	594	593.5	j	541	559	559.9	j
v_8 , ONO ₂ out-of-plane bend	763.2 ^h	767	767.7	763.6	744	746	748.0	744.6	762	767	767.7	763.7
v_{9} , HON torsion	458.2 ⁱ	479	j	j	456	479	j	j	342	361	j	į

*This work.

^bReference 6, unless noted.

^cReference 5.

^fReference 8; v_3 listed as 1330 cm⁻¹ in Ref. 6.

⁸Reference 9.

^hReference 10.

'Reference 11.

Beyond the detection range of our experiments.

^kToo weak to be observed.

wave numbers from 3490 to 3280 cm⁻¹ for the OHstretching mode and 1343 to 1398 cm⁻¹ for the HONbending mode when some HONO₂ monomers were converted to dimers by diffusion due to warming of the matrix. Hence, we conclude that HONO₂ interacts with the N₂ matrix host.

Similar effects are expected for similar molecules such as HONO. For *t*-HONO, the OH stretching shifted from 3590.7 to 3552 cm⁻¹ and the HON bending shifted from 1263.2 to 1298 cm⁻¹ when the molecule was changed from the gaseous to the N₂-matrix-isolated state.¹³⁻¹⁵ Based on the magnitude of the matrix shifts, the interaction between HONO₂ and N₂ is relatively weaker than the H bonding in the dimeric HONO₂.

The nature of the interaction between $HONO_2$ and the N_2 matrix is not exactly clear on the basis of our experimental results. N_2 matrix is known to have a smaller cage, so that steric effects are greater than that in an Ar matrix; hence the motion of the guest molecules is more restricted in a N_2 matrix than in an Ar matrix. It is also possible that a six-membered ring structure of the HONO₂ $\cdot N_2$ complex exists in the matrix.

The classical resonance structure indicates that the HO–N bond in HONO₂ would be strengthened and the N₂attached N==O bond weakened as a result of the interaction. With such a constraint of the structure, one would expect that, in addition to the relatively large shifts in v_1 and v_3 discussed above, an increase in v_5 (HO–N stretching), a decrease in v_4 (NO₂ s stretching), and possible increases in v_6 (NO₂ scissor), v_7 (ONO₂ in-plane bending), v_8 (ONO₂ out-of-plane bending), and v_9 (HON torsion) due to the added strain of motion. Indeed a decrease in v_4 (-9.5 cm⁻¹) and increases in v_5-v_8 (6.2, 7.5, 9.5, 4.1 cm⁻¹) were observed when the matrix host was altered from Ar to N₂.

B. Photolysis of HONO₂ in Ar and N₂ matrices

The product of photolysis in a HONO₂/Ar matrix with a medium-pressure Hg lamp was predominantly HOONO;⁴ weak absorption lines due to OH (3548.1 cm⁻¹), HNO (2715.4 and 1562.2 cm⁻¹), NO₂ (1610.8 cm⁻¹), and NO (1871.7 cm⁻¹) as photolysis products were also observed. The results are shown in trace A of Fig. 2. The line positions of various isotopic HOONO in solid Ar and N₂ are listed in Table II.

When $HONO_2$ in a N_2 matrix was photolyzed with a medium-pressure Hg lamp, HOONO was formed in a relatively small yield, as shown in trace B of Fig. 2. After a comparable amount of HONO₂ was decomposed in solid N_2 , the yield of HOONO was less than 10% that observed in an Ar matrix. In addition to the weak absorption of

J. Chem. Phys., Vol. 97, No. 10, 15 November 1992 82.40 156.237 OF Fr. 23 May 2014 10.28:39

^dReference 4.

^eReference 7.

FIG. 2. IR absorption spectra of matrix samples of HONO₂/Ar (1/5000, trace A) and HONO₂/N₂ (1/5000, trace B) after irradiation with a medium-pressure Hg lamp. The absorption lines are labeled as HOONO (*); *t*-HONO (*t*); *t*-HONO (*c*).

HOONO (marked * in Fig. 2), NO₂ (1616.0 cm⁻¹), OH (3546.6 cm⁻¹), and NO (1874.9 cm⁻¹), relatively intense absorption due to N₂O (2235.5, 2237.1, 2240.1, 2241.9 cm⁻¹), and *t*-HONO (3517.8, 1681.5, 1295.7, 812.6 cm⁻¹, marked *t* in Fig. 2) was also observed after UV photolysis

TABLE II. Comparison of fundamental vibrational frequencies (in cm^{-1}) of various isotopic HOONO in solid Ar and N_2 .^a

	HOO	NO	HOO ¹	5NO	DOONO		
Modes	in Ar	in N ₂	in Ar	in N ₂	in Ar	in N ₂	
HO stretch	3545.5 (3563.3) ^b	3541.7	3545.7	3540.7	2615.4 (2633.5)	2622.3	
N=O stretch	1703.6 (1708.3)	1701.4	1673.8 (1678.3)	1671.2	1703.7 (1708.3)	1701.8	
HOO bend	1364.4 (1372.7)	1394.9	1364.1 (1372.5)	1393.5	1089.7 (1091.7)	1090.7	
OO stretch	952.0 (957.4)	960.5	947.7 (953.3)	956.3	950.3 (955.7)	957.3	
ON=O bend	772.8 (782.9)	793.6	764.0 (774.0)		772.1 (782.0)	790.3	

^aThe ON stretching, ON=O torsional, OON bending, and HOO torsional modes are all below 500 cm⁻¹, beyond our detection limit. ^bNumbers in parentheses correspond to HOONO in a less stable matrix site. of the HONO₂/N₂ matrix. Weak lines due to *c*-HONO (3406.3, 1632.7, 871.0 cm⁻¹, marked *c* in Fig. 2) were also observed in a few experiments.

The observed fundamental vibrational frequencies (in cm^{-1}) of various isotopic HOONO in solid Ar and N₂ are compared in Table II. Similar to those observed in HONO₂, the wave numbers for the HOO bending and the ON=O bending modes increased substantially as the matrix host was altered from Ar to N₂.

In order to assign correctly the absorption lines of the products after photolysis, we have also recorded IR absorption spectra of several possible products isolated in solid N₂. The IR spectrum of a N₂O/N₂ (1/5000) matrix showed absorption lines at 1291.1 (v_1 , NO stretching) and 2235.5 (v_3 , NN stretching), in excellent agreement with previous measurements.¹⁶ After the matrix was warmed to approximately 23 K for 10 min, a small absorption line at 2239.8 cm⁻¹ was observed, presumably due to aggregates of N₂O. Our observation of a weak line at 2235.5 cm⁻¹ after photolysis of a HONO₂/N₂ matrix corresponds well with the absorption of isolated N₂O; the more intense lines observed at 2237.1 and 2241.9 cm⁻¹ may be due to N₂O perturbed by a nearby molecule.

The IR spectrum of a HONO/ N_2 (1/1000) matrix

TABLE III. Comparison of the products of photolysis of $\rm HNO_3/N_2$ matrices from various light sources.^ $\rm a$

		Photolytic sources				
Species	Line /cm ⁻¹	low-P Hg lamp (2 h)	med-P Hg lamp (2 h)	KrF 248 nm (1 h 35 min)		
ОН	3546.6	0.82	0.39	•••		
NO	1874.9	2.40	0.67	1.20		
N ₂ O	2235.5	1.23	3.10	3.16		
HOONO	1701.4	3.70	0.57	•••		
t-HONO	1681.5	0.90	0.57			
NO ₂	1616.0	2.64	4.16	8.88		
Photolysis efficiency ^b	0.17	0.42	0.41			

^aThe numbers listed are the ratios of the peak absorbance of the product at the listed wave numbers to the decrease in peak absorbance of HONO₂ at 767.7 cm⁻¹.

^bFraction of the decrease in peak absorbance of HONO₂ at 767.7 cm⁻¹.

showed absorption lines at 3517.8, 1681.1, 1296.3, and 814.4 cm⁻¹ due to *t*-HONO and 3406.3, 1630.7, and 871.0 cm⁻¹ due to *c*-HONO. The values are within experimental uncertainties of previous reports.^{14,15} The line observed at 3517.8, 1681.5, 1295.7, and 812.6 cm⁻¹ after photolysis of HONO₂/N₂ matrix correspond well to those of the HONO/N₂ matrix.

Several photolytic sources other than the Hg lamps have also been tested; no additional features were observed. Table III summarizes the relative peak absorbance of various products of photolysis by different photolytic sources; it may be compared with a similar one (Table III) in the previous report for the photolysis of a HONO₂/Ar matrix.⁴ Unlike that observed in Ar matrix, photolysis of HONO₂/ N₂ matrix at 308 nm (XeCl laser) or 266 nm (fourth harmonic of Nd-YAG laser) produced no detectable product. When a medium-pressure Hg lamp was used as a photolysis source, HOONO was observed with a yield approximately 9% that produced in the Ar matrix; relatively intense lines due to NO₂ and N₂O were observed instead. The results are similar except that the yield of HOONO was increased when a low-pressure Hg lamp (254 nm) was used. The spectrum of the HONO₂/ N_2 matrix sample photolyzed at 248 nm (KrF excimer laser) also showed a relatively small yield of HOONO and relatively intense lines due to N_2O and NO_2 , when compared with that of HONO₂/Ar.

C. Mechanism of photolysis

In the gas phase, photolysis of $HONO_2$ proceeds via several paths depending on the wavelength¹⁷

$$HONO_{2} \xrightarrow{h\nu} OH + NO_{2}, \quad D_{0} = 2.07 \pm 0.02 \text{ eV}, \quad (3a)$$
$$\xrightarrow{h\nu} O(^{3}P) + HONO, \quad D_{0} = 3.11$$
$$\pm 0.01 \text{ eV}, \quad (3b)$$

$$\xrightarrow{h\nu} \mathrm{H}(^{2}S) + \mathrm{NO}_{3}, \quad D_{0} = 4.3 \pm 0.3 \text{ eV}, \tag{3c}$$

$$\xrightarrow{h\nu} O(^{1}D) + HONO, \quad D_{0} = 5.08$$
$$\pm 0.01 \text{ eV}. \quad (3d)$$

The dissociation energies correspond to wavelengths 599, 399, 288, and 244 nm, respectively, for channels (3a)-(3d). Johnston *et al.*¹⁸ analyzed the end products of photolysis in the range 200–315 nm and reported a quantum yield ~1 for channel (3a). At 266 nm, the quantum yield for the production of O atoms has been determined to be 0.03 by Margitan and Watson.¹⁹ Recently, Vaghjiani and Ravishankara²⁰ reported quantum yields of 0.95±0.09 for channel (3a) and 0.031±0.010 for channel (3b), with negligible quantum yields for channels (3c) and (3d), for the photolysis of HONO₂ at 248 nm. It appears that for $\lambda \ge 250$ nm, OH and NO₂ are the only major products in the gas phase.

Photolysis of NO₂ produces O and NO (Ref. 17)

$$NO_2 \xrightarrow{h\nu} O({}^{3}P) + NO, \quad D_0 = 3.12 \pm 0.01 \text{ eV}, \quad (4a)$$

$$\longrightarrow O(^{1}D) + NO, \quad D_{0} = 5.09 \pm 0.01 \text{ eV}.$$
 (4b)

The dissociation energies in the gas phase correspond to wavelengths 398 and 244 nm for channels (4a) and (4b), respectively. Photolysis of HONO proceeds via¹⁷

$$HONO \xrightarrow{hv} OH + NO, \quad D_0 = 2.09 \pm 0.03 \text{ eV}, \quad (5a)$$

$$\xrightarrow{n_V} H + NO_2, \quad D_0 = 3.36 \pm 0.03 \text{ eV}. \tag{5b}$$

The dissociation energies in the gas phase correspond to wavelengths 593 and 369 nm for channels (5a) and (5b), respectively.

The photolytic processes of HONO₂ in solid Ar are readily deduced. Photolysis of HONO₂ at 254 nm yielded predominantly OH and NO₂. The matrix cage effect prevents the separation of some photolyzed pairs; recombination of OH and NO₂ forms both HONO₂ and HOONO. Hence, in addition to OH and NO₂, HOONO is the major product of photolysis. Further photolysis of NO₂ produces NO. The small amount of HONO observed in the experiments may result from the reaction of OH with NO.

As the photolytic processes of HONO₂ in solid N₂ differ from those in solid Ar, the observed products differ. An increased threshold of photolysis and a decreased yield of HOONO were observed. Furthermore, relatively intense lines due to NO₂, N₂O, and HONO were detected. The decreased yield of HOONO in the N₂ matrix is rationalized by the hypothesis that the OH photofragment in solid N₂ may move less freely than in solid Ar because of its strong interaction with the N₂ matrix; hence it is relatively more difficult to form HOONO than HONO₂ because the OH radical must travel further in order to attack the O atom of NO₂ so to form HOONO. The increased photolysis threshold for the production of HOONO is also consistent with such a scheme; the OH fragment in solid N₂ needs more

FIG. 3. UV absorption spectra of matrix samples of $HONO_2/N_2$ (1/100, 1/250, and 1/500, trace A–C) and $HONO_2/Ar$ (1/100 and 1/250, trace D and E).

excess energy after photolysis than that in solid Ar in order to overcome the binding from the nearby N_2 host and to move around to form HOONO.

The observation of N₂O as a product of photolysis suggests that $O({}^{1}D)$ was formed. $O({}^{1}D)$ reacts readily with N₂ to form N₂O,²¹

$$O(^{1}D) + N_{2} \rightarrow N_{2}O \tag{6}$$

whereas $O({}^{3}P)$ does not react with N₂ in matrix due to symmetry correlation. There are two possible sources of $O(^{1}D)$: the secondary photolysis of NO₂ [reaction (4b)] or the direct photofragmentation of HONO₂ [reaction (3d)]. We have also studied the photolysis of NO_2 in solid N_2 ; when the matrix sample containing NO_2/N_2 (1/25 000) was irradiated with a low-pressure Hg lamp which emitted mainly at 254 nm, neither N₂O nor NO was detected. These products were observed when the sample was irradiated with a medium-pressure Hg lamp or a KrF laser (248 nm). In contrast, photolysis of the HONO₂/N₂ matrix with a low-pressure Hg lamp produced a substantial proportion of N₂O, among other products listed in Table III. The results indicate that at 254 nm the observed photolysis product N₂O did not result from secondary photolysis of NO₂; therefore, the most likely source of $O(^{1}D)$ is the direct photolysis of HONO₂, reaction (3d). The increased yield of HONO also supports that channel (3d) occurred. The formation of the N₂O/HONO pair is similar to the reported formation of the H₂CO/HNO pair in the photolysis of a H₃CONO/Ar matrix.^{22,23}

The threshold energy for the production of $O({}^{1}D)$ from photolysis of HONO₂ in the gaseous phase is 5.08 eV (corresponding to 244 nm), slightly greater than the 4.88 eV of the 254 nm photons. As the interacted N=O bond in HONO₂ may be weakened, and as the excited states are normally more stabilized than the ground state by the ma-

trix interaction, the threshold energy for channel (3d) in solid N_2 may be decreased to below 4.88 eV.

To investigate further this problem, we have measured the UV absorption spectra of HONO₂/Ar and HONO₂/N₂ matrices at various concentrations, as shown in Fig. 3. To minimize the interference due to the scattering of the matrix, the absorption spectra of pure matrix hosts have been subtracted from those of the matrices containing HONO₂. Absorption spectra at ratios of $HONO_2/Ar = 1/100$ and 1/250 are shown in traces D and E of Fig. 3; the spectra are similar except that the absorbance changes with the concentration of HONO2. The absorption spectrum of $HONO_2$ in solid Ar is similar to that observed in the gas phase. Absorption spectra at ratios of $HONO_2/N_2 = 1/$ 100, 1/250, and 1/500 are shown in traces A-C of Fig. 3. The increased background absorption throughout the 200-400 nm region indicates that the N₂ lattice changed substantially when HONO₂ was present. In addition, an absorption band in the region 240-300 nm which increases with the concentration of HONO₂ was observed. This effect further supports our conclusion that N2 interacts with $HONO_2$ and that the dissociation threshold of $HONO_2$ [to form $O(^{1}D)$] is decreased in solid N₂ due to the interaction.

In summary, the interaction between HONO₂ and N₂ host has a great effect on the photolytic processes of HONO₂ induced by UV light. The decreased yield and the increased threshold for the formation of HOONO suggests that the interaction between HONO₂ and N₂ host restricts the motion of the OH photofragments. Furthermore, the relatively intense lines due to N₂O [from reaction of O(¹D) with N₂] and HONO which were not observed in a photolyzed HONO₂/Ar matrix suggests that the interaction also decreases the photodissociation threshold of the photolytic channel HONO₂ $\rightarrow O(^{1}D) + HONO$.

ACKNOWLEDGMENT

We thank the National Science Council of the Republic of China for support of this research (Contract No. NSC81-0417-M-007-02).

- ¹J. S. Robertshaw and I. W. M. Smith, J. Phys. Chem. 86, 785 (1982).
- ²R. Atkinson, W. P. L. Carter, and A. M. Winer, J. Phys. Chem. 87, 2012 (1983).
- ³J. B. Burkholder, P. D. Hammer, and C. J. Howard, J. Phys. Chem. **91**, 2136 (1987).
- ⁴B.-M. Cheng, J.-W. Lee, and Y.-P. Lee, J. Phys. Chem. **95**, 2814 (1991).
- ⁵W. A. Guillory and M. L. Bernstein, J. Chem. Phys. **62**, 1058 (1975). ⁶G. E. McGraw, D. L. Bernitt, and I. C. Hisatsune, J. Chem. Phys. **42**,
- 237 (1965). ⁷A. G. Maki, J. Mol. Spectrosc. **127**, 104 (1988).
- ⁸A. Perrin, O. Lado-Bordowsky, and A. Valentin, Mol. Phys. 67, 249 (1989).
- ⁹A. G. Maki and J. S. Wells, J. Mol. Spectrosc. 108, 17 (1984).
- ¹⁰A. G. Maki and W. B. Olson, J. Mol. Spectrosc. 133, 171 (1989).
- ¹¹A. Goldman, J. B. Burkholder, and C. J. Howard, J. Mol. Spectrosc. 131, 195 (1988).
- ¹²M. E. Jacox, J. Mol. Spectrosc. 113, 286 (1985).
- ¹³G. E. McGraw, D. L. Bernitt, and I. C. Hisatsune, J. Chem. Phys. 45, 1392 (1966) and references therein.
- ¹⁴P. A. McDonald and J. S. Shirk, J. Chem, Phys. 77, 2355 (1982).
- ¹⁵R. T. Hall and G. C. Pimentel, J. Chem. Phys. 38, 1889 (1963).

- ¹⁶J. R. Sodear and R. Withnall, J. Phys. Chem. 89, 4484 (1985).
- ¹⁷ H. Okabe, *Photochemistry of Small Molecules* (Wiley, New York, 1978).
- ¹⁸ H. S. Johnston, S.-G. Chang, and G. Whitten, J. Phys. Chem. 78, 1 (1974).
- ¹⁹ J. J. Margitan and R. T. Watson, J. Phys. Chem. 86, 3819 (1982).
- ²⁰A. A. Turnipseed, G. L. Vaghjiani, J. E. Thompson, and A. R. Ravishankara, J. Chem. Phys. **96**, 5887 (1992).
- ²¹W. B. DeMore and N. Davidson, J. Am. Chem. Soc. **81**, 5869 (1959).
- ²² M. E. Jacox and F. L. Rook, J. Phys. Chem. 86, 2899 (1982).
 ²³ R. P. Müller, P. Russegger, and J. R. Huber, Chem. Phys. 70, 281 (1982).