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Abstract. We consider analytically coupled circle maps (uniformly expanding and analytic)
on theZd -lattice with exponentially decaying interaction. We introduce Banach spaces for
the infinite-dimensional system that include measures whose finite-dimensional marginals
have analytic, exponentially bounded densities. Using residue calculus and ‘cluster
expansion’-like techniques we define transfer operators on these Banach spaces. We get
a unique (in the considered Banach spaces) probability measure that exhibits exponential
decay of correlations.

0. Introduction
Coupled map lattices were introduced by Kaneko (cf. [12] for a review) as systems that
are mixing w.r.t. spatio–temporal shifts. Bunimovich and Sinai proved in [6] (cf. also the
remarks on this in [3]) the existence of an invariant measure and its exponential decay
of correlations for a one-dimensional lattice of weakly coupled maps by constructing a
Markov partition and relating the system to a two-dimensional spin system.

Bricmont and Kupiainen extend this result in [2–4] to coupled circle maps over the
Zd -lattice with analytic and H¨older-continuous weak interaction, respectively. They
use a ‘polymer’ or ‘cluster’-expansion for the Perron–Frobenius operator for the finite-
dimensional subsystems over3 ⊂ Zd and write thenth iterate of this operator applied
to the constant function one in terms of potentials for a(d + 1)-dimensional spin system.
Taking the limit asn → ∞ and3 → Zd they get existence and uniqueness (among
measures with certain properties) of the invariant probability measure and exponential
decay of correlations.

Baladiet al define in [1], for infinite-dimensional systems over theZd -lattice, transfer
operators on a Frechet space and, ford = 1, on a Banach space; they study the
spectral properties of these operators, viewing the coupled operator as a perturbation of
the uncoupled operator in the Banach case.

In [13] Keller and Künzle consider periodic or infinite one-dimensional lattices of
weakly coupled maps of the unit interval. In particular they define transfer operators on
the spaceBV of measures whose finite-dimensional marginals have densities of bounded
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variation and prove the existence of an invariant probability measure. For the infinite-
dimensional system they further show that for a small perturbation of the uncoupled map
any invariant measure inBV is close (in a specified sense) to what they found. Coupled
map lattices with multi-dimensional local systems of the hyperbolic type have been studied
by Pesin and Sinai [16], Jiang [8, 9], Jiang and Mazel [10], Jiang and Pesin [11] and
Volevich [18, 19]. Detailed surveys on coupled map lattices can be found in [5, 11, 3].

In the above papers (except [1, 13]) the analysis has been performed only for Banach
spaces defined for finite subsets3 of the lattice, and the (weak) limit of the invariant
measure for3 → Zd was taken afterwards. Here we present a new point of view in
which a natural Banach space and transfer operators are defined for the infinite lattice of
weakly coupled analytic maps (§1). The space contains consistent families of analytic
densities over finite subsets ofZd . We take a weighted sup-norm so that the sup-norms
of the densities for the subsystems over finitely many (sayN) lattice points is bounded
exponentially inN (§2). We identify an ample subset of this space with a set ofrca
(regular, countably additive) measures (§4) that contains the unique invariant probability
density (§2). We derive exponential decay of correlations for this measure and a certain
class of observables from (the proof of) the spectral properties of our transfer operators
(§§2 and 7). The operator for the coupled system and also the invariant measure are (for a
small interaction) in fact perturbations of their counterparts in the uncoupled case. So the
mixing properties are inherited from the single site systems. §8 contains the proofs.

Our approach provides a natural setting for an analysis of the fullZd Perron–Frobenius
operator in terms of cluster expansions over finite subsets of the lattice. Using residue
calculus we introduce an integral representation for the Perron–Frobenius operator for
finite-dimensional subsystems (§3) which yields a uniform control over the perturbation
and also gives rise to an easy approach to stochastic perturbation (cf. [15]) which, however,
we do not consider here.

Our ‘cluster expansion’ combinatorics (§5) uses ideas from the work of Maes and
Van Moffaert [15] who have introduced a simplified (compared to that in [2]) polymer
expansion. Apart from the analysis of the one-dimensional operator, which is fairly
standard and for which we refer to for example [2], the paper should be self-contained.

1. General setting
We consider coupled map lattices in the following setting: the state space isM = (S1)Z

d

whereS1 = {z ∈ C | |z| = 1} is the unit circle in the complex plane andd a positive
integer.

The mapS : M → M is the compositionS = F ◦ T ε of a coupling mapT ε depending
on a (small) non-negative parameterε and another parameter for the decay of interaction
(cf. (1)) with an (uncoupled) mapF that acts on each component ofM separately. We
make the following assumptions.

Assumption 1.F(z) = (fp(zp))p∈Zd wherefp : S1→ S1 are real analytic and expanding
(i.e. f ′p ≥ λ0 > 1) maps that extend for someδ1 holomorphically to the interior of an

annulusAδ1
def= {z ∈ C | −δ1 ≤ ln |z| ≤ δ1} and the family of Perron–Frobenius operators

Lfp for the single site systems uniformly satisfies a condition specified in §5.1 below (31).
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(We need some more definitions to specify these conditions, but note that they are, in
particular, satisfied if allfp are the same.)

We writeT ε : M → M asT ε(z) = (T εp (z))p∈Zd andT εp (z) = zp exp[2πiεgp(z)] with

gp(z) = ∑∞
k=1 gp,k(z). The functiongp,k is real valued on(S1)Z

d
and depends only on

thosezq with ‖p − q‖ ≤ k (neighbours of distance at most k) where‖p‖ def= ∑d
l=1 |pl |.

We writeBk(p) = {q ∈ Zd | ‖p − q‖ ≤ k} and also denote bygp,k the function from the
finite-dimensional torus(S1)Bk(p) toR. We assume the following for the functionsgp,k.

Assumption 2.For all p ∈ Zd andk ≥ 1 each mapgp,k extends to a holomorphic map

gp,k : ABk(p)δ1
→ C and its sup-norm (of modulus) is exponentially bounded by

‖gp,k‖
A
Bk(p)

δ1

≤ c1 exp(−c2k
d) (1)

with c1 > 0 andc2 larger than a certain constant specified in (100).
The parameterc1 is actually redundant as it is multiplied byε in the definition ofT εp .

We also have exp(−c2k
d) ≤ exp(−ξ) exp(−c∗2kd) for c∗2 = c2 − ξ, ξ > 0, i.e. for anyε

we can make the interaction small just by takingc2 large. However, once we have chosen
c2 large enough to guarantee the convergence of the infinite sums in our analysis we can
consider perturbations of the uncoupled map depending on the parameterε only.

With the metric

dγ (x, y)
def= sup

p∈Zd
γ ‖p‖‖xp − yp‖ (2)

for 0 < γ < 1 (M, dγ ) is a compact metric space. Its topology is the product topology

on (S1)Z
d
. The Borelσ -algebraB onM is the same as the productσ -algebra.F and

T ε are continuous and measurable. LetC(M) denote the space of real-valued continuous
functions on(M, dγ ) with the sup-norm andµ the Lebesgue (product) measure onM.

For31 ⊆ 32 ⊆ Zd , with31 finite and an integrable functionψ onM depending only
on the32-coordinates, we define the projection

(π31ψ)(z31)
def=
∫
(S1)32\31

dµ32\31 (z32\31)ψ(z31 ∨ z32\31). (3)

2. Main results
For finite 3 ⊂ Zd let H(A3δ ) be the space of continuous functions on the closed
polyannulusA3δ that are holomorphic on its interior and write‖ · ‖3 for the sup-norm (of
modulus) onH(A3δ ). LetF be the set of all finite subsets (including∅) of Zd . We denote
byH the vectorspace of all consistent familiesφ = (φ3)3∈F of functionsφ3 ∈ H(A3δ ).
Consistency meansπ31φ32 = φ31 for31 ⊆ 32 ∈ F . We writeµ(φ)

def= φ∅.
We want to define a norm on a (sufficiently large) subspace ofH that should at least

contain ‘product densities’ such ash = (h3)3∈F with h3(z) = ∏
p∈3 hp(zp), where

hp ∈ H(A{p}δ ) is the invariant probability density for the single system over{p} (cf. §5.1).
Because of (32) the sup-norm‖h31‖31 does not grow faster than exponentially in|31|.

Therefore we take a weighted sup-norm. For 0< ϑ < 1 we define

‖φ‖ϑ def= sup
3∈F

ϑ |3|‖φ3‖3 (4)
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and setHϑ def= {φ ∈ H | ‖φ‖ϑ < ∞}. Then(Hϑ , ‖ · ‖ϑ) is a Banach space. In fact, if
(φn)n∈N is a Cauchy sequence in(Hϑ , ‖ · ‖ϑ) then for each3 ∈ F the sequence(φn3)n∈N
is Cauchy in the Banach space(H(A3δ ), ‖ · ‖A3δ ) and so converges toφ3. Consistency of
(φ3)3∈F follows from taking the limit (asn→∞) of π31φ

n
32
= φn31

using the continuity
of π31 for any31 ⊆ 32 ∈ F . Analogously we define for3 ∈ F the weighted norm on
spacesH3,ϑ of consistent sub-families(φ31)31⊆3:

‖φ‖3,ϑ def= sup
31⊆3

ϑ |31|‖φ31‖31. (5)

We get the same (topological) vector space as(H(A3δ ), ‖ · ‖3), but the constants for the
estimates of the norms are unbounded as|3| increases.

For given31 ⊆ 32 ∈ F andN ∈ N we have a map,

π31 ◦ LNF32◦T32,ε
◦ π32 : (Hϑ , ‖ · ‖ϑ)→ (H31,ϑ , ‖ · ‖31,ϑ ), (6)

whereLN
F32◦T32,ε

is the Perron–Frobenius operator for the finite-dimensional system over
32 (cf. §3) with fixed boundary conditions (not included in the notation). The following
definition of transfer operators for the infinite system does not depend on the choice of the
boundary conditions.

THEOREM 2.1. For ϑ , ε sufficiently small,c2, N0 sufficiently large and any31 ∈ F :
(1) The limit

π31 ◦ LNF◦T ε def= lim
32→Zd

π31 ◦ LNF32◦T32,ε
◦ π32 (7)

∈ L((Hϑ , ‖ · ‖ϑ), (H31,ϑN , ‖ · ‖31,ϑN )) exists for suitably chosen0 < ϑ1 ≤ · · · ≤
ϑN0 = ϑN0+1 = · · · = ϑ and the family of these operators is uniformly (in31)
bounded. This defines operators

LNF◦T ε ∈ L((Hϑ , ‖ · ‖ϑ), (HϑN , ‖ · ‖ϑN )) by (LNF◦T εφ)31

def= π31 ◦ LNF◦T εφ.
In particular forN ≥ N0 we haveLNF◦T ε ∈ L(Hϑ , ‖ · ‖ϑ ).
In the case of finite-range interaction we can define a linear mapLF◦T ε onH in the
same way, i.e. ifr is the range of interaction we set for any31 ∈ F

π31 ◦ LF◦T ε def= π31 ◦ LF32◦T32,ε ◦ π32 (8)

where32 = Br(31).
(2) There is anF ◦T ε -invariant, non-negative probability measureν∗. It is unique in the

set of non-negative probability measures whose marginal densities can be identified
with aν = (ν31)31∈F ∈ Hϑ .
In L(Hϑ , ‖ · ‖ϑ) the sequence(LNF◦T ε )N≥N0 converges exponentially fast:

‖LNF◦T ε − µ(·)ν∗‖L((Hϑ ,‖·‖ϑ )) ≤ c3η̃
N (9)

for somec3 > 0 and0< η̃ < 1.

Remarks. (1)The relation between measures and elements ofH is explained in §4, in
particular in (23).

(2) A formula forν is given in (59).
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For the invariant measureν we have exponential decay of correlations for spatio–
temporal shifts on the system.

Let (e1, . . . , ed ) be a linearly-independent system of unit vectors inZd . We define

translationsτei (p)
def= p + ei for p ∈ Zd and(τei (z))p

def= zτei (p) for z ∈ M.
In the following theorem we denote byτ (acting onM from the right) compositions

τ = τ1 ◦ · · · ◦ τm(τ) and byσ a composition of spatio–temporal shifts (onM): σ =
σ1 ◦ · · · ◦ σm(σ)+n(σ ) with σi ∈ {S, τe1, . . . , τed }. We denote byn(σ) the number of factors
S and bym(σ) the number of spatial translations in this product. For a translation-invariant
system, i.e.fp = f andgp(z) = gτ−1

ei
(p)
(τei (z)) for all p ∈ Zd andi = 1, . . . , d, the time-

shift S commutes with the translations.

THEOREM 2.2. For ϑ ,ε as in Theorem 2.1 andc2 sufficiently large there is aκ ∈
(0,1) such that for all non-empty31,32 ∈ F the following holds with the constant

c(31,32, κ)
def= κ−max{‖p−q‖:p∈31,q∈32}).

(1) If g ∈ C((S1)31) andf ∈ C((S1)32) then∣∣∣∣ ∫
M

dν∗gf −
(∫

M

dν∗g
)(∫

M

dν∗ f
)∣∣∣∣ ≤ c4ϑ

−|31|−|32|‖g‖∞‖f ‖∞κdist(31,32),

wheredist(31,32)
def= min{‖p − q‖ : p ∈ 31, q ∈ 32}.

(2) If g ∈ C((S1)31) andf ∈ H ∩ C((S1)32) then∣∣∣∣ ∫
M

dν∗ g ◦ τ ◦ Snf −
(∫

M

dν∗ g ◦ τ
)(∫

M

dν∗ f
)∣∣∣∣

≤ c(31,32, κ)c
|31|+|32|
5 ‖g‖∞‖f ‖32κ

m(τ)η̃n (10)

with suitablec5 andη̃ as in Theorem 2.1.
(3) If the system is translation-invariant andg andf are as in (2), then∣∣∣∣ ∫

M

dν∗ g ◦ σ f −
(∫

M

dν∗ g
)(∫

M

dν∗ f
)∣∣∣∣

≤ c(31,32, κ)c
|31|+|32|
5 ‖g‖∞‖f ‖32κ

m(σ)η̃n(σ ). (11)

(4) If g, f ∈ C(M) then

lim
max{m(τ),n}→∞

∣∣∣∣ ∫
M

dν∗ g ◦ τ ◦ Sn f −
(∫

M

dν∗ g ◦ τ
)(∫

M

dν∗ f
)∣∣∣∣ = 0. (12)

(5) If the system is translation-invariant andg, f ∈ C(M) then

lim
max{m(σ),n(σ )}→∞

∫
M

dν∗ g ◦ σf =
(∫

M

dν∗ g
)(∫

M

dν∗ f
)
. (13)

Remarks. (1)Theorem 2.2(5) means that for a translation-invariant systemν is mixing
w.r.t. spatio–temporal shifts. According to (3), the decay of correlations for observablesg

andh as specified in (2) is exponentially fast.
(2) The proof of Theorem 2.2 shows that the statements hold for anyκ ∈ (0,1) if ε is

sufficiently small andc2 sufficiently large (both depending onκ). So a small interaction
leads to small spatial correlations.
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3. Finite-dimensional systems
We first consider ‘finite-dimensional versions’ of the mapsF, T ε , etc. Letξ = (ξp)p∈Zd ∈
M be a fixed configuration. For a finite subset3 ⊂ Zd we defineT 3,ε : A3δ → C3 by

(T 3,ε(z3))p
def= zp exp(2πiεgp(z3 ∨ ξ3C )), (14)

wherez3 ∨ ξ3C ∈ M agrees withz3 on its3-sites and withξ3C on its3C -sites. We do
not specifyξ3C in the notation ofT 3,ε . The restriction of F toA3δ is denoted byF3.

With the following two propositions we ensure that for sufficiently smallδ and ε
(independent of3 andz3C ), the image ofA3δ w.r.t.F3◦T 3,ε contains a larger polyannulus
(cf. [2]) and the image of the boundary,F3 ◦ T 3,ε(∂A3δ ), has positive distance fromA3δ .

For3 ⊂ Zd we have the metricd3 on (S1)3 defined by

d3(z,w)
def= sup{|zp − wp| | p ∈ 3}. (15)

PROPOSITION3.1. For all c7 ∈ (0,1), sufficiently smallδ andε (depending onc7), and
arbitrary 3 ∈ F \ {∅}, T 3,ε mapsA3δ biholomorphically onto its image andT 3,ε(A3δ ) ⊃
A3c7δ, i.e. the image contains a sufficiently thick polyannulus. AlsoT 3,ε(∂A3δ )∩A3c7δ = ∅,
i.e. the image of the boundary (the same as the boundary of the image) does not intersect
the smaller polyannulus.

PROPOSITION3.2. Let the expanding mapsfp : S1→ S1 satisfy Assumption 1 for some
δ1 and an expansion constantλ0 and let1 < λ < λ0. Then for all sufficiently smallδ
(0 < δ < δ0) and all finite3 ⊂ Zd the mapF3 : A3δ → C3 is locally biholomorphic,
A3λδ ⊂ F3(A3δ ), i.e. the image contains a thicker polyannulus, and furthermore allz ∈ A3λδ
have the same number of pre-images. We also haveA3λδ ∩ F3(∂A3δ ) = ∅.

Combining Propositions 3.1 and 3.2 we have for fixedc7 (from Proposition 3.1) and
(small)δ

F3 ◦ T 3,ε(A3δ ) ⊃ A3c7λδ (16)

and

F3 ◦ T 3,ε(∂A3δ ) ∩ A3c7λδ = ∅. (17)

In particular, if we choosec7 > 1/λ there is a disc of radius(c7λ − 1)δ > 0 around each
point inA3δ that is entirely contained inF3 ◦ T 3,ε(A3δ ). We will need this for Cauchy
estimates. From now on we keepδ fixed.

In the next proposition we establish a special representation of the Perron–Frobenius
operator for our finite system with(S1)N = (S1)3, Sε = F3 ◦ T 3,ε , ψ continuous (the
proposition holds also forψ ∈ L∞(M)) andφ continuous on the closed polyannulusA3δ1
and analytic in its interior.

First we give the definition of the Perron–Frobenius operator (cf for example [14]).

Definition 3.1.Let λ be a measure on a metric spaceM (with the Borelσ -algebra) and let
S : M → M be a measurable map which is non-singular w.r.t.λ (i.e. for all measurable
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A ∈ M, λ(A) = 0 impliesλ(S−1(A)) = 0). The Perron–Frobenius operatorLS , acting on
L1(M), is defined via the equation∫

M

dλψ ◦ S φ =
∫
M

dλψLSφ (18)

that, for givenφ ∈ L1(M), must hold for allψ ∈ L∞(M). The existence and uniqueness
of LSφ ∈ L1(M) is equivalent by the Radon–Nikodym theorem to the absolute continuity
(w.r.t. λ) of the measure associated to the functionalψ 7→ ∫

M dλψ ◦ S φ (the functional
here is restricted to continuous functionsψ), and this follows from the non-singularity
of S.

Remark.Settingψ ≡ 1 in (18) we get thatLS preserves the integral:∫
M

dλLSφ =
∫
M

dλφ. (19)

The normalized Lebesgue measureµ onS1 is given bydµ(z) = (dz/2πi)(1/z) (this lifts
w.r.t. the mapt → eit to the normalized Lebesgue measuredt/2π on [0,2π)) and the
product measureµ3 on (S1)3 is given by

dµ3(z) = dz
(2πi)|3|

1

z
def=

∏
p∈3

dzp

2πi

1

zp
. (20)

We also usedµ3(z) as a shorthand notation for the right-hand side of (20) forz ∈ A3δ .
The following representation of the Perron–Frobenius operator for finite-dimensional
subsystems of our coupled map lattice by means of Cauchy kernels is essential for our
analysis. Similar Cauchy kernels were used in [17].

PROPOSITION3.3. WithF3 andT 3,ε defined as above, setSε = F3 ◦ T 3,ε and letSεp
be the projection onto itspth component. Then the Perron–Frobenius operator (forSε ),
acting onφ ∈ H3, can be written in the following way:

LSεφ(w) =
∫
03
dµ3 (z)φ(z)

∏
p∈3

(
1

Sεp(z)− wp
Sεp(z)

)
(21)

where0 = 0+ ∪ 0− is the positively-oriented boundary ofAδ.

4. Further remarks on the infinite-dimensional system
The subspace of complex-valued functions that depend only on finitely many variables
is dense in(C(M), ‖ · ‖∞), and each such function (say depending onz3 only) can be
uniformly approximated by (the restriction of) functions inH(A3δ ). The dual space of
C(M) is rca(M) (see e.g. [7]), the space of bounded, regular, countably additive, complex-
valued set functions on(M,B)whereB is the Borelσ -algebra. The norm onrca(M) is the
total variation. For givenϑ,3 we considerrca measures whose marginals have densities
φ3|(S1)3 over(S1)3 (restriction ofφ3 to (S1)3) s.t.φ = (φ3)3∈F ∈ Hϑ . We remark that
not everyφ ∈ Hϑ with real-valuedφ3|(S1)3 corresponds to an element inrca(M) because
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its variation might not be bounded as
∫
3 dµ

3 |φ3| might be unbounded with3. So we
define forφ ∈ H

‖φ‖var
def= lim

3→Zd

∫
(S1)3

dµ3 |φ3|. (22)

We setHbv def= {φ ∈ H : ‖φ‖var <∞} andHbvϑ
def= Hbv∩Hϑ . In particular all real-analytic

and non-negativeφ ∈ H, i.e.φ3|(S1)3 ≥ 0 for all3 ∈ F , belong to this space.
We can view everyφ ∈ Hbv as an element ofrca(M): for g ∈ C(M) the net(g3)3∈F

given byg3
def= π3(g) converges uniformly tog. We set

φ(g)
def= lim

3→Zd

∫
(S1)3

dµ3 g3φ3. (23)

The limit exists because for31 ⊂ 32∣∣∣∣ ∫
(S1)31

dµ31g31φ31 −
∫
(S1)32

dµ32g32φ32

∣∣∣∣ = ∣∣∣∣ ∫
(S1)32

dµ32(g31 − g32)φ32

∣∣∣∣
≤ ‖g31 − g32‖(S1)32‖φ‖var (24)

gets arbitrarily small as31→ Zd , i.e. the net has the Cauchy property.
We further see

‖φ‖var = sup
3∈F

∫
(S1)3

dµ3 |φ3|

= sup
3∈F

sup
g∈C((S1)3)
‖g‖∞≤1

∫
(S1)3

dµ3 gφ3

= sup
g∈C(M)
‖g‖∞≤1

|φ(g)|, (25)

so ‖φ‖var is in fact the total variation (the operator-norm, cf. [7]) of the corresponding
linear functional onC(M).

Let H(F) def= ⋃
3∈F H(A3δ ) be the subspace of functions depending on only finitely

many variables. We define the productg1φ ∈ Hϑ of g1 ∈ H(A31
δ ) andφ ∈ Hϑ by

(g1φ)3
def= π3(g1φ31∪3). (26)

LEMMA 4.1. If g1 ∈ H(A31
δ ), g

2 ∈ H(A32
δ ), g ∈ C(M) andφ ∈ Hϑ the following hold:

(1) the product in (26) is well defined and‖g1φ‖ϑ ≤ ‖g1‖31ϑ
−|31|‖φ‖ϑ ;

(2) (g1g2)φ = g1(g2φ);
(3) g2 can be considered as an element ofHϑ and the productg1g2 as defined in (26) is

the same as the usual product between functions onM;
(4) (g1φ)(g) = φ(g1g) where(g1φ) andφ act as functionals in the sense of (23);
(5) Hbvϑ is also a module over the ringH(F), i.e. in particular ‖g1φ‖var ≤

‖g1‖31‖φ‖var.
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5. Expansion of the Perron–Frobenius operator
We split the integral kernel of the Perron–Frobenius operator for a finite-dimensional
system. Recall thatT εp (z) = zp exp

(
2πiε

∑∞
k=1 gp,k(z)

) = zp
∏∞
k+1 exp(2πiεgp,k(z))

and thatSp(z) = fp ◦ T εp (z).
If we consider only finite-range interaction, say up to distancel, we have

T εp,l(z)
def= zp exp

(
2πiε

l∑
k=1

gp,k(z)
)
. (27)

For a finite-dimensional system (say on(S1)32) with fixed boundary conditions we have a
special representation ofLF32◦T32,ε in terms of the integral kernel (Proposition 3.3).

LEMMA 5.1. For the factors in the integral kernel in (21) we have the following splitting:

1

fp ◦ T εp (z)−wp
fp ◦ T εp (z) =

1

fp(zp)−wp fp(zp)

+ wp
∞∑
k=1

fp ◦ T εp,k−1(z)− fp ◦ T εp,k(z)
(fp ◦ T εp,k−1(z)−wp)(fp ◦ T εp,k(z)−wp)

.

(28)

The sum in the right-hand side converges uniformly inz ∈ 03 andwp ∈ Aδ.

5.1. The unperturbed operator.The first summand in (28) is just the one which appears
in the uncoupled system (i.e.T ε=0 = id) and in this case each lattice site can be considered
separately. We denote byLfp the restriction of the Perron–Frobenius operator to the
Banach space of functions onS1 that extend continuously on the closed annulusAδ and
holomorphically on the interiorAδ. ‖·‖Aδ denotes the uniform norm overAδ. The operator

Lfp : (H(Aδ), ‖ · ‖Aδ )→ (H(Aδ), ‖ · ‖Aδ )
has 1 as simple eigenvalue and the rest of its spectrum is contained in a disc around 0 of
radius strictly smaller than one. It splits into

Lfp = Qp + Rp (29)

with

RpQp = QpRp = 0 (30)

and

‖Rnp‖L(H(Aδ),‖·‖Aδ ) ≤ crηn (31)

with cr > 0, 0< η < 1. For proofs of these statements see, for example, [2].
Qp is the projection onto the one-dimensional eigenspace spanned byhp ∈ H(Aδ),

whose restriction toS1 is positive and has integral
∫
S1 dµhp = 1.

We assume in Assumption 1 regarding the family(fp)p∈Zd that

‖hp‖Aδ ≤ ch (32)
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and the exponential bound in (31) both hold uniformly inp. This is the case for example
if the fp are uniformly close to each other as is shown using analytic perturbation theory.
Lfp preserves the integral (cf. (19)) and so doesQp , as follows e.g. from (29)–(31).

Since0+ is homologous toS1 we can writeQp as

Qpg(w) = hp(w)
∫
S1
dµ g (33)

= hp(w)
∫
0+

dz

2πi

1

z
g(z)

=
∫
0

dz

2πi

1

z
hp(w, z)g(z) (34)

where we have used thatg is holomorphic inAδ and defined as

hp(wp, zp)
def=
{
hp(wp) for zp ∈ 0+
0 for zp ∈ 0−.

(35)

The idempotencyQ2
p = Qp results in the integral representation∫

0

dz2
p

2πi

1

z2
p

∫
0

dz1
p

2πi

1

z1
p

hp(wp, z
2
p)hp(z

2
p, z

1
p)g(z

1
p) =

∫
0

dz1
p

2πi

1

z1
p

hp(wp, z
1
p)g(z

1
p). (36)

Here and throughout the section the upper indices inz1
p, z2

p, etc. refer to the temporal and
the lower ones to the spatial coordinate in the space–time latticeZ× Zd .

According to Proposition 3.3 the operatorRp can be written

Rpg(wp) =
∫
0

dz

2πi

1

z
rp(wp, zp)g(zp) (37)

with

rp(wp, zp) = 1

fp(z)−wp fp(zp)− hp(wp, zp). (38)

Then equation (30) results in the integral representation∫
0

dz2
p

2πi

1

z2
p

∫
S1

dz1
p

2πi

1

z1
p

rp(wp, z
2
p)hp(z

2
p, z

1
p)g(z

1
p) = 0, (39)

∫
S1

dz2
p

2πi

1

z2
p

∫
0

dz1
p

2πi

1

z1
p

rp(z
2
p, z

1
p)g(z

1
p) = 0. (40)

5.2. The perturbed operator. In view of (28) we set

βp,k(wp, z)
def= wp

fp ◦ T εp,k−1(z)− fp ◦ T εp,k(z)
(fp ◦ T εp,k−1(z)−wp)(fp ◦ T εp,k(z)−wp)

. (41)

This corresponds to the difference between the operators for systems with interaction of
finite-range of orderk andk − 1, respectively. Using (1) we have the estimate

|βp,k(wp, z)| ≤ |wp||fp ◦ T εp,k−1(z)−wp|−1|fp ◦ T εp,k(z)−wp|−1

× |fp ◦ T εp,k−1(z)− fp ◦ T εp,k(z)|
≤ (1+ δ)|c7λ− 1|−1|c7λ− 1|−1‖f ′p‖{p}c1ε exp(−c2k

d)

≤ c̃8ε exp(−c2k
d). (42)
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This estimate is uniform inp ∈ Zd , wp ∈ Aδ andz ∈ 03.

5.3. TimeN Step. Now we want to estimate the norm of (6) or equivalently that of

π31 ◦ LNF32◦T 32,ε
: (H32,ϑ , ‖ · ‖32,ϑ )→ (H31,ϑ , ‖ · ‖31,ϑ ) (43)

LN
F32◦T32,ε

φ(z0) =
∫
032

dµ32(z−1) · · ·
∫
032

dµ32(z−N)
−1∏

t=−N

∏
p∈32

×
(
hp(z

t+1
p , ztp)+ rp(zt+1

p , ztp)+
∞∑
k=1

βp,k(z
t+1
p , zt )

)
φ(z−N)

(44)

(cf. also the beginning of §3.)
Distributing the product we get infinitely many summands. In each factor there is for

each−N ≤ m ≤ −1,p ∈ 32 a choice betweenhp, rp andβp,k (1≤ k <∞) and we can
interpret such a choice graphically as aconfiguration(similar objects were introduced in
[15] where they were named polymers).

On32× {−N, . . . ,0} we represent (see Figure 1):
• hp(z

t+1
p , ztp) by anh-line from (p, t) to (p, t + 1);

• rp(z
t+1
p , ztp) by anr-line from (p, t) to (p, t + 1);

v

v(p, t)

(p, t + 1)

hp(z
t+1
p , ztp)

v

v(p, t)

(p, t + 1)

rp(z
t+1
p , ztp)

FIGURE 1. The h-line and the r-line.

• βp,k(z
t+1
p , zt ) by ak-triangle(actually rather a cone or pyramid, but in our pictures

for d = 1 it is a triangle (see Figure 2)) with apex(p, t + 1) and base points(q, t)
with ‖p−q‖ ≤ k. (So some of the base points might not lie in32×{−N, . . . ,−1},
but all the apices lie in32× {−N + 1, . . . ,0}.)

v

v v v v v(p − 2, t) (p − 1, t) (p, t) (p + 1, t) (p + 2, t)

(p, t + 1)

��
��
��
��
��
��

HH
HH

HH
HH

HH
HH

βp,2(z
t+1
p , zt )

FIGURE 2. The 2-triangle.
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Note that if

v(k)
def= |Bk(0)| (45)

denotes the number of base points of ak-triangle, we have the estimatev(k) ≤ (3k)d . Each
summand, that we get by distributing the product in (44), corresponds to a configuration
and for each configurationC we have an operatorLC . So we can write

LN
F32◦T 32,ε

=
∑
C
LC . (46)

Some of these summands are zero, namely, if:
• a factorhp(zt+2

p , zt+1
p )rp(z

t+1
p , ztp) or rp(zt+2

p , zt+1
p )hp(z

t+1
p , ztp) appears, but no

factorβq,k(zt+2
q , zt+1) with ‖p − q‖ ≤ k (i.e. an h-line follows or is followed by

an r-line and, at their common endpoint, no triangle is attached with any of its base
points, cf. Figure 3). This follows since, by Fubini’s theorem, one can first perform
thedzt+1

p dztp integration and get zero by (39) or (40). (Note that the other factors in

the integrand do not depend onzt+1
p ; so they can be considered as the functiong(z1

p)

in (39) or (40).)

v

v

v

(p, t + 1)

(p, t)

rp(z
t+1
p , ztp)

(p, t + 2)

hp(z
t+2
p , zt+1

p )

v

v

v

(p, t + 1)

(p, t)

hp(z
t+1
p , ztp)

(p, t + 2)

rp(z
t+2
p , zt+1

p )

FIGURE 3. Consecutive r-line and h-line.

• a termhp(zt+2
p , zt+1

p )βp,k(z
t+1
p , zt ) appears but noβq,l(zt+2

q , zt+1) with ‖p−q‖ ≤ l
(i.e. a triangle is followed by an h-line and at their common endpoint (the apex of
the triangle) no other triangle is attached with any of its base points. Cf. Figure 4.)
Indeed:

βp,k(wp, z) = wp
[

1

fp ◦ T εp,k(z)−wp
− 1

fp ◦ T εp,k−1(z)−wp

]
(47)

by the residue theorem: ∫
S1

dwp

2πi

1

wp
βp,k(wp, z) = 0 (48)

since the poles atwp = fp ◦ T εp,k(z) andwp = fp ◦ T εp,k−1(z) (with z ∈ 0N , in
particularzp ∈ 0+ or0−) both lie either outside0+ or inside0− asfp is expanding,
T εp,k is close toT εp,k−1, and the two summands have residue−1 and 1, respectively.
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Identity (48) is a consequence of the fact thatβp,k is the kernel of a difference
between two transfer operators (for the systems with interaction of rangek andk−1)
both preserving the Lebesgue integral in the sense of (19). So the range of this
operator difference consists of functions with integral zero and these are annihilated
by the operator corresponding tohp (cf. (33) and (34)).

v

v v v v v

v

(p, t)

(p, t + 1)

(p, t + 2)

��
��
��
��
��
��

HH
HH

HH
HH

HH
HH

βp,2(z
t+1
p , zt )

hp(z
t+2
p , zt+1

p )

FIGURE 4. Combination 2-triangle and h-line.

Furthermore, we note that in

π31 ◦ LNF32◦T 32,ε
=
∑
C
π31 ◦ LC (49)

we getπ31 ◦ LC = 0 unlessC ends with h-lines in all points of(32 \31) × {0} because
of (40), (48) and the fact thatπ31 means integration over(S1)32\31.

Definition 5.1.We call a configurationLC in the expansion (49) azero configurationif it
does not end with h-lines in all points of(32\31)×{0} or contains one of the constellations
(consecutive r-line and h-line ork-triangle and h-line) mentioned above. Otherwise we call
it a non-zero configuration.

Remark.For a zero configurationC we have just shown that its corresponding summand
in (49) is 0. So we just have to sum over non-zero configurations. We note that the notion
non-zero configuration does not exclude thatLC = 0.

We have to find an upper bound for the norm of eachLC . We do so by collecting r- and
h-lines into chains and estimating the contributions of integrating the factors corresponding
to these parts of the configuration.

Definition 5.2.
• Let C be a non-zero configuration with exactlynβ,k k-triangles for 1≤ k <∞. We

define

nβ
def= (nβ,1, nβ,2, . . . ) (50)
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FIGURE 5. An example of a configuration.

and

|nβ | def=
∞∑
k=1

nβ,k <∞. (51)

• A sequence of h-lines from(p, t) to (p, t + 1), . . . , (p, t + k− 1) to (p, t + k) with
p ∈ 32 and−N ≤ t ≤ t + k ≤ 0 such that to the points(p, t + 1) . . . (p, t + k− 1)
no triangles are attached is called anh-chain of length k.

• If such an h-chain is not contained in a longer chain it is called amaximal h-chain.
Then(p, t) and(p, t + k) are denoted itsendpoints.

• The definitions for amaximal r-chainand itsendpointsare analogous.
• 3̃C denotes the set of pointsp ∈ 32 that appear as theZd -coordinate of a base point

(p, t) of a triangle inC, and3C denotes the set of those pointsp ∈ Zd that appear
as theZd -coordinate of an apex(p, t) that does not lie above (i.e. having the same
spatial coordinate) any other triangle.

• 3r is the set ofp ∈ Zd \3̃C that appear as theZd -coordinate of an r-line (this implies
that there is an r-chain from(p,−N) to (p,0) for otherwise an r-line would have a
common endpoint(p, t) with an h-line andC would be a zero configuration.)

• We write3(C) def= 3̃C ∪3r .
In Figure 5 there are, for example, maximal r-chains from(1,−3) to (1,0) or from

(2,−3) to (2,−2). 32 = {1, . . . ,8}, 3̃C = {2, . . . ,7},3C = {4} and3r = {1}. As each
k-triangle hasv(k) ≤ (3k)d base points we have

|3̃C | ≤
∞∑
k=1

(3k)dnβ,k. (52)

To get the estimate for the norm of (43) we proceed in the following order.
(1) We integrate in|π31◦LCφ(z0

31
)| over alldztp for which a factorrp(zt+1

p , ztp) appears.
For each maximal r-chain of lengthl we get, according to (31), a factor not greater
thancrηl .

(2) For each maximal h-chain starting at(p, t) and ending at(p, t + l) we perform the
integration∫

0

dµ(zt+l−1
p ) · · ·

∫
0

dµ(zt+1
p ) hp(z

t+l
p , zt+l−1

p ) · · ·hp(zt+1
p , ztp) = hp(zt+lp ). (53)
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(3) We perform the integration corresponding toπ31∏
p∈32\31

∫
S1
dµ(z0

p) hp(z
0
p) = 1 (54)

(4) We estimate the contribution of each (from step (2) and (3) remaining) factorhp(z
t
p)

by ‖hp‖Aδ ≤ ch and, using (42), the contribution of each factorβp,k(z
t+1
p , zt ) via∣∣∣∣ ∫

0

dztp

2πi

1

ztp
βp,k(z

t+1
p , zt )ψ(ztp)

∣∣∣∣ ≤ |0|2π

1

1− δ c̃8ε exp(−c2k
d)‖ψ‖

≤ c8ε exp(−c2k
d)‖ψ‖. (55)

Here|0| denotes the euclidean length of0 andψ the remaining factors, containing
other integrals. Finally, the contribution of the factors|φ(z−N)| is estimated by
‖φ3̃C∪3r ‖3̃C∪3r (cf. remark below).

Remark.For all pointsq 6∈ 3̃C ∪3r we must have h-chains inC from (q,−N) to (q,0).
Therefore we have

π31 ◦ LCφ32(z
0
31
) = π31 ◦ LCφ3̃C∪3r (z0

31
) (56)

where on the right-hand side we use the same notation ‘LC ’ for the operator onH3̃C∪3r ,ϑ .
So if nr denotes the number of r-lines,ñr the number of maximal r-chains andñh the

number of maximal h-chains having spatial coordinates in3̃C ∪31 (for otherwise they are
‘integrated away’ giving a factor of one) we get, using (31) and (55),

‖π31 ◦ LCφ‖31 ≤ (c8ε)
|nβ | exp

(
− c2

∞∑
k=1

kdnβ,k

)
c
ñh
h c

ñr
r η

nr ‖φ3̃C∪3r ‖3̃C∪3r (57)

and, using (52),

‖φ3̃C∪3r ‖3̃C∪3r ≤ ϑ−|3r |−
∑∞
k=1(3k)

dnβ,k‖φ‖32,ϑ

≤ ϑ−|3r |
∞∏
k=1

ϑ−(3k)dnβ,k‖φ‖32,ϑ (58)

for all 32 ∈ F and with‖ · ‖32,ϑ defined in (5). Inequalities (57) and (58) are the basic
estimates for a single configuration. We use refined versions of them throughout the paper.
In particular the idea of taking the norm ofφ3̃C∪3r rather than that ofφ32 which grows
with the size of32, is the key point in our analysis.

6. Operators for the infinite-dimensional system
Estimates (57) and (58) bound the particular summands in an expansion such as (49). We
see that triangles and maximal r-chains in a configurationC lead to small factors on the
right-hand side of (57). (A maximal r-chain consisting ofn r-lines contributes a factor
crη

n. The factorcr is greater than one in general, but either it will be compensated for by
a small factor due to a triangle, e.g. as in (99), orn will be large, cf., for example, (103).)
This motivates the following definition of the length of a configuration. The length gives
rise to a lower bound for the number of triangles or r-lines, i.e. a long configuration will
lead to a small contribution in the total sum in (49).
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Definition 6.1.
• The length, length(C), of a non-zero configurationC (that we obtained in an

expansion such as (46)) is the maximal difference 0− t such that there are points
(p, t) and (q,0) being end-points of r-lines or base points or apices of triangles.
(Note that if there are any triangles or r-lines, there is also a triangle or an r-line
ending at3× {0}.) If there are no triangles or r-lines inC its length is zero.

• We identify two non-zero configurationsC1 andC2 if they agree in their triangles, r-
lines and their number of maximal h-chains that go upwards from the base points
of triangles (but might be defined on space time boxes32 × {−t0, . . . ,0} of
different sizes, i.e. with different32 andt0). We still speak of configurations rather
than equivalence classes. For a configurationC length(C), 3̃C , 3(C) (as in the
Definition 5.2) and the operatorπ3◦LC ∈ L((H(A3(C)δ ), ‖·‖3(C)), (H(A3δ ), ‖·‖3))
are well-defined.

• For31 ∈ F we defineE(31) as the set of all non-zero configurationsC in some
32 × {−t0, . . . ,0} with 31 ⊂ 32 ∈ F , t0 ∈ N andt0 > length(C), and that do not
end in31× {0} with triangles or r-lines.

• EN(31) is the set of non-zero configurationsC in 32 × {−N, . . . ,0} with 31 ⊂
32 ∈ F and3(C) ⊆ 32.

We define

ν3
def=

∑
C∈E(3)

π3 ◦ LCh3(C). (59)

The convergence of this infinite sum and other properties ofν are stated in the following
proposition additional to Theorem 2.1.

PROPOSITION6.1. Letϑ , the sequence ofϑi , ε, c2, N0 and31 be as in Theorem 2.1 and
N ≥ N0.
(1)

π31 ◦ LNF◦T ε =
∑

C∈EN(31)

π31 ◦ LC . (60)

(2)

‖LNF◦T ε − LN+1
F◦T ε‖L((Hϑ ,‖·‖ϑ )) ≤ c9η̃

N . (61)

(3) For N1, N2 ∈ N the operatorLN2
F◦T ε is defined onLN1

F◦T ε (Hϑ) ⊂ HϑN1
. It maps this

space toHϑN1+N2
and

LN2
F◦T ε ◦ LN1

F◦T ε = LN1+N2
F◦T ε . (62)

(4) For φ ∈ Hbvϑ we have the estimate

‖LF◦T εφ‖var ≤ ‖φ‖var. (63)

For g ∈ C(M) andφ ∈ Hbvϑ we have the identity∫
M

dµg ◦ Sφ =
∫
M

dµgLF◦T εφ (64)
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and in particular

µ(φ) = µ(LF◦T εφ). (65)

For finite-range interactions the inequality and both equations also hold forφ ∈
Hbv.

(5) LF◦T ε is non-negative, i.e.φ ≥ 0 impliesLF◦T εφ ≥ 0. (φ ≥ 0 meansφ3|(S1)3 ≥ 0
for all 3 ∈ F .)

7. Decay of correlations
We have found the unique invariantν ∈ Hϑ with µ(ν) = 1. This corresponds to a non-
negative measure on(M,B) whose marginal on(S1)3 has densityν3|(S1)3

w.r.t.µ3. In the
next theorem we state the decay of correlation forν in terms of the weighted norms. We
will use these results in the proof of Theorem 2.2.

THEOREM 7.1. For sufficiently smallϑ and ε, large c2, finite disjoint31,32 andf ∈
H(A

32
δ ) there are aκ ∈ (0,1) and aϑ̃ ∈ (0,1) such that:

(1) ‖ν31∪32 − ν31ν32‖31∪32,ϑ ≤ c10κ
dist(31,32);

(2) ‖π31(f ν)− ν(f )ν31‖31,ϑ ≤ c11ϑ
−|32|‖f ‖32κ

dist(31,32);
(3) ‖π31 ◦ LNF◦T ε (f ν) − ν(f )ν31‖31,ϑ̃

≤ c12ϑ
−|32|‖f ‖32κ

dist(31,32)η̃N for every
N ≥ 0.

Remark.As in Theorem 2.2 we can choose the rate of decayκ first and then the other
parameters.

8. Proofs
In the proof of Proposition 3.1 we use the following lemma which is rather standard in real
analysis. Here we formulate it in the setting of holomorphic functions.

LEMMA 8.1. If T : U → Cn is a holomorphic map on a convex setU ⊂ Cn and satisfies
the estimate‖DT (z) − id‖ ≤ c18 < 1 then T is biholomorphic onto its image (in this
lemma the chosen norm onCn and the corresponding operator norm are both denoted by
‖ · ‖).
Proof. T is locally biholomorphic by the inverse function theorem. So we only have
to show injectivity. Letz0, z1 ∈ U with T (z0) = T (z1) and γ : [0,1] → U ,
γ (t) = z0+ t (z1− z0). Then

|z1− z0| = ‖T (z1)− z1− T (z0)+ z0‖
= ‖T ◦ γ (1)− γ (1)− T ◦ γ (0)+ γ (0)‖

=
∥∥∥∥ ∫ 1

0
(DT (γ (t))− id)(z1− z0) dt

∥∥∥∥
≤ ‖z1− z0‖

∫ 1

0
‖DT (γ (t))− id‖ dt

≤ ‖z1− z0‖c18 (66)

which impliesz1 = z0. 2



126 T. Fischer and H. H. Rugh

Proof of Proposition 3.1.We have a Cauchy estimate for the partial derivatives of the
functionsgp,k : ABk(p)δ → C on a smaller polyannulus. Letq ∈ Bk(p), Then∥∥∥∥ ∂

∂zq
gp,k

∥∥∥∥
A
Bk(p)

δ

≤ 1

|eδ − eδ1|c1 exp(−c2k
d) (67)

= c13 exp(−c2k
d). (68)

Also note that(∂/∂zq)gp,k = 0 for q /∈ Bk(p). Therefore∥∥∥∥ ∂

∂zq
gp

∥∥∥∥
AZ

d

δ

=
∥∥∥∥ ∂

∂zq

∞∑
k=‖p−q‖

gp,k

∥∥∥∥
AZ

d

δ1

≤ c13

∞∑
k=‖p−q‖

exp(−c2k
d)

≤ c13
1

1− exp(−c2)
exp(−c2‖p − q‖d)

= c14 exp(−c2‖p − q‖d). (69)

Now we consider the lift given bypr : C3δ → A3δ , (z̃p)p∈3 7→ (eiz̃p )p∈3, where

Cδ
def= {w ∈ C | Imw ∈ [−δ, δ]}.
Then we have for the lifted functions(T̃ 3,ε(z̃))p = z̃p + 2πεg̃p(z̃). The function

g̃p(z̃) = gp(pr(z̃)) satisfies the same estimate (1) with a different constantc̃1 for δ < δ1

sufficiently small sincepr and its partial derivatives are uniformly bounded onC3δ .
Then we have

|D(T̃ 3,ε(z̃))p,q − δp,q | ≤ 2πεc̃1 exp(−c13‖p − q‖d).
In particular the row sum norm (the operator-norm induced by thel∞-norm onC3) of

(DT̃ 3,ε − id) is smaller than one forε small enough, independent of3. According to

Lemma 8.1 (note thatCδ is convex),̃T 3,ε is a biholomorphic map onto its image and so is
T 3,ε .

Now fix δ < δ1 according to the first part of the proof. Ifz ∈ ∂A3δ we havezp ∈ ∂Aδ
for at least onep ∈ 3. From the formulaz

′
p

def= T
3,ε
p (z) = zp exp(2πiεgp(z)) and the

assumption thatgp is uniformly bounded onAδ1 we see that

| ln |z′p|| ≥ δ − c16δε > c7δ (70)

for sufficiently smallε.
Now assume∅ 6= Ac7δ \ T 3,ε(Aδ) 3 z. Let s be the line-segment betweenz and

its nearest pointw on (S1)3 (w.r.t. the metricd3). For each pointy on s the inequality
ln d3(w, y) ≤ ln d3(w, z) ≤ c17δ holds.

In particular there is ay ∈ T 3,ε(∂A3δ ) on s with |yp| ≤ c7δ for all p ∈ 3, but this
contradicts the estimate (70) above. 2

Proof of Proposition 3.2.As F acts on each coordinate separately by anfp we have (in
view of the chosen metric (15)) to show the statement just for the mapf (we drop the
indexp), i.e. the case when3 contains just one element.
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Consider the liftRδ ×R 3 (r, φ) 7→ reiφ whereRδ
def= [1− ln δ,1+ ln δ]. This defines

(modulo(0,2π)) a (0,2π)-periodic mapf̃ = (f̃r , f̃φ) via f (reiφ) = f̃r (r, φ)e
if̃φ(r,φ).

On {1} × R one has(∂/∂r)f̃r ≥ λ0 and so because of periodicity and a compactness
argument,(∂/∂r)f̃r ≥ λ on a thin (0< δ < δ0 small) stripRδ × R. It follows similarly,
as in the proof of Proposition 3.1, that̃f (Rδ × R) ⊃ Rλδ × R, f̃ is diffeomorphic onto
its image and each point inRδ × R has the same number of preimages (which is equal to
(f̃ (1,2π)− f̃ (1,0))/2π). From this, the claim aboutf follows. 2

Proof of Proposition 3.3.We substitute the expression (21) into the right-hand side of
equation (18) and get∫

(S1)3

dw
(2πi)|3|

1

w
ψ(w)

∫
03

dz
(2πi)|3|

φ(z)
∏
p∈3

(
1

Sεp(z)−wp
Sεp(z)

zp

)
. (71)

To simplify notation we assume that3 = {1, . . . , N}. As (18) is linear inψ we can assume
(by using a continuous partition of unity) thatψ vanishes outside a small setK ⊂ (S1)N

having distinct preimages underSt (for all 0 ≤ t ≤ ε) contained inKα = Kα1×· · ·×KαN
such that eachKα is contained in a polydiscDα = Dα1 × · · · ×DαN . These are mutually

disjoint andStα
def= St|Dα is biholomorphic onto its image (for all 0≤ t ≤ ε). (To make this

more precise we note that fort = 0 the mapS0 is the product of mapsfi (1≤ i ≤ N) and
eachfi gives rise to anMi-fold covering map ofAδ. So locally we can index the disjoint
pre-images ofK underS0 by α = (α1, . . . , αN) where 1≤ αi ≤ Mi . If we take the setK
small enough this is still true under small (0≤ t ≤ ε) perturbations.)

For givenw ∈ K, indexα as above,k ∈ {1, . . . , N} and fixedzl ∈ Aδ1 (l 6= k) the
functionzk 7→ (Sεk (z1, . . . , zk, . . . , zN )− wk)−1 has exactly one simple pole in eachDαk
and is holomorphic inA3δ1 away from these poles. Therefore we get the same if we just
integrate around these poles:∫

K

dw
(2πi)N

1

w
ψ(w)

∑
α

( N∏
k=1

∫
∂Dαk

dzk

2πi

)
φ(z)

N∏
k=1

Sεα,k(z)

zk

N∏
k=1

1

Sεα,k(z)−wk
. (72)

For eachα we can write each of the inner integrals as an integral of a differential

form over the distinguished boundaryb0Dα
def= ∂Dα1 × · · · × ∂DαN , parameterized by

[0,1)N 3 t 7→ (e2πit1, . . . , e2πitN ), whence∫
b0Dα

φ(z)
N∏
k=1

Sεα,k(z)

zk

N∏
k=1

1

Sεα,k(z)−wk
dz1 ∧ · · · ∧ dzN. (73)

We want to split the singular factor into a product of single poles in each variable. So we

apply the transformationu = Sε(z) def= Sεα(z) to get∫
Sε(b0Dα)

φ ◦ S−1
ε (u)

N∏
k=1

uk

(S−1
ε (u))k

det(S−1
ε )′(u)

N∏
k=1

1

uk −wk du1 ∧ · · · ∧ duN (74)

where(S−1
ε )′ is the complex derivative and so is holomorphic inu. To apply Cauchy’s

formula we have to integrate over a product of cycles (each lying inC). For exampleb0D
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or S0(b0D) are such products of cycles, butSε(b0D) in general is not. So first we have to

deformSε(b0D) into S0(b0D). The mapt 7→ St
def= Stα is a smooth homotopy betweenSε

and the product mapS0 and avoids singularities of the integrand in (74) since forε small
enough the set{St (b0Dα) | 0 ≤ t ≤ ε} has positive distance (uniformly in3) from the set
of singularities

⋃N
k=1{u ∈ Dα : uk = wk}. S0(b0Dα) = S0,1(∂Dα1)×· · ·×S0,N(∂DαN ) is

a product of cycles and hence a cycle. The differential n-form in (74) is a cocycle because
its coefficient is holomorphic. So we get by Stokes’ theorem∫

S0(b0Dα)

φ ◦ S−1
ε (u)

N∏
k=1

uk

(S−1
ε (u))k

det(S−1
ε )′(u)

N∏
k=1

1

uk − wk du1 ∧ · · · ∧ duN (75)

and by Cauchy’s formula

φ ◦ S−1
ε (w)

N∏
k=1

wk

(S−1
ε (w))k

1

det(S′ε(S−1
ε (w)))

. (76)

So (72) is equal to∑
α

∫
K

dw
(2πi)N

1

w
ψ(w)φ ◦ (Sεα)−1(w)

1

det(Sε)′((Sεα)−1(w))

N∏
k=1

wk

((Sεα)
−1(w))k

. (77)

For each indexα, the coordinate transformationu = (Sεα)−1(w) yields∑
α

∫
Kα

du
(2πi)N

1

u
ψ ◦ Sεα(u)φ(u). (78)

Asψ ◦ F = 0 outside
⋃
α Kα and theKα are mutually disjoint this equals∫

(S1)N

du
(2πi)N

1

u
ψ ◦ S(u)φ(u) (79)

which equals ∫
(S1)N

dµN ψ ◦ Sφ (80)

as was to be shown. 2

Proof of Lemma 4.1.Consistency follows from

π33(g
1φ)34 = π33 ◦ π34(g

1φ31∪34)

= π33(g
1φ31∪34)

= π33(g
1φ31∪33)

= (g1φ)33 (81)

for all 33 ⊂ 34 ∈ F .
As g1 depends only on the31-coordinates we have

‖(g1φ)31∪3‖31∪3 = ‖g1φ31∪3‖31∪3
≤ ‖g1‖31‖φ31∪3‖31∪3
≤ ‖g1‖31ϑ

−|31|−|3|‖φ‖ϑ (82)
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and so

ϑ |3|‖(g1φ)3‖3 ≤ ‖g1‖31ϑ
−|31|‖φ‖ϑ (83)

and

‖gφ‖ϑ ≤ ‖g1‖31ϑ
−|31|‖φ‖ϑ . (84)

For31 fixed, the product is continuous in both factors. Lemma 4.1(2) follows from

((g1g2)φ)3 = π3(g1
31
g2
32
φ3∪31∪32)

= π3(g1
31
π3∪31(g

2
32
φ3∪31∪32))

= π3(g1
31
π3∪31(g

2φ))

= (g1(g2φ))3. (85)

To see Lemma 4.1(3) we note that the projection of the product ofg1 andg2 is

π3(g
1g2) = π3(g1

31
g2
32
) (86)

and the product in the sense of (26) projects to

π3(g
1g2) = π3(g1

31
g2
3∪32

)

= π3(g1
31
g2
32
) (87)

asg2 does not depend on3 \32-coordinates.
If 31 ⊆ 32 then

g32(g
1φ)32 = g32g

1φ32

= (g1g)32φ32 (88)

and so Lemma 4.1(4) follows from

(g1φ)(g) = lim
32→Zd

∫
(S1)32

dµ32 g32(g
1φ)32

= lim
32→Zd

∫
(S1)32

dµ32 (g1g)32φ32

= φ(g1g) (89)

and Lemma 4.1(5) follows from

‖g1φ‖var = lim
3→Zd

∫
(S1)3

dµ3 |(g1φ)3|

= lim
3→Zd
3⊃31

∫
(S1)3

dµ3 |g1||φ3|

≤ ‖g1‖31‖φ‖var. (90)

2
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Proof of Lemma 5.1.We get, recursively,

1

fp ◦ T εp,l(z)−wp
fp ◦ T εp,l(z)

= 1

fp ◦ T εp,l−1(z)−wp
fp ◦ T εp,l−1(z)

+wp
fp ◦ T εp,l−1(z)− fp ◦ T εp,l(z)

(fp ◦ T εp,l−1(z)− wp)(fp ◦ T εp,l(z)−wp)

= 1

fp(zp)− wp fp(z)+wp
l∑

k=1

fp ◦ T εp,k−1(z)− fp ◦ T εp,k(z)
(fp ◦ T εp,k−1(z)−wp)(fp ◦ T εp,k(z)−wp)

. (91)

The estimate (42) yields uniform convergence of this sum asl →∞. So we get (28). 2

In (57) we estimate the norm of the operator corresponding to one particular
configuration in terms of the lines and triangles it contains. Now we have to bound sums
over all such configurations as they arise in the expansions for the full operators. For
this we use our analysis and some combinatorics at the same time. The idea is that a
configuration of a given length must have at least a certain number of triangles and r-chains
that lead to small factors in the estimates. In fact, certain r-chains could not be replaced by
h-chains in the configuration as we would get a zero configuration.

Definition 8.1.
• A maximal r-chain going from an apex of a triangle downwards to the next base point

of a triangle or to a bottom point is called an(a-r)-chain. (If the apex coincides with
a base or bottom point the (a-r)-chain has length zero.)

• The(a-r)-lengthof a configurationC is the sum of the lengths of all its (a-r)-chains
plus the number of its triangles, i.e. ifC has|nβ | triangles with corresponding (a-r)-
chains of lengthl1, . . . , l|nβ | then

(a-r)-length(C) def= l1+ · · · + l|nβ | + |nβ |
= (l1+ 1)+ · · · + (l|nβ | + 1). (92)

(In particular (a-r)-length(C) ≥ |nβ |.)
• We call a maximal r-chain going from a base point(p, t) of a triangle to(p,−N)

(such that(p,−N) is not a base point of another triangle) a(u-r)-chain (upwards
going r-chain), a maximal r-chain going downwards from a base point a(d-r)-chain
((d-h)-chainsare defined analogously).

• A maximal r-chain going from a bottom point(p,0) to (p,−N) is called an(l-r)-
chain(long r-chain). We denote the number of (l-r)-chains ofC by l(C).

The configuration in figure 5 has length three, (a-r)-length six, only one (a-r)-chain
of positive length from(6,−2) to (6,−1), only one (u-r)-chain of positive length from
(2,−3) to (2,−2), and only one (l-r)-chain from(1,−3) to (1,0).

We prepare the proofs of Theorem 2.1 and Proposition 6.1 in the following technical
proposition that provides the key bounds and basic analysis and combinatorics for the
other proofs.
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PROPOSITION8.1. For sufficiently smallϑ , ε and largec2 andN we have for all31 ⊆
32 ∈ F the following bound for the terms in the expansion of (49) forπ31 ◦ LNF32◦T 32,ε

with constantsc19, c20:
(1) ∑

C:length(C)=N
‖π31 ◦ LC‖L((H32,ϑ ,‖·‖32,ϑ ),(H31,ϑ ,‖·‖31,ϑ ))

≤ c19η̃
N (93)

with η̃
def= √η < 1

(2)

‖π31 ◦ LNF32◦T 32,ε
‖L((H32,ϑ ,‖·‖32,ϑ ),(H31,ϑ ,‖·‖31,ϑ ))

≤ c20 (94)

For the proof of Proposition 8.1 we need a graph-theoretical lemma. We consider
labelled tree graphs that are constructed in the following way (cf. Figure 6). We start
with a star graph with aroot-vertex, labelled(0), to whichK edges are attached, each
connecting to oneleaf. The leaves are labelled by(0,1), . . . , (0,K). Then we successively
add star graphs (each of these has a certain finite numberv(k) of leaves. These numbers
are defined in (45)) to the already built-up tree. We identify one of the leaves of the tree,
say labelled bys = (s1, . . . , sn), with the root of the added star and label the new leaves by
(s1, . . . , sn,1), . . . , (s1, . . . , sn, v(k)). In total we use, in addition to the star graph withK
leaves, exactlynβ,k star graphs with exactlyv(k) leaves. We saythe tree has parameters
K andnβ = (nβ,1, nβ,2, . . . ).

We also introduce a linear order on the set of tuples (and so on the set of vertices of
the labelled graph): we says = (s1, . . . , sn) ≺ t = (t1, . . . , tm) if n < m andsi = ti for
1≤ i ≤ n or if si = ti (1 ≤ i < k) andsk < tk for somek.

LEMMA 8.2.
(1) The number of labelled tree graphs with exactly n edges is not greater than22n.
(2) GivenK,nβ,1, nβ,2, . . . with K +∑∞k=1 nβ,k < ∞. The number of labelled tree

graphs with parametersK andnβ is bounded from above by4K
∏∞
k=1 c

kdnβ,k
21 with

c21= 43d .

Proof of Lemma 8.2.We first prove (1) For every labelled tree graph in question we can
define a path starting and ending at the root point(0) and running through each edge
exactly twice in the following way. From a (labelled) vertext = (t1, . . . , tk) we go to
the next greater (w.r.t.≺) vertex where we have not yet been (going up), or if this is not
possible (i.e.t is a leaf or we have already been at all vertices(t1, . . . , tk+1)) back to
(t1, . . . , tk−1) (going down). So we return to(0) after 2n steps. We encode the path in a
word(a1, . . . , a2n) with ai = 1 if we go up in theith step andai = 0 otherwise. Obviously
the labelled graph is uniquely determined by its word. (Note that not every word of length
2n with symbols ‘0’ and ‘1’ corresponds to such a labelled graph, but the map between
these two data is injective.) As there are 22n words of length 2n with at most two different
symbols this is also an upper bound for the number of graphs in question, so (1) is proved.

To see (2) we note, using the estimate forv(k) that we obtain after (45), that the number
of edges in such a tree graph is not greater thanK +∑∞k=1(3k)

dnβ,k. 2
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FIGURE 6. The labelled graph for the configuration in Figure 5.

Proof of Proposition 8.1.We estimate the norm of eachLC in (93) in terms of the number
of particular triangles, r-chains etc. ofC as we do in (57). We also have to bound the
number of configurations in (93) that have the same set of triangles. We do so by assigning
(in (i)–(iv)) to each configuration a labelled tree graph and estimating the number of graphs
that have certain properties.

(i) We fix 0 ≤ K ≤ |31| and33 ⊆ 31 with |33| = K (so there are
(|31|
K

)
possible

choices for33) and want to estimate the number of configurationsC such that3C = 33.
So let us consider such a configuration. We call the triangles whose apex lies at, or
whose (a-r)-chain ends in,33 × {0}, root triangles. We can assign toC a graph of the
type we consider in Lemma 8.2 as follows. We start with a star graph with a star point
labelled(0) andK leaves, labelled(0,1), . . . , (0,K). These leaves are in bijection with
33 × {0}. Now we add successively for eachl-triangle (as introduced in §5.3) inC a
star graph with one star point andv(l) leaves (cf. definition ofv(l) in (45)) to the graph
and label the new vertices: if anl-triangle lies with its apex or ends with its (a-r)-chain
on a base point of another triangle (for which we have already assigned a small tree) or
on a point in33 × {0} (this point is labelled says = (s1, . . . , sn)) we add a smalll-
tree to the graph by identifying its star point withs and label thev(l) new leaves in the
graph(s1, . . . , sn,1), . . . , (s1, . . . , sn, v(l)). Since, for example, an apex could coincide
with more than one other triangle’s base point we use the linear order≺ (defined above
Lemma 8.2) to define an order in our successive assignment of triangles to star graphs.
We always choose the next triangle such that the corresponding star graph is attached to
the smallest (w.r.t.≺) labelled leaf in the graph. This also defines a unique choice of the
triangle and the leaf where we attach the star graph. So the position of triangles and the
(a-r)-chains ofC are completely determined by the datum consisting of the corresponding
labelled graphand the lengths of its (a-r)-chains. Note that it is not the case that for
every graph together with a choice of lengths for the particular (a-r)-chains there was a
corresponding configuration.

For the configuration in Figure 5, for example, we get the labelled graph in Figure 6.
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Let nβ,k be, as in Definition 5.2, the total number ofk-triangles. The number of graphs

with parametersK andnβ is bounded by 4K
∏∞
k=1 c

kdnβ,k
21 (by Lemma 8.2). As mentioned

above we have for each of the|nβ | (a-r)-chains a length 0≤ li <∞. The (a-r)-length is

L = (l1 + 1)+ · · · + (l|nβ | + 1). (95)

So L ≥ |nβ |. For a givennβ with |nβ | ≥ 1 andL ≥ 1 there are
(
L−1
|nβ |−1

)
different

choices of(l1, . . . , l|nβ |) that satisfy (95). For|nβ | = 0 we haveL = 0 and the (unique)
configuration without triangles or r-lines. So, in any case, the number of choices is bounded

from above by
(
L
|nβ |
)
. The integration over these|nβ | (a-r)-chains leads to a factorc

|nβ |
r ηL

in our estimates (cf. (57)) and eachk-triangle contributes by (55) a factorc8ε exp(−c2k
d).

(ii) There are choices between (d-r)-chains and (d-h)-chains in the configuration. There
are not more than

∑∞
k=1(3k)

dnβ,k base points for which we can choose between a (d-h)-
chain (giving factorch in our estimates) and a (d-r)-chain (giving factor at mostcrη). So
the total sum over these combinations is bounded from above by

(ch + crη)
∑∞
k=1(3k)

dnβ,k ≤
∞∏
k=1

(exp(c22k
d))nβ,k .

(iii) There are choices between (u-r)-chains and (u-h)-chains in the configuration. There
are not more than

∑∞
k=1(3k)

dnβ,k base points. To each of them we can attach either a (u-
h)-chain, giving a factorch, or a (u-r)-chain, giving a factorcrηmax{0,N−L}, because if
N − L > 0, such a (u-r)-chain cannot have length smaller thanN − L, for otherwise it
would not end in32× {−N}. We get in total a factor not greater than

(ch + cr)
∑∞
k=1(3k)

dnβ,k =
∞∏
k=1

(exp(c23k
d))nβ,k . (96)

(iv) There are choices left between (l-h)-chains and (l-r)-chains in(31 \ 3̃C) ×
{−N, . . . ,0}, giving factorch or crηN , respectively. Letl (0 ≤ l ≤ |31\3̃C | ≤ |31|−K)
denote the number of (l-r)-chains in such a choice. For givenl there are|31 \ 3̃(C| )l ≤(|31|−K

l

)
different subsets3r of 31 \ 3̃C of cardinalityl (that correspond to a particular

choice of exactlyl (l-r)-chains.) The configurationC is determined by all the choices
mentioned up to now.

Consider now aC with length(C) = N . If N − L > 0 then there must be at least one
(u-r)-chain giving rise to an extra factorηmax{0,N−L} or an (l-r)-chain giving rise to a factor
ηn. To get (98) we split

ηmax{0,N−L} = η̃max{0,N−L}η̃max{0,N−L}

or

ηN = η̃N η̃N

with η̃
def= √η. Therefore we get the factorη̃max{0,N−L}.
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In the configurationC there are h-chains at points withZd -coordinate in31\(3̃C∪3r).
The operatorLC acts onφ32 by integration over these coordinates. So for the uniform
estimate ofLCφ3̃(C) we use (58).

First we estimate in (97)–(104) the sum overC with length(C) = N and then in (105)–
(107) the sum overC with length(C) = m < N . We do these separately because in the
second caseC has no (l-r)-chains, while in the first case every (l-r)-chain leads to a small
factorcrηN . The idea of making this distinction is similar to the idea of ‘vacuum polymers’
in other papers (cf. [2, 15, 1]).

ϑ |31| ∑
C:length(C)=N

‖π31 ◦ LCφ32‖31 (97)

≤ ϑ |31|
|31|∑
K=0

(|31|
K

) ∑
nβ

K≤|nβ |<∞

4K
∞∏
k=1

(exp(c21k
d))nβ,k (c1ε)

|nβ |

×
∞∏
k=1

(exp(−c2k
d))nβ,k

∞∑
L=|nβ |

(
L

|nβ |
)
c
|nβ |
r η̃L

∞∏
k=1

(exp(c22k
d))nβ,k

×
∞∏
k=1

(exp(c23k
d))nβ,k η̃max{0,N−L}

|31|−K∑
l=0

(|31| −K
l

)
(cr η̃

N )l

× c|31|−K−l
h ϑ−l

∞∏
k=1

ϑ−(3k)dnβ,k‖φ‖32,ϑ (98)

= ϑ |31|
|31|∑
K=0

(|31|
K

) ∑
nβ

K≤|nβ |<∞

4K(c1εcr )
|nβ |

×
∞∏
k=1

exp((c21− c2+ c22+ c23− 3d lnϑ)kd)nβ,k

×
∞∑

L=|nβ |

(
L

|nβ |
)
η̃max{N,L}(ϑ−1cr η̃

N + ch)|31|−K‖φ‖32,ϑ η̃
N . (99)

We assumeε < 1. We setε1
def= 4εc1cr andε2

def= √ε1. Then we haveε
|nβ |
1 ≤ εK2 ε

|nβ |
2 . We

setc̃2
def= c2− c21− c22− c23+ 3d lnϑ . Thenc̃2 > 0 if

c2 > c21+ c22+ c23− 3d lnϑ. (100)

(We assume this condition on the decay of the coupling. Note that we first have to choose
ϑ below, after (104), depending on the other parameters of the system (but not onc2) and
then condition (100) is well defined.) Then (99) can be bounded as follows:

≤
|31|∑
K=0

(|31|
K

)
(cr η̃

N + ϑch)|31|−KεK2
∑
nβ

K≤|nβ |<∞

∞∑
L=|nβ |

(
L

|nβ |
)
η̃Lε
|nβ |
2

×
∞∏
k=1

(exp(−c̃2k
d))nβ,k‖φ‖32,ϑ η̃

N



Transfer operators for coupled analytic maps 135

≤ (cr η̃N + ϑch + ε2)|31|
∞∑
L=0

L∑
n=0

(
L

n

)
η̃Lεn2

∑
nβ
|nβ |=n

∞∏
k=1

(exp(−c̃2k
d))nβ,k

× ‖φ‖32,ϑ η̃
N . (101)

We have ∑
nβ
|nβ |=n

∞∏
k=1

(exp(−c̃2k
d))nβ,k ≤

∞∏
k=1

∞∑
nβ,k=0

(exp(−c̃2k
d))nβ,k (102)

and the last infinite product converges (toc24 say) since fork sufficiently large exp(−c̃2k
d)

< 1
2 and

∑∞
nβ,k=0(exp(−c̃2k

d))nβ,k ≤ 1 + 2 exp(−c̃2k
d) and

∑∞
k=0 exp(−c̃2k

d) < ∞.

(Recall
∏∞
k=1(1+ uk) convergent⇐∑∞

k=1 |uk| <∞.)

≤ (ε2+ cr η̃N + chϑ)|31|c24

∞∑
L=0

(ε2+ η̃)L‖φ‖32,ϑ η̃
N

= (ε2+ cr η̃N + chϑ)|31| 1

1− ε2− η̃ c24‖φ‖32,ϑ η̃
N (103)

≤ c19η̃
N‖φ‖32,ϑ (104)

for ϑ andε sufficiently small andN sufficiently large. This also holds for3 ⊂ 31. So
Proposition 8.1(1) is proved.

To show Proposition 8.1(2) we have to estimate, in addition to (93), the contribution of
non-zero configurationsC of length 0≤ m < N in the expansion ofπ31 ◦ LNF32◦T 32,ε

.

These have no (l-r)-chains. So this time we havel(C) = 0. Using the splittingηL ≤ η̃Lη̃m
we get, in a similar way,

ϑ |31| ∑
C:length(C)=m,

l(C)=0

‖π31 ◦ LCφ32‖31 (105)

≤ ϑ |31|
|31|∑
K=0

(|31|
K

) ∑
nβ

K≤|nβ |<∞

4K
∞∏
k=1

(exp(c21k
d))nβ,k

× (c1ε)
|nβ |

∞∏
k=1

(exp(−c2k
d))nβ,k

∞∑
L=|nβ |

(
L

|nβ |
)
c
|nβ |
r η̃L

∞∏
k=1

(exp(c22k
d))nβ,k

×
∞∏
k=1

(exp(c23k
d))nβ,k c

|31|−K
h

∞∏
k=1

ϑ−(3k)dnβ,k‖φ‖32,ϑ η̃
m

≤
|31|∑
K=0

(|31|
K

)
(chϑ)

|31|−K ∑
nβ

K≤|nβ |<∞

(c1ε4cr)|nβ |
∞∏
k=1

(exp(−c̃2k
d))nβ,k

×
∞∑

L=|nβ |

(
L

|nβ |
)
η̃Lη̃m‖φ‖32,ϑ
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≤
|31|∑
K=0

(|31|
K

)
(chϑ)

|31|−KεK2
∑
nβ

K≤|nβ |<∞

∞∑
L=|nβ |

(
L

|nβ |
)
η̃Lε
|nβ |
2

×
∞∏
k=1

(exp(−c̃2k
d))nβ,k η̃m‖φ‖32,ϑ

≤ (ε2+ chϑ)|31| 1

1− ε2 − η̃ c25η̃
m‖φ‖32,ϑ

≤ c26η̃
m‖φ‖32,ϑ . (106)

Again this also holds for3 ⊂ 31 and so

ϑ |31| ∑
C:length(C)=m,

l(C)=0

‖π31 ◦ LCφ32‖31,ϑ ≤ c26‖φ‖32,ϑ η̃
m. (107)

Therefore

‖π31 ◦ LNF32◦T32,ε
‖L((H32,ϑ ,‖·‖32,ϑ ),(H31,ϑ‖·‖31,ϑ ))

≤
N∑
m=0

c26η̃
m

≤
∞∑
m=0

c26η̃
m

≤ c20 (108)

which was to be shown. 2

Proof of Theorem 2.1.First we consider the caseN ≥ N0. The difference between
π31 ◦LNF32◦T 32,ε

◦ π32 andπ31 ◦LNF33◦T33,ε
◦ π33 for31 ⊆ 32 ⊆ 33 ∈ F is due to the

summands involving configurations that do not lie completely (with all their triangles) in
32× {0,−1, . . . }. For those summands we have the lower bound for the spatial extension
of the set of triangles:

b(C) def=
∞∑
k=1

knβ,k

≥ dist(31,3
C
2 ) (109)

As the analysis in the proof of Proposition 8.1 shows we have in the estimate for each such
configuration a factor

∞∏
k=1

(exp(−c̃2k
d))nβ,k ≤

∞∏
k=1

[exp(−(c̃2− ξ)kd)]nβ,k
∞∏
k=1

(exp(−ξknβ,k))

≤
∞∏
k=1

[exp(−(c̃2− ξ)kd)]nβ,k exp(−ξ dist(31,3
C
2 )). (110)

If we takeξ > 0 small enough we can take out a factor exp(−ξ dist(31,3
C
2 )) and do the

analysis with the remaining factor as before sincec̃2− ξ > 0. So we get

‖π31 ◦ LNF32◦T32,ε
◦ π32 − π31 ◦ LNF33◦T 33,ε

◦ π33‖L((Hϑ ,‖·‖ϑ ),(H31,ϑ ,‖·‖31,ϑ ))

≤ c27exp(−ξ dist(31,3
C
2 )) (111)
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with some constantc27 and the limit in (7) exists forN ≥ N0. The proof for the case
N < N0 is similar. We use the modified estimates that we get by replacing in (97) and
(105)ϑ by a sufficiently small̃ϑ . For example, (97) and (103) become

ϑ̃ |31| ∑
C:length(C)=N

‖π31 ◦ LCφ32‖31 ≤ c28

(
ε2+ cr η̃N ϑ̃

ϑ
+ chϑ̃

)|31|
‖φ‖32,ϑ η̃

N

(112)

and the term in parentheses is smaller than one ifϑ̃ and ϑ̃/ϑ are small enough. The
statement for systems with finite-range interaction follows from the fact that in that case
all limits are already attained for some sufficiently large32 ∈ F and that all considered
sums are finite.

For the proof of Theorem 2.1(2) we use results from Proposition 6.1 that we prove
below. By (7) the operatorsLNF◦T ε ∈ L(Hϑ , ‖ · ‖ϑ) are well defined forN ≥ N0 and, by
Proposition 6.1(2), give rise to a Cauchy sequence. With the same argument we see that
the infinite sum in the definition ofν3 (cf. (59)) converges andν ∈ Hϑ . ν ≥ 0 and so
ν ∈ Hbv follow from of Proposition 6.1(6).

The difference in (9) is only due to configurations of length≥ N and we estimate
it, using Proposition 6.1(2), byc3η̃

N . So ν = limN→∞ LNF◦T ε h and by (3) and (4)
of Proposition 6.1,LF◦T ε ν = ν andµ(ν) = 1, respectively. For anyφ ∈ Hϑ with
LF◦T εφ = φ andµ(φ) = 1 we have by (9)

φ = lim
N→∞L

N
F◦T εφ = µ(φ)ν = ν. (113)

This shows uniqueness ofν and so ofν∗ and the proof of Theorem 2.1(2) is complete.2

Proof of Proposition 6.1.Using the same argument as in the proof of Theorem 2.1(1),
we see that the right-hand side term in (60) differs from the operator in (49) only in
the summands forC with b(C) ≥ dist(31,3

C
2 ). So the difference is bounded by

c29 exp(−ξ dist(31,3
C
2 )) for somec29 > 0 and (60) follows from taking the limit

32→ Zd .
In order to prove Proposition 6.1(2) we first observe that configurationsC ∈ EN(31)

of length≤ N − 1 extend canonically toC ′ ∈ EN+1(31) with LC = LC′ because there
are only h-lines in the step from time−N to −N + 1. So we can extendC to C ′ on
32 × {−N − 1, . . . ,0} (where32 is so large that32 × {−N − 1, . . . ,0} contains all
triangles ofC) by adding h-lines from(p,−N−1) to (p,−N) for all p ∈ 32 and obviously
LC = LC′ .

Note that a configurationC ′ in32×{−N−1, . . . ,0} of length≤ N−1 is the extension
in the above sense of a (uniquely defined)C. So in the difference (61), all termsLC with
length(C) ≤ N − 1 are cancelled. Using Proposition 8.1(1), (107) and Proposition 6.1(1)
we get for all31 ∈ F

‖(π31 ◦ LNF◦T ε − π31 ◦ LN+1
F◦T ε )φ‖31,ϑ ≤ (c19η̃

N + c20η̃
N + c19η̃

N+1)‖φ‖ϑ
≤ c30η̃

N‖φ‖ϑ (114)
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with c30 independent of31. This proves Proposition 6.1(2); next we prove
Proposition 6.1(3). For31 ∈ F ,

π31 ◦ LN2
F◦T ε ◦ LN1

F◦T εφ =
∑

C2∈EN2(31)

π31 ◦ LC2(L
N1
F◦T εφ)

=
∑

C2∈EN2(31)

(
π31 ◦ LC2 ◦

∑
C1∈EN2(3(C2))

π3(C2) ◦ LC1φ3(C1)

)
=

∑
C2∈EN2(31)

C1∈EN2(3(C2))

π31 ◦ LC2◦C1φ3(C1)

=
∑

C3∈EN1+N2(31)

π31 ◦ LC3φ3(C3)

= π31 ◦ LN1+N2
F◦T ε φ. (115)

Note that we sum over infinitely manyC1, C2. A priori, the distribution is only valid for
finite partial sums. In terms of configurations we ‘putC1 onC2’ to getC3 = C2 ◦ C1 (which
might be a zero configuration), in fact such a splitting exists and is unique for every non-
zeroC3. So the net of finite partial sums overC3 converges to the infinite expansion (60)
of the right-hand side of (62) and Proposition 6.1(3) is proved.

To prove (64), we consider first the special caseg ∈ C((S1)3):∫
M

dµg ◦ S φ = lim
31→Zd

∫
M

dµg ◦ S31φ

= lim
31→Zd

∫
(S1)31

dµ31g ◦ S31φ31

= lim
31→Zd

∫
(S1)31

dµ31gLF31◦T31,ε φ31

= lim
31→Zd

∫
(S1)3

dµ3g π3 ◦ LF31◦T 31,ε ◦ π31φ

=
∫
M

dµgLF◦T εφ. (116)

So (64) is true forg ∈ C((S1)3). Takingg ≡ 1, we get (65).
Now we show (63), using the special case of (64) for the second equality:

‖LF◦T εφ‖var = sup
3∈F

sup
g∈C((S1)3)
‖g‖∞≤1

∫
M

dµgLF◦T εφ

= sup
3∈F

sup
g∈C((S1)3)
‖g‖∞≤1

∫
M

dµg ◦ Sφ

≤ sup
3∈F

sup
g∈C((S1)3)
‖g‖∞≤1

‖g‖∞‖φ‖var

= ‖φ‖var. (117)



Transfer operators for coupled analytic maps 139

We can conclude (64) for anyg ∈ C(M). By assumptionφ and then by (63)LF◦T εφ are
inHbv, i.e. the integrals in (64) correspond to continuous linear functionals onC(M). The
net(g3)3∈F converges uniformly tog as3→ Zd , as does(g3 ◦ S)3∈F to g ◦ S, so (64)
follows by uniform approximation ofg by functionsg3 and Proposition 6.1(4) is proved.

We show Proposition 6.1(5) by indirect proof. We have, by definition,(LF◦T εφ)3
def=

lim31→Zd π3 ◦ LF31◦T 31,ε φ31. If that was negative somewhere there would be a31 ∈ F
with π3 ◦ LF31◦T 31,ε φ31 having negative values and we could find a non-negative
g ∈ C((S1)3) such that ∫

(S1)3
dµ3g π3 ◦ LF31◦T31,ε φ31 < 0 (118)

However, by Proposition 6.1(4) the integral equals∫
(S1)31

dµ31g ◦ S φ31 ≥ 0. (119)

SoLF◦T ε is non-negative. 2

Proof of Theorem 7.1.

ν31∪32 =
∑

C∈E(31∪32)

π31∪32 ◦ LCh

=
∑

C=C1∪C2
b(C)≤ 1

2dist(31,32)

(π31 ◦ LC1h)(π32 ◦ LC2h)

+
∑
C

b(C)> 1
2dist(31,32)

π31∪32 ◦ LCh. (120)

In estimating the second summand we note that if we sum in formulae (97) and (105)
just overC for which b(C) ≥ 1

2dist(31,32) (b(C) was defined in (109)), we can take
out from

∏∞
k=1(exp(−c̃2k

d))nβ,k a factor exp(−ξ 1
2dist(31,32)) (similar to the proof of

Proposition 6.1). We do so by choosing aκ ∈ (0,1) so that

c̃2+ ln κ = c2− c21− c22− c23+ 3d lnϑ + ln κ > 0 (121)

and by definingξ by exp(−ξ 1
2) = κ . Note that such a choice exists asc̃2 > 0 by (100).

The rest of the analysis is as in the proof of Proposition 8.1. We get∥∥∥∥ ∑
C

b(C)> 1
2dist(31,32)

π31∪32 ◦ LCh
∥∥∥∥
31∪32

(122)

≤ κdist(31,32)c31‖h‖ϑϑ−|31|−|32|

≤ c32ϑ
−|31|−|32|κdist(31,32). (123)
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We write for the first summand in (120)∑
C=C1∪C2

b(C)≤ 1
2dist(31,32)

(π31 ◦ LC1h)(π32 ◦ LC2h)

= ν31ν32 −
∑

C=C1∪C2
b(C)> 1

2dist(31,32)

(π31 ◦ LC1h)(π32 ◦ LC2h) (124)

and estimate, in a similar way,∥∥∥∥ ∑
C=C1∪C2

b(C)> 1
2dist(31,32)

(π31 ◦ LC1h)(π32 ◦ LC2h)

∥∥∥∥
31∪32

≤ c33ϑ
−|31|−|32|κdist(31,32).

(125)

Equations (123) and (125) also hold for all3′1 ⊆ 31, 3′2 ⊆ 32 and Theorem 7.1(1)
follows:

π31(f ν) = π31(f ν31∪32)

= π31(f ν31ν32 − f (ν31ν32 − ν31∪32))

= ν(f )ν31 − π31(f (ν31ν32 − ν31∪32)) (126)

and, using‖π31‖∞ = 1, we get

‖π31(f (ν31ν32 − ν31∪32))‖31 ≤ ‖f ‖32‖ν31ν32 − ν31∪32‖31∪32 (127)

and so by Theorem 7.1(1)

‖π31(f (ν31ν32 − ν31∪32))‖31 ≤ c16ϑ
−|31|−|32|‖f ‖32κ

dist(31,32). (128)

This holds for all3′1 ⊂ 31, so Theorem 7.1(2) is proved.
We setφ = f ν−ν(f )ν. Soπ31◦LNF◦T ε (f ν)−ν(f )ν31 = π31◦LNF◦T εφ. We estimate

the‖ · ‖31,ϑ̃
-norm of the last term as in the proof of Proposition 8.1, but this time using the

finer estimates from Theorem 7.1(2)

‖φ3(C)‖3(C) ≤ ϑ−|3(C)|c11ϑ
−|32|‖f ‖32κ

dist(3(C),32)

≤ c11ϑ
−|32|‖f ‖32ϑ

−|3r (C)|−∑∞k=1(3k)
dnβ,k κdist(31,32)−∑∞k=1 knβ,k (129)

where as before3(C) def= 3̃C ∪3r . So we get analogously to formulae (97) and (98):

ϑ̃ |31| ∑
C:length(C)=N

‖π31 ◦ LCφ32‖31

≤ ϑ̃ |31|
|31|∑
K=0

(|31|
K

) ∑
nβ

K≤|nβ |<∞

4K
∞∏
k=1

(exp(c21k
d))nβ,k (c1ε)

|nβ |

×
∞∏
k=1

(exp(−c2k
d))nβ,k

∞∑
L=|nβ |

(
L

|nβ |
)
c
|nβ |
r ηL

∞∏
k=1

(exp(c22k
d))nβ,k

×
∞∏
k=1

(exp(c23k
d))nβ,k ηmax{0,N−L}

|31|−K∑
l=0

(|31| −K
l

)
(crη

N)lc
|31|−K−l
h

× c11ϑ
−|32|‖f ‖32ϑ

−l−∑∞k=1(3k)
dnβ,k κdist(31,32)−∑∞k=1 knβ,k
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≤ c11ϑ̃
|31|

|31|∑
K=0

(|31|
K

) ∑
nβ

K≤|nβ |<∞

4K(c1εcr )
|nβ |

×
∞∏
k=1

(exp((c21− c2+ c22+ c23− 3d lnϑ − ln κ)kd))nβ,k

×
∞∑

L=|nβ |

(|31|
K

)
ηmax{L,N}(ϑ−1crη

N + ch)|31|−Kϑ−|32|‖f ‖32κ
dist(31,32).

(130)

Using (121), we get with the same analysis as (98)–(103):

≤ c34

(
ε2 + cr η̃N ϑ̃

ϑ
+ chϑ̃

)|31|
ϑ−|32|‖f ‖32κ

dist(31,32)η̃N . (131)

For sufficiently smallε2 and ϑ̃ the term in brackets is smaller than one. Note that there
is no condition onN . So we get the same estimates for alln ≥ 0 and these also hold for
3 ⊂ 31. So in analogy with (61) we get

‖LNF◦T εφ − LN+1
F◦T εφ‖31 ≤ c35ϑ

−|32|‖f ‖32κ
dist(31,32)η̃N (132)

and asµ(φ) = 0 we conclude Theorem 7.1(3). 2

Proof of Theorem 2.2.Applying Theorem 7.1(1) we get∣∣∣∣ ∫
M

ν dµgf −
(∫

M

ν dµg

)(∫
M

ν dµf

)∣∣∣∣
≤
∣∣∣∣ ∫
(S1)31∪32

dµ31∪32(ν31∪32 − ν31ν32)gf

∣∣∣∣
≤ ‖ν31∪32 − ν31ν32‖31∪32‖g‖∞‖f ‖∞
≤ c10ϑ

−|31|−|32|‖g‖∞‖f ‖∞κdist(31,32), (133)

so Theorem 2.2(1) is proved.
We have ∣∣∣∣ ∫

M

ν dµg ◦ τ ◦ Snf −
(∫

M

ν dµg ◦ τ
)(∫

M

ν dµf

)∣∣∣∣
=
∣∣∣∣ ∫
M

dµg ◦ τ (πτ−1(31)
◦ LnF◦T ε (f ν)− ν(f )ντ−1(31)

)

∣∣∣∣
≤ c12c

|31|+|32|
5 ‖f ‖32‖g‖∞κdist(τ−1(31),32)η̃n. (134)

Here we have used Theorem 7.1(3) and setc5
def= ϑ̃−1. From

dist(τ−1(31),32) ≥ m(τ)−max{‖p − q‖ : p ∈ 31, q ∈ 32} (135)

follows

κdist(τ−1(31),32) ≤ c(31,32, κ)κ
m(τ) (136)
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wherec(31,32, κ) is as defined in Theorem 2.2. Ifτ andS commute, Theorem 2.2(3)
follows from Theorem 2.2(2).

We prove Theorem 2.2(4) by approximatingg andf by functions for which we can
apply estimate Theorem 2.2(2). For anyγ > 0 we can choose31 ∈ F so large that
‖g − g31‖∞ ≤ γ . Furthermore, there exists añf32 ∈ H(A32

δ ) with ‖f − f̃32‖∞ ≤ γ
(sup-norm on(S1)Z

d
). So∣∣∣∣ ∫

M

ν dµg ◦ τ ◦ Snf −
(∫

M

ν dµg ◦ τ
)(∫

M

ν dµf

)∣∣∣∣
≤
∣∣∣∣ ∫
M

ν dµ (g − g31) ◦ τ ◦ Snf
∣∣∣∣+ ∣∣∣∣ ∫

M

ν dµg31 ◦ τ ◦ Sn (f̃32 − f )
∣∣∣∣

+
∣∣∣∣ ∫
M

ν dµg31 ◦ τ ◦ Snf̃32 −
(∫

M

ν dµg31 ◦ τ
)(∫

M

ν dµ f̃32

)∣∣∣∣
+
∣∣∣∣( ∫

M

ν dµg31 ◦ τ
)(∫

M

ν dµ (f − f̃32)

)∣∣∣∣
+
∣∣∣∣( ∫

M

ν dµ (g − g31) ◦ τ
)(∫

M

ν dµf

)∣∣∣∣
≤ ‖g − g31‖∞‖f ‖∞ + ‖g31‖∞‖f − f̃32‖∞
+ c(31,32, κ)c

|31|+|32|
5 ‖g31‖∞‖f̃32‖32η̃

n(σ )κm(σ)

+ ‖g31‖∞‖f − f32‖∞ + ‖g − g31‖∞‖f32‖∞
≤ (2‖f ‖∞ + 2‖g‖∞ + 3γ )γ

+ c(31,32, κ)c
|31|+|32|
5 (‖g‖∞ + γ )‖f̃32‖32η̃

n(σ )κm(σ) (137)

and this gets arbitrarily small as we can first chooseγ , and then (depending onγ ) 31,32

andf̃32 and finally max{m(σ), n(σ )}.
Theorem 2.2(5) follows from Theorem 2.2(4) and the commutation of theτei with S. 2
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