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Abstract We consider analytically coupled circle maps (uniformly expanding and analytic)

on theZ4-lattice with exponentially decaying interaction. We introduce Banach spaces for
the infinite-dimensional system that include measures whose finite-dimensional marginals
have analytic, exponentially bounded densities. Using residue calculus and ‘cluster
expansion’-like techniques we define transfer operators on these Banach spaces. We get
a unique (in the considered Banach spaces) probability measure that exhibits exponential
decay of correlations.

0. Introduction

Coupled map lattices were introduced by Kaneko (tf] for a review) as systems that
are mixing w.r.t. spatio—temporal shifts. Bunimovich and Sinai prove@]ifcf. also the
remarks on this in3]) the existence of an invariant measure and its exponential decay
of correlations for a one-dimensional lattice of weakly coupled maps by constructing a
Markov partition and relating the system to a two-dimensional spin system.

Bricmont and Kupiainen extend this result i2—}] to coupled circle maps over the
Z4-lattice with analytic and itler-continuous weak interaction, respectively. They
use a ‘polymer’ or ‘cluster’-expansion for the Perron—Frobenius operator for the finite-
dimensional subsystems ovar ¢ Z¢ and write thenth iterate of this operator applied
to the constant function one in terms of potentials f@d a+ 1)-dimensional spin system.
Taking the limit asn — oo and A — Z9 they get existence and uniqueness (among
measures with certain properties) of the invariant probability measure and exponential
decay of correlations.

Baladiet al define in [l], for infinite-dimensional systems over tié-lattice, transfer
operators on a Frechet space and, dor= 1, on a Banach space; they study the
spectral properties of these operators, viewing the coupled operator as a perturbation of
the uncoupled operator in the Banach case.

In [13] Keller and Kuinzle consider periodic or infinite one-dimensional lattices of
weakly coupled maps of the unit interval. In particular they define transfer operators on
the spaceBV of measures whose finite-dimensional marginals have densities of bounded
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variation and prove the existence of an invariant probability measure. For the infinite-
dimensional system they further show that for a small perturbation of the uncoupled map
any invariant measure iBV is close (in a specified sense) to what they found. Coupled
map lattices with multi-dimensional local systems of the hyperbolic type have been studied
by Pesin and Sinail], Jiang B, 9, Jiang and Mazel](], Jiang and Pesinl[l] and
Volevich [18, 19. Detailed surveys on coupled map lattices can be foun8,idl, 3.

In the above papers (excefdt, [13) the analysis has been performed only for Banach
spaces defined for finite subsetsof the lattice, and the (weak) limit of the invariant
measure forA — Z¢ was taken afterwards. Here we present a new point of view in
which a natural Banach space and transfer operators are defined for the infinite lattice of
weakly coupled analytic maps (81). The space contains consistent families of analytic
densities over finite subsets @f. We take a weighted sup-norm so that the sup-norms
of the densities for the subsystems over finitely many (yattice points is bounded
exponentially inN (82). We identify an ample subset of this space with a seftcaf
(regular, countably additive) measures (84) that contains the unique invariant probability
density (82). We derive exponential decay of correlations for this measure and a certain
class of observables from (the proof of) the spectral properties of our transfer operators
(882 and 7). The operator for the coupled system and also the invariant measure are (for a
small interaction) in fact perturbations of their counterparts in the uncoupled case. So the
mixing properties are inherited from the single site systems. §8 contains the proofs.

Our approach provides a natural setting for an analysis of th&futerron—Frobenius
operator in terms of cluster expansions over finite subsets of the lattice. Using residue
calculus we introduce an integral representation for the Perron—Frobenius operator for
finite-dimensional subsystems (83) which yields a uniform control over the perturbation
and also gives rise to an easy approach to stochastic perturbatiarb{rivhich, however,
we do not consider here.

Our ‘cluster expansion’ combinatorics (85) uses ideas from the work of Maes and
Van Moffaert [L5 who have introduced a simplified (compared to that2i) polymer
expansion. Apart from the analysis of the one-dimensional operator, which is fairly
standard and for which we refer to for examp@ fhe paper should be self-contained.

1. General setting
We consider coupled map lattices in the following setting: the state spMe:is(Sl)Zd
wheres! = {z € C | |z| = 1} is the unit circle in the complex plane adda positive
integer.

The mapS : M — M is the compositior§ = F o T€ of a coupling maj¥'< depending
on a (small) non-negative parameteand another parameter for the decay of interaction
(cf. (1)) with an (uncoupled) map' that acts on each component &f separately. We
make the following assumptions.

Assumption 1.F (2) = (f»(zp)) yeza Wheref, : St — ST are real analytic and expanding
(i.e. f, = X0 > 1) maps that extend for sondg holomorphically to the interior of an

annulusAs, def {z € C| =81 < In|z| < 81} and the family of Perron—Frobenius operators
Ly, for the single site systems uniformly satisfies a condition specified in 85.1 below (31).
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(We need some more definitions to specify these conditions, but note that they are, in
particular, satisfied if alf,, are the same.)

We writeT¢ : M — M asT¢(z) = (T; @) peza andT; (2) = zp expl2mieg,(2)] with
gp(2) = Y t218p.k(2). The functiong, x is real valued or(Sl)Zd and depends only on

thosez, with ||p — ¢l < k (neighbours of distance at most k) whejre|| def Zf’zl | pil.
We write By (p) = {g € Z¢ | ||p — ¢q|| < k} and also denote by, « the function from the

finite-dimensional torugs*) 5(») to R. We assume the following for the functiogs .

Assumption 2For all p € Z¢ andk > 1 each mag, « extends to a holomorphic map
8pk: Aflk(”) — C and its sup-norm (of modulus) is exponentially bounded by

lgp il e < c1@Xp(—cok?) (1)
51

with ¢1 > 0 andc; larger than a certain constant specified in (100).

The parameter; is actually redundant as it is multiplied layin the definition ofT;.
We also have exp-c2k?) < exp(—&) exp(—c3k?) for ¢ = co — £, £ > 0, i.e. for anye
we can make the interaction small just by takindarge. However, once we have chosen
c2 large enough to guarantee the convergence of the infinite sums in our analysis we can
consider perturbations of the uncoupled map depending on the paranoetgr

With the metric

dy (x,y) E supy Pl x, =y, | )
peZd

for0 < y < 1(M,d,) is a compact metric space. Its topology is the product topology
on (SHZ’. The Borelo-algebras on M is the same as the produgtalgebra. F and
T¢ are continuous and measurable. CéM) denote the space of real-valued continuous
functions on(M, d,,) with the sup-norm ang the Lebesgue (product) measureidn

For A1 € Ap € Z¢, with A1 finite and an integrable functiop on M depending only
on theA»-coordinates, we define the projection

def
(T ¥)(Zay) = /( gy T @220V 20V Zha\ ) (3)

2. Main results

For finite A c Z? let H(Ag‘) be the space of continuous functions on the closed
polyannulusAg‘ that are holomorphic on its interior and write || o for the sup-norm (of
modulus) onH(Ag‘). Let F be the set of all finite subsets (includifyof Z¢. We denote
by H the vectorspace of all consistent familigs= (¢ ) peF Of functionsep, € H(Ag‘).

Consistency meansy, ¢, = ¢a, for A1 € Ar € F. We write () d:8f¢@.

We want to define a norm on a (sufficiently large) subspacH ¢iiat should at least
contain ‘product densities’ such as= (hp)per With hp(2) = ]_[peA hp(zp), Where
hp € H(Af;”}) is the invariant probability density for the single system dygr(cf. 85.1).

Because of (32) the sup-norih,, ||, does not grow faster than exponentially iy |.
Therefore we take a weighted sup-norm. Fot @ < 1 we define

sup 9 ipalla 4
AeF

ef

llly X
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and setHy def {p € H | lolls < oo}. Then(Hy, | - llv) is a Banach space. In fact, if
(#"nen is a Cauchy sequence iy, | - ls) then for eac € F the sequenc@p’; ), en
is Cauchy in the Banach spa(:H(Ag‘), Il - ||A§\) and so converges 9, . Consistency of

(¢a) acr follows from taking the limit (as — o0) of AP, = DA, using the continuity
of wp, forany A1 € Ao € F. Analogously we define fon € F the weighted norm on
spacesi » of consistent sub-familie@a,)a,ca:

def
Igllas = sup 9'24ga,lla,. ()
A1CA
We get the same (topological) vector spacQHSAg‘), Il - la), but the constants for the

estimates of the norms are unboundeg¢lgsincreases.
For givenA;1 C Az € F andN € N we have a map,

N :
Ay O Lpnyogpnge ©TAz 2 (R - M) = (Hago, I llag), (6)

N
wherel Fhzy

g is the Perron—Frobenius operator for the finite-dimensional system over

A> (cf. 83) with fixed boundary conditions (not included in the notation). The following
definition of transfer operators for the infinite system does not depend on the choice of the
boundary conditions.

THEOREM2.1. For ¢, e sufficiently small¢,, No sufficiently large and any; € F:

1)

)

The limit
wag o LY o € im oz 0LV oA @)
1 FoT Ay 1 FA2oT A€ 2
€ L((Hy, Il - l9), (Haqg,on- I - la1,9y)) €Xists for suitably choseh < 9 < --- <
Ung = UNg+1 = --- = ¥ and the family of these operators is uniformly @n)

bounded. This defines operators

def
LY oge € LAHoo |- o) (Hoy - lloy)) by (LXored)as E may 0 LY reb.

In particular for N > No we haveC® ... € L(Hy, || - Il9)-
In the case of finite-range interaction we can define a linear apr- on’ in the
same way, i.e. if is the range of interaction we set for aly € F

def
TTAL © ﬁFoTe = TTA, © ﬁFAonAz.s O TTA, (8)

whereAs = B, (A1).

There is anF o T€-invariant, non-negative probability measuré. It is unique in the

set of non-negative probability measures whose marginal densities can be identified
with av = (va)p.er € Hy.

In L(Hy, || - ||ls) the sequencecﬁng)NzNo converges exponentially fast:

1LY oge = WOV LMy 119y < €307 9
for somecs > 0and0 < 5 < 1.

Remarks. (1)The relation between measures and elements d explained in 84, in
particular in (23).

(2) A formula forv is given in (59).
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For the invariant measure we have exponential decay of correlations for spatio—
temporal shifts on the system.

Let (e1, ..., eq) be a linearly-independent system of unit vectorZih We define
translations,, (p) dzefp + e; for p € 74 and(z,; (2))p dzefzn,l_ (p forz e M.

In the following theorem we denote hy (acting onM from the right) compositions
T = T10--- 0 Ty and byo a composition of spatio—temporal shifts (8f): o =
0100 0m(e)+n(o) With o; € {S, 7.y, ..., T, }. We denote by: (o) the number of factors
S and bym (o) the number of spatial translations in this product. For a translation-invariant
system, i.ef, = f andg,(2) = gte;l(p)(tei (z)) forall p e Z andi = 1, ..., d, the time-
shift S commutes with the translations.
THEOREM2.2. For ¢, as in Theorem 2.1 and; sufficiently large there is & €

(0,1) such that for all non-emptw1, A € F the following holds with the constant
(A1, Mg, i) 2 o~ maxlip—ql:pers.gena))

(1) IfgecishHryandf e C((sH22) then

Jesr=([ o) (o)

wheredist(A1, A2) d:efmin{||p —qll:p e A1,q € Az}
(2) IfgecishH™yandf e HNC(SHA2) then

[avgorosiy— ([ areor)( [ o)

A A ~
< c(A1, Az, )cg T2 gl | £llapi™ @ (10)

with suitablecs and7 as in Theorem 2.1.
(3) Ifthe system is translation-invariant argdand f are as in (2), then

Jeseos=(fe)(f,o0)

< (A, Az )l N g oo | £l k™ @), (11)
(4) Ifg, feC(M)then

lim ‘/dv*goroS"f—(/ dv*gor)(/ dv*f)‘:O. (12)
max{m(t),n}— o0 M M M

(5) Ifthe system is translation-invariantagd f € C(M) then
lim / dvigoof = (/ dv* )(/ dv* ) 13
max{m(o),n(o)}—>00 J pr goof M § M / (13)

Remarks. (1)rheorem 2.2(5) means that for a translation-invariant systammixing
w.r.t. spatio—temporal shifts. According to (3), the decay of correlations for obseryables
andh as specified in (2) is exponentially fast.

(2) The proof of Theorem 2.2 shows that the statements hold fokany0, 1) if € is
sufficiently small and: sufficiently large (both depending at). So a small interaction
leads to small spatial correlations.

—|A1l—=IA dist(A1,A
< cap T g oo | £l oo WSHALAZ)
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3. Finite-dimensional systems
We first consider ‘finite-dimensional versions’ of the mapd«, etc. Let = (&) ,e74 €
M be a fixed configuration. For a finite subgetc Z¢ we defineT*< : AX — CA by

(T24(z0)) ) T2, exp2mieg,(za V Exc)), (14)

wherez, v &,c € M agrees withz, on its A-sites and withE ,c on its A€ -sites. We do
not specifyé ¢ in the notation off €. The restriction of F toA2 is denoted by 2.

With the following two propositions we ensure that for sufficiently sndaknd e
(independentof andz,c), the image ofA2 w.r.t. FAoT4:€ contains a larger polyannulus
(cf. [2]) and the image of the bounday o T"-€(3A%), has positive distance from? .

For A c Z? we have the metrid, on (S1)* defined by

def
dp(z, W) E'supllz, —wpl | p € A). (15)

PropPosITION3.1. For all ¢7 € (0, 1), sufficiently smalb ande (depending ore7), and
arbitrary A € F\ {#}, T*¢ mapsA? biholomorphically onto its image arii*+€(A%) >
AL, i.e. the image contains a sufficiently thick polyannulus. K86 (A N AL =,
i.e. the image of the boundary (the same as the boundary of the image) does not intersect

the smaller polyannulus.

PROPOSITION3.2. Let the expanding mapg, : ST — S satisfy Assumption 1 for some
81 and an expansion constahg and letl < A < Ag. Then for all sufficiently smalt

(0 < § < 8) and all finite A C Z¢ the mapF» : A} — C* is locally biholomorphic,
AN c FA(AD), i.e. theimage contains a thicker polyannulus, and furthermoe @l 2
have the same number of pre-images. We also Haye) F2(0AY) = 0.

Combining Propositions 3.1 and 3.2 we have for fixedfrom Proposition 3.1) and
(small)s

FYo TN (AS) D AL (16)
and
FAoTH @A) N AL, =0. 17)

In particular, if we choose; > 1/ there is a disc of radiug7x — 1) > 0 around each
point in A} that is entirely contained i o T2:€(A%). We will need this for Cauchy
estimates. From now on we keéfixed.

In the next proposition we establish a special representation of the Perron—Frobenius
operator for our finite system witits1)V = (SHA, §¢ = F2 o TA€, 4 continuous (the
proposition holds also fopr € L°°(M)) and¢ continuous on the closed polyannum@1
and analytic in its interior.

First we give the definition of the Perron—Frobenius operator (cf for exarg]e [

Definition 3.1.Let A be a measure on a metric spade(with the Borelo -algebra) and let
S : M — M be a measurable map which is non-singular wirfi.e. for all measurable
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A € M, »(A) = 0impliesi(S~1(A)) = 0). The Perron—Frobenius operatly, acting on
LY(M), is defined via the equation

//wdkwos¢://wdkwﬁg¢ (18)

that, for givenp € L1(M), must hold for alty € L>°(M). The existence and uniqueness
of Ls¢ € L1(M) is equivalent by the Radon—Nikodym theorem to the absolute continuity
(w.rt. 1) of the measure associated to the functiohal> [,, di ¢ o S ¢ (the functional
here is restricted to continuous functioft, and this follows from the non-singularity

of S.

Remark.Settingy = 1 in (18) we get thal g preserves the integral:

/dmsqs:/ dr . (19)
M M

The normalized Lebesgue measpren St is given bydu(z) = (dz/2wi)(1/z) (this lifts
w.r.t. the mapr — ¢ to the normalized Lebesgue measdrg2r on [0, 27)) and the
product measurg® on (s1)2 is given by

dz 1 gef dz, 1
dpt(z) = =22 _—detrp L 2 20
W@ = G E\Znizp (20)

We also use/u.” (z) as a shorthand notation for the right-hand side of (20)fer A2 .

The following representation of the Perron—Frobenius operator for finite-dimensional
subsystems of our coupled map lattice by means of Cauchy kernels is essential for our
analysis. Similar Cauchy kernels were usedliff [

PROPOSITION3.3. With F* and 7€ defined as above, s&f = F* o T"-€ and letS¢
be the projection onto itpth component. Then the Perron—Frobenius operator §for;
acting ong € H,, can be written in the following way:

— A ; €
Lsep(w) = /F Ldut @@ ] ( S5@ —w, Sp<z)> (21)

pPEA

wherel' = I';. U I'_ is the positively-oriented boundary 4.

4. Further remarks on the infinite-dimensional system

The subspace of complex-valued functions that depend only on finitely many variables
is dense iNC(M), || - lloo), and each such function (say dependingz@nonly) can be
uniformly approximated by (the restriction of) functions#(A%). The dual space of
C(M)isrca(M) (see e.g.T]), the space of bounded, regular, countably additive, complex-
valued set functions ofM, B) whereB is the Borelb-algebra. The norm otca (M) is the

total variation. For given?, A we considerca measures whose marginals have densities
DA |(s1yn over(SHA (restriction ofp, to (SH)A) s.t.¢ = (Pa)aer € Hy. We remark that
noteveryp € Hy with real-valuedp, 51,4 corresponds to an elementina (M) because
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its variation might not be bounded 43 du™ |¢a| might be unbounded witA. So we
define forp € H

def

thar & tim [ au gl (22)
A—Z1 J(s1)A
We setH? def {dp € H: |dllvar < 00} andH§” dzebe”ﬂH,;. In particular all real-analytic
and non-negative € H, i.e.¢x s1» > 0forall A € F, belong to this space.
We can view every € H’" as an element ofca(M): for g € C(M) the net(ga) acr
given byga def A (g) converges uniformly tg. We set
def

$() &' lim f i gada. (23)
A—Z1 J(s1)A

The limit exists because fak1 C A

/ dutgada, —/ dp2gn,dn,| = / du2(gn, — ga,)Pa,
(Sl)Al (Sl)AZ (Sl)AZ

<llga, — gAg”(sl)Az lpllvar (24)

gets arbitrarily small as.; — Z¢, i.e. the net has the Cauchy property.
We further see

[ $llvar = Sup dp™ pal
AeF (Sl)A

= sup sup dp® g
AEF geC((shr) J(sH™
lIglloo <1
sup [¢(g)l, (25)

g€C(M)
llglloo<1

S0 ||¢|lvar is in fact the total variation (the operator-norm, cf])[of the corresponding

linear functional orC(M).

Let H(F) def Uaer H(AY) be the subspace of functions depending on only finitely

many variables. We define the prodgét € Hy of ¢* € H(A;Y) andg € Hy by

(g*)a def A (gl¢A1UA)- (26)

LEMMA 4.1. If g* € H(A), g2 € H(A}?), g € C(M) and¢ € H, the following hold:

(1) the productin (26) is well defined ani@ ¢y < llgtlla,? 11 @]l

) (') =" (&%¢);

(3) g2 canbe considered as an elementtf and the producg’g? as defined in (26) is
the same as the usual product between function®&on

@)  (gY)(g) = #(gtg) where(glep) and¢ act as functionals in the sense of (23);

(5) H% is also a module over the ring{(F), i.e. in particular [|gl¢llvar <
18 1A ¢ llvar-
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5. Expansion of the Perron—Frobenius operator
We split the integral kernel of the Perron—Frobenius operator for a finite-dimensional
system. Recall thal;(2) = z, exp(2rie Y o1 8p k(@) = zp [[1o1eXp2rieg, i (2)
and thatS,(2) = f, o T; (2).
If we consider only finite-range interaction, say up to distanees have

I
Ts 2 e, exp(Zm’e > gp,k(z)). (27)
k=1

For a finite-dimensional system (say 6§F)%2) with fixed boundary conditions we have a
special representation éf; 4, 4, in terms of the integral kernel (Proposition 3.3).

LEMMA 5.1. For the factors in the integral kernel in (21) we have the following splitting:
1

m fpo Tp(Z) = m fr(zp)
+w, i ff © T;,k—l(z) - fp o Tf,k(Z) .
=1 (fp o Tp,k—l(z) - wp)(fp © Tp,k(Z) - wp)

(28)

The sum in the right-hand side converges uniformby e andw, € As.

5.1. The unperturbed operator. The first summand in (28) is just the one which appears
in the uncoupled system (i.€¢=0 = id) and in this case each lattice site can be considered
separately. We denote byy, the restriction of the Perron—Frobenius operator to the
Banach space of functions @t that extend continuously on the closed annulysand
holomorphically on the interiads. |- || 4, denotes the uniform norm ovds. The operator

Ly, : (H(As), I - las) = (H(As), Il - llas)

has 1 as simple eigenvalue and the rest of its spectrum is contained in a disc around 0 of
radius strictly smaller than one. It splits into

‘Cfp = QI’ + RP (29)

with
RpQp = 0QpRy =0 (30)

and
IR, L HAs), 114y < €rn” (31)

with ¢, > 0, 0 < n < 1. For proofs of these statements see, for exampe, |

0, is the projection onto the one-dimensional eigenspace spannég ley H(As),
whose restriction t&? is positive and has integrg@l duh, =1.

We assume in Assumption 1 regarding the fanijfy) .z« that

Ihpllas < cn (32)
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and the exponential bound in (31) both hold uniformlypinThis is the case for example

if the f, are uniformly close to each other as is shown using analytic perturbation theory.
Ly, preserves the integral (cf. (19)) and so dggs as follows e.g. from (29)—(31).

Sincel'; is homologous t! we can writeQ , as

ng(w)zhp(w)/ dug (33)
—hp(w)/ ——g(Z)

— /r %Ehp(w,z)g(z) (34)

where we have used thatis holomorphic inAs and defined as

def | hp(wp) forz, eIy
h (w by Zp) = 35
e {O forz, eI'_. (35)
The idempotencgz = Q, results in the integral representation
1
h ,Z25)h , = h , 36
/ 27'[1 z 27[1 Z p(Wp. 2 ) p(zl’ < )g(z ) = / ori p(wp Zp)g(Zp) (36)

Here and throughout the section the upper mdme%;rzz, etc. refer to the temporal and
the lower ones to the spatial coordinate in the space—time |&itic&?.
According to Proposition 3.3 the operat®y can be written

dz 1
Rpg(wp):/rigzigrp(wpszp)g(zp) (37)
with
1
rp(wp, Zp) = mfp(zp) _hp(wp, Zp)- (38)

Then equation (30) results in the integral representation

» 1 31
 2p)hp (2, 39
/ 2w Zp 1 2m rP(wp Z ) p(zp z )g(z )= (39)
de dZ

§1 2mi z% 2711

1
rp(z . Z )g(z )=0 (40)

5.2. The perturbed operator. In view of (28) we set
froTy 1@ — fpoT, ,(2)
Wp € €
(prT — 1(2) wp)(prT k(Z) )
This corresponds to the difference between the operators for systems with interaction of
finite-range of ordek andk — 1, respectively. Using (1) we have the estimate

Bpi(wp. 2)| < |wp||fp o Tfk 1@ = wp| M fpo T (D) —wp| ™
X | fp o TS 1) — fp o Ts (2]
< @+ 8)lerr — 1 Hern — 17 £l pyere exp(—cak?)
< Cge eX[X—czkd). (42)

ﬂ;;,k(wpv 2) dZEf (41)
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This estimate is uniformip € Z¢, w, € As andz € T'A.

5.3. TimeN Step. Now we want to estimate the norm of (6) or equivalently that of

Tay 0 LN sy rnge : (Hagoo |- 1ag0) = (Hapoo |- llag0) (43)

-1
£/1¥A20TA2’€¢(ZO) = /I‘Az d,qu(Zfl) .. ./I‘Az d,qu(sz) 1_[ 1—[

t=—N pelr
o0
x (hp @) +rp @t ) + Y B z’))¢<z”>
k=1
(44)

(cf. also the beginning of §3.)

Distributing the product we get infinitely many summands. In each factor there is for
each—N <m < —1, p € A, a choice betweeh,, r, andg,, r (1 < k < oo) and we can
interpret such a choice graphically as@nfiguration(similar objects were introduced in
[15] where they were named polymers).

OnAz x {—N, ..., 0} we represent (see Figure 1):

o hp(z;“, z%) by anh-linefrom (p, 1) to (p, 1 + 1);
o 1yt 2") by anr-line from (p.f) to (p. t + 1);

(p, 1) (p, 1)

hp (5 2h) rphtL 2h)
(p.t+1) (p,t+1)

FIGURE 1. The h-line and the r-line.

° ﬁp,k(z’p“, Z') by ak-triangle (actually rather a cone or pyramid, but in our pictures
ford = 1itis a triangle (see Figure 2)) with apéx, t + 1) and base point§y, 1)
with ||p —¢q|l < k. (So some of the base points might not lieAip x {—N, ..., —1},
but all the apiceslie il x {—N +1,...,0}.)

(p—21) (p—11 (p, 1) (p+1n (p+21)
o o o

Bp.2(z5. 2)

(p,t+1)

FIGURE 2. The 2-triangle.
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Note that if
def
(k) B0 (45)

denotes the number of base points &fsiangle, we have the estimaié) < (3k)¢. Each
summand, that we get by distributing the product in (44), corresponds to a configuration
and for each configuratian we have an operatdl. So we can write

LNy rnne =Y Le. (46)
C

Some of these summands are zero, namely, if:

o afactorh, (22 2, (2L 2) or rp (22, 2, (2L 2!) appears, but no
factor g, x(z/2, 1) with ||p — ¢|l < k (i.e. an h-line follows or is followed by
an r-line and, at their common endpoint, no triangle is attached with any of its base
points, cf. Figure 3). This follows since, by Fubini’'s theorem, one can first perform
thedz’p+1 dz’p integration and get zero by (39) or (40). (Note that the other factors in
the integrand do not depend 0‘};1“1; so they can be considered as the funcg’(@)
in (39) or (40).)

| 020 ® (.0
rphtL 2h) hp (2 2h)

®(p,t+1 ®(p.t+1
hp (22, 2 rp (2, 21

®(p,1+2) ®(p,1+2)

FIGURE 3. Consecutive r-line and h-line.

o atermh,(zf2 2 Fh B, k(5L Z') appears but ng, (42, 2T with [ p— gl <1
(i.e. a triangle is followed by an h-line and at their common endpoint (the apex of
the triangle) no other triangle is attached with any of its base points. Cf. Figure 4.)

Indeed:
Bpx(wp,2) = w, [ - L - - ! ] (47)
fpo Tp,k(z) —wp, fpo Tp’kil(z) —wp
by the residue theorem:
/S 1 cg‘;j’ w—tﬂp,uwp, 2)=0 (48)

since the poles ab, = f, o T5 ,(2) andw, = f, o Ty, 1(2) (with z € rN,in
particularz, € T'y orI"_) both lie either outsid& ;. or insidel'_ as f,, is expanding,
T;,k is close toT; «—1» and the two summands have residieand 1, respectively.
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Identity (48) is a consequence of the fact tifat; is the kernel of a difference
between two transfer operators (for the systems with interaction of kaagek — 1)

both preserving the Lebesgue integral in the sense of (19). So the range of this
operator difference consists of functions with integral zero and these are annihilated
by the operator corresponding/ig (cf. (33) and (34)).

(p, 1)
®

IBp,Z(Z;H'a Z')

(p,t+1)

hp( t+2 t+1)

(p,t+2)

FIGURE 4. Combination 2-triangle and h-line.

Furthermore, we note that in

FAZOTAze ZT[A]_ o EC (49)

we getra, o L = 0 unlesC ends with h-lines in all points afA2 \ A1) x {0} because
of (40), (48) and the fact that,, means integration oves?)A2\A1,

Definition 5.1.We call a configuratiorf¢ in the expansion (49) aero configuratiorif it
does not end with h-lines in all points @f2\ A1) x {0} or contains one of the constellations
(consecutive r-line and h-line artriangle and h-line) mentioned above. Otherwise we call
it a non-zero configuration

Remark.For a zero configuratio@ we have just shown that its corresponding summand
in (49) is 0. So we just have to sum over non-zero configurations. We note that the notion
non-zero configuration does not exclude that= 0

We have to find an upper bound for the norm of edgh We do so by collecting r- and
h-lines into chains and estimating the contributions of integrating the factors corresponding
to these parts of the configuration.

Definition 5.2.
° Let C be a non-zero configuration with exactly x k-triangles for 1< k < oco. We
define

def
ng < (ng1,ng2,...) (50)
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(1,-3) 4 ° °

(1,-2) 4

1.-1) ¢ -

(1,0) 2,0 3,0 4,0) 5,0) (6,0) (7,0) (8,0)

FIGURES. An example of a configuration.

and
def
lngl = Znﬁ’k < Q. (51)
k=1

A sequence of h-lines frotp, t) to (p,t + 1), ..., (p,t + k — 1) to (p,t + k) with

p € Apand—N <t <rt+k <0suchthattothe poinip,r+1)...(p,t +k—1)
no triangles are attached is calledhaghain of length k

If such an h-chain is not contained in a longer chain it is calleadaaimal h-chain
Then(p, t) and(p, t + k) are denoted itendpoints

The definitions for anaximal r-chainand itsendpointsare analogous.

Ac denotes the set of poingse A that appear as tH&!-coordinate of a base point
(p,t) of a triangle inC, and A denotes the set of those pointse Z¢ that appear
as theZ?-coordinate of an apegp, r) that does not lie above (i.e. having the same
spatial coordinate) any other triangle.

A, isthe set o € Z4\ A that appear as tH&?-coordinate of an r-line (this implies
that there is an r-chain frorfp, —N) to (p, 0) for otherwise an r-line would have a
common endpointp, t) with an h-line and” would be a zero configuration.)

We write A(C) & Ao U A,

In Figure 5 there are, for example, maximal r-chains frdmn—3) to (1, 0) or from
(2,-3)t0(2,—2). Ao ={1,...,8},Ac ={2,..., 7}, Ac = {4} andA, = {1}. As each
k-triangle hasy(k) < (3k)“ base points we have

o
|Acl <D @Bk npi. (52)
k=1

To get the estimate for the norm of (43) we proceed in the following order.

1)

2

We integrate imnAloﬁcqb(z(}\lﬂ over alldz’, for which a factor, (z’p*l, z!,) appears.
For each maximal r-chain of lengthwe get, according to (31), a factor not greater
thanc,n'.

For each maximal h-chain starting(@, ) and ending atp, r + [) we perform the
integration

/r A=Y /F du ™) hp @ 2 b2 7)) = Ry, (53)
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(3) We perform the integration correspondingdg,

I / dp@@) hyp9) =1 (54)
PEA2\AL
(4)  We estimate the contribution of each (from step (2) and (3) remaining) flagtof;)
by [l4,1l45 < cn and, using (42), the contribution of each facfigry (z;”, 7" via
‘ / 951 2 0

2i 7, Cae exp(—cok) [y
J'L'l

-4
< cge exp(—czkd)nm/fn. (55)

Here|T'| denotes the euclidean lengthbfandy the remaining factors, containing
other integrals. Finally, the contribution of the factd¢ggz—")| is estimated by
||¢Z\cum ”Acum (cf. remark below).

Remark.For all pointsg ¢ A¢ U A, we must have h-chains iifrom (g, —N) to (g, 0).
Therefore we have

7a; 0 Lepa,(Zn,) = 7a; 0 Led i, Zny) (56)

where on the right-hand side we use the same notafietfor the operator oty ;-

So if n, denotes the number of r-lineg, the number of maximal r-chains ang the
number of maximal h-chains having spatial coordinatesin A1 (for otherwise they are
‘integrated away’ giving a factor of one) we get, using (31) and (55),

o0
||nAlo£c¢>||Al5(cse>'"ﬂ'exp<—cszdnﬂ,k)thc"rn 1¢ze0n ioua, (BT
k=1

and, using (52),

Ay 3k
167.0a Iz oun, <O 1M=EELCO DL g,
C r C

e 1‘[ 9= COME 4,0 (58)
k=1
for all A2 € F and with|| - ||4,,» defined in (5). Inequalities (57) and (58) are the basic
estimates for a single configuration. We use refined versions of them throughout the paper.
In particular the idea of taking the norm ¢f\cuAr rather than that o$,, which grows
with the size ofA», is the key point in our analysis.

6. Operators for the infinite-dimensional system

Estimates (57) and (58) bound the particular summands in an expansion such as (49). We
see that triangles and maximal r-chains in a configurafidead to small factors on the
right-hand side of (57). (A maximal r-chain consistingof-lines contributes a factor

¢rn™. The factore, is greater than one in general, but either it will be compensated for by

a small factor due to a triangle, e.g. as in (99)z awill be large, cf., for example, (103).)

This motivates the following definition of the length of a configuration. The length gives
rise to a lower bound for the number of triangles or r-lines, i.e. a long configuration will
lead to a small contribution in the total sum in (49).
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Definition 6.1.

. The length lengthC), of a non-zero configuratiod® (that we obtained in an
expansion such as (46)) is the maximal difference Osuch that there are points
(p,t) and(q, 0) being end-points of r-lines or base points or apices of triangles.
(Note that if there are any triangles or r-lines, there is also a triangle or an r-line
ending atA x {0}.) If there are no triangles or r-lines ¢hits length is zero.

° We identifytwo non-zero configuration® and( if they agree in their triangles, r-
lines and their number of maximal h-chains that go upwards from the base points
of triangles (but might be defined on space time boxesx {—rtop,...,0} of
different sizes, i.e. with differenk2 andrg). We still speak of configurations rather
than equivalence classes. For a configuratiolengthC), Ac, A(C) (as in the
Definition 5.2) and the operataty o Lc € LIHAL), [-llac). (HAL), 1]14))
are well-defined.

° For A1 € F we defineE (A1) as the set of all non-zero configuratiofisn some
Ao x {—tg,...,0}with Ay C A2 € F, 19 € N andry > lengthC), and that do not
end inA1 x {0} with triangles or r-lines.

. En (A1) is the set of non-zero configuratiosin A2 x {—N, ..., 0} with A1 C
Ao € FandA(C) C Ao.
We define
def
VA :e Z JTAOL:C]’!A((}). (59)
CeE(N)

The convergence of this infinite sum and other propertiesare stated in the following
proposition additional to Theorem 2.1.

PROPOSITIONG.1. Let#, the sequence @, €, c2, No and A1 be as in Theorem 2.1 and
N > Np.

(1)
a0 LYore = Y may0Le. (60)
CeExn (A1)
(2)
LY ore = LY N Licry 110 < cofi” (61)

(3) For N1, N2 € Nthe operatorﬁﬁiTg is defined orﬁl}’iw (Hy) C HﬁNl. It maps this
space tdH s, . v, and
ﬁﬁire ° Eﬁin = 51}]{;?/2 (62)
(4) For¢ € H5” we have the estimate
ILForePllvar < lIPllvar. (63)

For g € C(M) and¢ € H5” we have the identity

f dig oS = / dingLlrored (64)
M M



Transfer operators for coupled analytic maps 125

and in particular

(@) = w(Lrored). (65)

For finite-range interactions the inequality and both equations also holdpfear
HPv.

(5) Lrore is non-negative, i.ap > 0impliesLrore¢ > 0. (¢ > 0 meanspy syya = 0
forall A € F.)

7. Decay of correlations

We have found the unique invariamte Hy with w(v) = 1. This corresponds to a non-
negative measure i, B) whose marginal oisH)* has density)“(‘sl)A w.rt. u. Inthe
next theorem we state the decay of correlationfan terms of the weighted norms. We
will use these results in the proof of Theorem 2.2.

THEOREM7.1. For sufficiently small? ande, large cp, finite disjointAy, Ao and f <

H(Ag\z) there are ac € (0, 1) and av € (0, 1) such that:

(1)  llva,ua, — VA VAL llAUAL s < c1orcdistALA2) -

2 Nma, (fv) —v(HHvallae < Cllﬁ—lAzl||f||A2Kdist(A1,A2); |

(3) llmay o EgoTG (fv) — 1)(]‘)\;1\1”[\1’1§ < C1219_|A2|||f||A2/<d'St(A1~A2)f]N for every
N >0.

Remark.As in Theorem 2.2 we can choose the rate of decdiyst and then the other
parameters.

8. Proofs
In the proof of Proposition 3.1 we use the following lemma which is rather standard in real
analysis. Here we formulate it in the setting of holomorphic functions.

LEMMA 8.1. If T : U — C" is a holomorphic map on a convex g€étc C" and satisfies
the estimatg| DT (z) — id|| < c1g < 1then T is biholomorphic onto its image (in this
lemma the chosen norm @t and the corresponding operator norm are both denoted by

- 1)-
Proof. T is locally biholomorphic by the inverse function theorem. So we only have
to show injectivity. Letz0 z1 € U with 7(z% = T andy : [0,1] — U,
y () =0+ 1(z* — 20). Then
it = =1TEYH -2 =T (% + 2
=[Toy()—y@)—=ToyO) +y©Ol

1
= H / (DT (y (1)) —id)(z* — 2% dr
0

1
< ||z1—z°||/0 IDT (y (1)) — id|| dt
<1zt = 2%c18 (66)

which impliesz? = z°. O
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Proof of Proposition 3.1We have a Cauchy estimate for the partial derivatives of the
functionsg « : Afk(p) — C on a smaller polyannulus. Lgte Bx(p), Then

’ d

1
— < ——crexp(—cok?) (67)
9z4
Also note that(d/dz,)gp.x = 0 forq ¢ Bi(p). Therefore

B |ed — e

=13 eX[X—Czkd). (68)

8p.k

’ d d s
- 8p = ’ o Z 8p.k
02 "zt 192q 1ty g
o0
<ciz Y exp(—czk?)
k=llp—ql
d
<c13——————exp(—c2||p —
= B ) pP(—c2llp —qll“)
= craexp(—czlp — qll). (69)
Now we consider the lift given byr : C& — AL, (Zp)pea = (/%) pea, Where

Cs B'w e C | Imw €[5, 8]).

Then we have for the lifted functior(gfx’/f(i))p = Zp + 2meg,(2). The function
gp(2) = gp(pr(2)) satisfies the same estimate (1) with a different constafdr § < §1
sufficiently small sincepr and its partial derivatives are uniformly bounded@fl.

Then we have

|D(TA€(2) p.g — 8pgl < 2meciexp(—calp — q%).

In particular the row sum norm (the operator-norm induced by/thaorm onC*) of
(D?K’/G — id) is smaller than one for small enough, independent of. According to
Lemma 8.1 (note thats is convex)ff;/E is a biholomorphic map onto its image and so is
The,

Now fix § < &1 according to the first part of the proof. 2fe 8A§‘ we havez, € 04s
for at least onep € A. From the formul&;, def T;"e(z) = zpexp(2rieg,(2)) and the
assumption thag, is uniformly bounded o, we see that

[In Iz/pll > § — c160€ > 76 (70)

for sufficiently smallk.

Now assumel # Ac.s \ T2€(As) > z. Lets be the line-segment betweerand
its nearest poiniv on (1A (w.r.t. the metricd,). For each poiny on s the inequality
Inda(W,y) <Inda(w, z) < c178 holds.

In particular there is § € T*€(3A%) ons with |y,| < ¢7é forall p € A, but this
contradicts the estimate (70) above. ]

Proof of Proposition 3.2As F acts on each coordinate separately byfarwe have (in
view of the chosen metric (15)) to show the statement just for the fhépe drop the
index p), i.e. the case when contains just one element.
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Consider the lifRs x R 5 (r, ¢) — re'® whereR; def [1—In8, 1+ Iné]. This defines
(modulo(0, 27)) a (0, 2r)-periodic mapf = (f, fp) via f(re'®) = fo(r, p)e'fo9),
On {1} x R one has(3/dr) f > io and so because of periodicity and a compactness
argument(d/dr) f, > A on a thin (0< § < 8 small) stripRs x R. It follows similarly,
as in the proof of Proposition 3.1, th@(Rs x R) D R;s x R, f is diffeomorphic onto
its image and each point iR; x R has the same number of preimages (which is equal to
(f(1, 2m) — £(1,0))/27). From this, the claim about follows. ]

Proof of Proposition 3.3We substitute the expression (21) into the right-hand side of
equation (18) and get

dw dz 1 55(2)
/Sl)A (2mi)A| Ww( ) Jrr @iy ? @ 111 (SZ(Z) —wp 2 ) )

To simplify notation we assume that= {1, ..., N}. As (18)is linear iny we can assume
(by using a continuous partition of unity) thétvanishes outside a small skt (SN
having distinct preimages undgr (forall 0 < 7 < €) contained inKy = Kgy X - - X Koy

such that eaclX, is contained in a polydisD, = Dy, X --- x Dy, . These are mutually

disjoint ands’, def S’D is biholomorphic onto its image (for all & ¢ < €). (To make this

more precise we note that foe= 0 the maps? is the product of mapg (1 <i < N) and
eachf; gives rise to anV;-fold covering map ofAs. So locally we can index the disjoint
pre-images oK underS® by o = (a1, ..., ay) where 1< o; < M;. If we take the seK
small enough this is still true under small {0r < ¢) perturbations.)

For givenw € K, indexa as abovek € {1,..., N} and fixedz; € A5, (I # k) the
functionzy = (Sg(z1, ..., 2k, ..., 2N) — wi) 1 has exactly one simple pole in eabh,
and is holomorphic inclg‘1 away from these poles. Therefore we get the same if we just
integrate around these poles:

dw 1 de 1

For eacha we can write each of the inner integrals as an integral of a differential
def

NS, k(Z)

form over the distinguished boundabyD, = 9D,, x --- x 3Dy, , parameterized by
[0, DN 571> (2711, ..., ¢2"iN) whence
N S€ (Z) N 1
k
o | = dzi A -+ Adzy. (73)
/boDa ,1:[1 Tk ,1:[1 S k(D — wi N

We want to split the singular factor into a product of single poles in each variable. So we
apply the transformation = S, (z) def S5 (2) to get

oS - dets; Ly
fge(boDu) (U) l_[ ( ;l el( ) (U) 1_[

where(S;l)/ is the complex derivative and so is holomorphicuin To apply Cauchy’s
formula we have to integrate over a product of cycles (each lyirfg) irfFor exampleéoD

dui A---ANduy (74)
k
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or So(boD) are such products of cycles, bfit(boD) in general is not. So first we have to
deformSc (boD) into So(boD). The map +— S; def S!, is a smooth homotopy betweén

and the product mafp and avoids singularities of the integrand in (74) sincesfemall
enough the s€ltS; (boDy) | 0 < t < €} has positive distance (uniformly i) from the set

of singularitied JI'_;{u € Dy : ux = wi}. So(boDy) = S0.1(d Dey) X - - X So.n (0 Dy ) iS

a product of cycles and hence a cycle. The differential n-form in (74) is a cocycle because
its coefficient is holomorphic. So we get by Stokes’ theorem

() dets; ()
/So(hoDa) H 1 (Se ( Nk H

and by Cauchy’s formula

1
duy A---ANduy (75)
— wg

1
¢oS; 1 | | 76
W) 1 (Se (W))k det(S. (St (w))) (76)

So (72) is equal to

Z/ WL w0 (59w = [T (77
@ w detsy (591w L1 (5T

k=1

For each index, the coordinate transformatian= (S;)—l(w) yields

d 1
> [ el e Siwo, (78)

As ¢ o F = 0 outside J, K, and theK,, are mutually disjoint this equals

du
7
/Sl)N iV U w o S(U)¢(u) (79)
which equals
/ duMN o S¢ (80)
(SHN
as was to be shown. O

Proof of Lemma 4.1Consistency follows from

T3 (81 ) Ay = Taz 0 Ta, (8 PALUAL)
= JTA3(81¢A1UA4)
= 7TA3(gl¢A1UA3)
= (8'9)1s (81)

forall A3 C Agq e F.
As g1 depends only on tha ;-coordinates we have

1 1
(g~ d)aunllasua = g dauallaua

< llg Ay llpas0a lasua
< llgt a0 1A= g1 (82)
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and so

22 ) alla < llgtla 2 b5 (83)

and

lgelly < llg*la, 0~ plls. (84)

For A1 fixed, the product is continuous in both factors. Lemma 4.1(2) follows from

((g*g®)p)n = 7a (811\1812\2¢AUA1UA2)
= A (g, TAUAL (85,8AUA1UAL))
= A (g, TAUAL (8°9))

= (g'(¢°9)a. (85)
To see Lemma 4.1(3) we note that the projection of the prodygt ahdg? is
ma(g'g?) = ma(g3,83,) (86)
and the product in the sense of (26) projects to
magte®) = JTA(gll\lgiUAz)
= 7a(85,84,) (87)
asg? does not depend of \ Ao-coordinates.
If A1 € Apthen
26(8®)a; = gar8"0n,
= (8'9)ns9n, (88)

and so Lemma 4.1(4) follows from

Gow=im [ a2 e,

Ar—74

= lim / du? (gg) a,n,
Ap—Z4 J(s1yA2
= ¢(g'e) (89)

and Lemma 4.1(5) follows from

Ig*ghar=im [ dnt il
—

— lim / di® 1841
A—ZJ(s1HA
ADA1

< l1g A, 1 lIvar. (90)

A
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Proof of Lemma 5.1We get, recursively,
1
fp o T;’Z(Z) — Wp
1 €
- froTy, 1@ —wp TpoTpia®
fp o T;,l—l(z) - fp o T;’Z(Z)

fpo T;yl(Z)

+ Wp € €
(fpo Tp,l—l(z) —wp)(fpo TP,I(Z) —wp)
! ,oT¢ 2)— f,oT¢ (z
=—— @ +w, Z fi [J,kfl( ) — [ f,k( ) (oD
fp(Zp) — Wp =1 (fp o Tp,kfl(z) - wp)(fp o Tp,k(Z) - wp)

The estimate (42) yields uniform convergence of this suih-asco. So we get (28). O

In (57) we estimate the norm of the operator corresponding to one particular
configuration in terms of the lines and triangles it contains. Now we have to bound sums
over all such configurations as they arise in the expansions for the full operators. For
this we use our analysis and some combinatorics at the same time. The idea is that a
configuration of a given length must have at least a certain number of triangles and r-chains
that lead to small factors in the estimates. In fact, certain r-chains could not be replaced by
h-chains in the configuration as we would get a zero configuration.

Definition 8.1.

. A maximal r-chain going from an apex of a triangle downwards to the next base point
of a triangle or to a bottom point is called éanr)-chain (If the apex coincides with
a base or bottom point the (a-r)-chain has length zero.)

. The (a-r)-lengthof a configuratiorC is the sum of the lengths of all its (a-r)-chains
plus the number of its triangles, i.e dfhas|ng| triangles with corresponding (a-r)-
chains of lengtft, . .., |, then

(a-r)-lengthC) def li+ -+ g + Ingl
=U+D+ 4 Uy + D). (92)

(In particular (a-r)-lengtt€) > |ng|.)

° We call a maximal r-chain going from a base pdipt #) of a triangle to(p, —N)
(such that(p, —N) is not a base point of another trianglefwar)-chain (upwards
going r-chain), a maximal r-chain going downwards from a base pdiHrgchain
((d-h)-chainsare defined analogously).

° A maximal r-chain going from a bottom poip, 0) to (p, —N) is called an(l-r)-
chain(long r-chain). We denote the number of (I-r)-chaingddy /(C).

The configuration in figure 5 has length three, (a-r)-length six, only one (a-r)-chain
of positive length from(6, —2) to (6, —1), only one (u-r)-chain of positive length from
(2, —3) to (2, —2), and only one (I-r)-chain fronil, —3) to (1, 0).

We prepare the proofs of Theorem 2.1 and Proposition 6.1 in the following technical
proposition that provides the key bounds and basic analysis and combinatorics for the
other proofs.



Transfer operators for coupled analytic maps 131

PropPosITION8.1. For sufficiently smally, € and largec, and N we have for allA; C
Az € F the following bound for the terms in the expansion of (49)fgy o LY

Fh2oTA2:€
with constants1g, c20:
1)
~N
Yo Imar 0 LellLiags Iiag o). (Hagollago) < €197 (93)
C:length(C)=N
with 7 d:efﬁ <1
(2
N
171 © Ly rane IL(Hayo. 110000, (Hapo.llag)) = €20 (94)

For the proof of Proposition 8.1 we need a graph-theoretical lemma. We consider
labelled tree graphs that are constructed in the following way (cf. Figure 6). We start
with a star graph with aoot-vertex, labelled0), to which K edges are attached, each
connecting to onkeaf. The leaves are labelled 6§, 1), ..., (0, K). Then we successively
add star graphs (each of these has a certain finite nunibepf leaves. These numbers
are defined in (45)) to the already built-up tree. We identify one of the leaves of the tree,
say labelled by = (s1, .. ., s,), with the root of the added star and label the new leaves by
(51, ..., 82, 1), ..., (s1,...,s,, v(k)). Intotal we use, in addition to the star graph wikth
leaves, exactlyg ;. star graphs with exactly(k) leaves. We sathe tree has parameters
K andng = (ng1,ng2,...).

We also introduce a linear order on the set of tuples (and so on the set of vertices of
the labelled graph): we say= (s1,...,sy) <t = (t1,...,ty) if n < m ands; = 1; for
l<i<norifs; =t (1 <i <k)ands; < t; for somek.

LEMMA 8.2.
(1) The number of labelled tree graphs with exactly n edges is not greate2®ian

(2) GivenK,ng1,ng2,... with K + 3 2 1ngx < oco. The number of labelled tree

d
graphs with parameter& andng is bounded from above B[22, c];l"f"k with

v
co1 = 4%,

Proof of Lemma 8.2We first prove (1) For every labelled tree graph in question we can

define a path starting and ending at the root pétand running through each edge

exactly twice in the following way. From a (labelled) vertex= (t1, ..., %) we go to

the next greater (w.r.tx) vertex where we have not yet beagoing up, or if this is not

possible (i.ez is a leaf or we have already been at all verti¢as. .., #%.1)) back to

(t1, ..., tx—1) (going down. So we return tq0) after 2: steps. We encode the path in a

word (a1, .. ., az,) with a; = 1 if we go up in the'th step and; = 0 otherwise. Obviously

the labelled graph is uniquely determined by its word. (Note that not every word of length

2n with symbols ‘0’ and ‘1’ corresponds to such a labelled graph, but the map between

these two data is injective.) As there afé @ords of length 2 with at most two different

symbols this is also an upper bound for the number of graphs in question, so (1) is proved.
To see (2) we note, using the estimateif¢r) that we obtain after (45), that the number

of edges in such a tree graph is not greater tkiah Z,fil(3k)dn,3,k. |
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0,123,1) (01232) (0,1,233)

(0,1.2,1) (0,1.2,2) (0,1,3,1) (0,1,32) (0,1,3,3) (0,1,5,1) (0,1,5,2) (0,1.5,3)

¢

(0,1,1)

0.1)

[ ]
©

FIGURE 6. The labelled graph for the configuration in Figure 5.

Proof of Proposition 8.1 We estimate the norm of eagly in (93) in terms of the number

of particular triangles, r-chains etc. 6fas we do in (57). We also have to bound the
number of configurations in (93) that have the same set of triangles. We do so by assigning
(in ())—(iv)) to each configuration a labelled tree graph and estimating the number of graphs
that have certain properties.

(i) We fix 0 < K < |A1] andAz C Az with |A3| = K (so there ard}t!) possible
choices forA3) and want to estimate the number of configurati6rssich thatA; = As.
So let us consider such a configuration. We call the triangles whose apex lies at, or
whose (a-r)-chain ends im\3 x {0}, root triangles We can assign t6¢ a graph of the
type we consider in Lemma 8.2 as follows. We start with a star graph with a star point
labelled(0) andK leaves, labelled0, 1), ..., (0, K). These leaves are in bijection with
A3 x {0}. Now we add successively for eaéttriangle (as introduced in 85.3) i@l a
star graph with one star point and/) leaves (cf. definition ob (/) in (45)) to the graph
and label the new vertices: if drtriangle lies with its apex or ends with its (a-r)-chain
on a base point of another triangle (for which we have already assigned a small tree) or
on a point inA3 x {0} (this point is labelled say = (s1,...,s,)) we add a small-
tree to the graph by identifying its star point withand label thev(/) new leaves in the
graph(s1,...,s:,1),...,(s1,..., s, v(])). Since, for example, an apex could coincide
with more than one other triangle’s base point we use the linear erddefined above
Lemma 8.2) to define an order in our successive assignment of triangles to star graphs.
We always choose the next triangle such that the corresponding star graph is attached to
the smallest (w.r.t<) labelled leaf in the graph. This also defines a unique choice of the
triangle and the leaf where we attach the star graph. So the position of triangles and the
(a-r)-chains of” are completely determined by the datum consisting of the corresponding
labelled graphand the lengths of its (a-r)-chains. Note that it is not the case that for
every graph together with a choice of lengths for the particular (a-r)-chains there was a
corresponding configuration.

For the configuration in Figure 5, for example, we get the labelled graph in Figure 6.
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Letng  be, as in Definition 5.2, the total numberietriangles. The number of graphs

dn .
with parameterk andng is bounded by & [T72; cgl #* (by Lemma 8.2). As mentioned
above we have for each of theg| (a-r)-chains a length & ; < co. The (a-r)-length is

L=U1+D+ 4 Uny +D. (95)

So L > |ng|. For a givenng with |ng| > 1 andL > 1 there are(|nL,3|__11) different
choices of(/1, ..., ljx,)) that satisfy (95). Fofng| = 0 we haveL = 0 and the (unique)
configuration without triangles or r-lines. So, in any case, the number of choices is bounded
from above by(lnLﬁ‘). The integration over thegeg| (a-r)-chains leads to a factoylﬂlnL

in our estimates (cf. (57)) and eaktiriangle contributes by (55) a factoge exp(—c2k?).

(i) There are choices between (d-r)-chains and (d-h)-chains in the configuration. There
are not more thafy 3=, (3k)“ng x base points for which we can choose between a (d-h)-
chain (giving factor, in our estimates) and a (d-r)-chain (giving factor at mesf). So
the total sum over these combinations is bounded from above by

o0
(ch + ) i1 @0 max < H(exp(czzkd))"’“.
k=1

(i) There are choices between (u-r)-chains and (u-h)-chains in the configuration. There
are not more thaE,fil(Sk)dnﬂ,k base points. To each of them we can attach either a (u-
h)-chain, giving a factory, or a (u-r)-chain, giving a factor, n™0-N-L} "hecause if
N — L > 0, such a (u-r)-chain cannot have length smaller tNar L, for otherwise it
would notend inA2 x {—N}. We get in total a factor not greater than

(cn + ) D@ s = T (expeag)"s. (96)
k=1

(iv) There are choices left between (I-h)-chains and (I-r)-chaingAn \ Ac) x
{—N, ..., 0}, giving factorc;, orc,n", respectively. Let (0 </ < |A1\Ac| < |A1]—K)
denote the number of (I-r)-chains in such a choice. For givitrere arg A \ [\(c)l <

|

(‘Alf’() different subsets\, of A1\ A¢ of cardinality! (that correspond to a particular
choice of exactlyl (I-r)-chains.) The configuratio@ is determined by all the choices
mentioned up to now.

Consider now & with lengthC) = N. If N — L > 0 then there must be at least one
(u-r)-chain giving rise to an extra factgf®%-N—L} or an (I-r)-chain giving rise to a factor
n". To get (98) we split

max0,N—L} — ~max{0,N—L}ﬁmax{0,N—L}

n n

or

with 7 %' /1. Therefore we get the factgf"@.N-L},
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In the configuratioi® there are h-chains at points wit{-coordinate inA1\ (Ac UA,).

The operatoi’¢ acts ong,, by integration over these coordinates. So for the uniform
estimate ofC¢¢ i) We use (58).

First we estimate in (97)—(104) the sum o¢ewith lengthC) = N and then in (105)—
(107) the sum ovef with lengthC) = m < N. We do these separately because in the
second casé has no (I-r)-chains, while in the first case every (I-r)-chain leads to a small
factorc,n”V. The idea of making this distinction is similar to the idea of ‘vacuum polymers’
in other papers (cfg, 15, 1).

oMl N sy 0 Leda,llay (97)
C:length(C)=N

|Aq 0
=o Y <|11\<1l> > 4 T expeak®) s (cre)!

ng k=1
K <|ng|<oo

00

x [ exp—c2k®y) s ( L )d”*ﬁL [ J(expreazk®))"s+
k=1 Ingl k=1

L=|ng|

o0 ‘A1|*K |A1| _ K
x [ J(expicaakyyros gmexON=L] % 7 ( )(crﬁN)’

k=1 =0 !

o0
A1|—K—1 4 — — d
x e ITE T I [T o= @00k gl a0 (98)
k=1

‘Al‘ |Al|
— 9l 3 ( ) 4K (cree)!
ko \ K ng
K <|ng|<oo

o
x l_[ exp((ca1 — ¢z + 22+ c23 — 37 In k)" #+
k=1

o0 L B . _ B
x Y ( )nmax‘N*“<z91crnN+ch>Al Kllgllagom™. (99)

n
L=Ing| Ing]

def def
We assume < 1. We sek; = 4ecic, ande; = . /e1. Then we have'ln'SI < efe'zn'sl. We

setcr def C2 —C21 — C22 — €23+ 3Iny. Thené; > 0 if
c2 > 21+ ¢22+ c23 — 3?Iny. (100)

(We assume this condition on the decay of the coupling. Note that we first have to choose
9 below, after (104), depending on the other parameters of the system (but &})taord
then condition (100) is well defined.) Then (99) can be bounded as follows:

& |A1l N A1|-K _K - L L _Ingl

< (K )(c,f, o) tTReg NN ( )f; "

K=0 ng L=Ing| |n,3|
K<|ng|<oo

o0
x [T exp—cak®)" sl g, 0"
k=1



Transfer operators for coupled analytic maps 135

oo L [e’s)
L\ _ -
< (i +0en + ™ YD :(n)nLeS » (eXp(—Cak?))
1

L=0n=0 ng k=
[ngl=n
x @l azom™. (101)
We have
o0 o0 o0
Y [Texp—carhyse <TT D (exp—cak®)"s (102)
ng k=1 k=1 ng =0

|ngl=n

and the last infinite product convergesdia say) since fok sufficiently large exp—cok?)
< 1 and ij‘;,kzo(exp(—ézkd))"ﬂ»k < 1+ 2exp—c2k?) and Y 32 exp(—c2k?) < oo.
(Recall[ {21 (1 + ux) convergent= Y 724 lug| < 00.)

o0
< (e2+ci™ +cn)™lean (ea+ i) lpllagnii”
L=0
i 1 _
= (e2+ ¢, 7" + cﬁ)‘“l‘mcmnwmz,ﬁn’v (103)
< 197" [plla,.0 (104)

for 9 ande sufficiently small andv sufficiently large. This also holds fak ¢ A1. So
Proposition 8.1(1) is proved.

To show Proposition 8.1(2) we have to estimate, in addition to (93), the contribution of

non-zero configurationS of length 0< m < N in the expansion ofry, o L:];Aonszf'

These have no (I-r)-chains. So this time we ha@ = 0. Using the splitting)” < 7£7™
we get, in a similar way,

Al Z Iy 0 Leda,llag (105)
C:lengthC)=m,
1(C)=0
& (A4 =
< 9l §° ( . ) S 4K T expeak®)y
K=0 ng k=1
K <|ng|<oo
o o0 L ‘n ‘ o0
x (c10)"# T (exp—cokyy™es Y ( )crﬂﬁL]_[(eXp(czzkd))"“
k=1 L5 \nl k=1
o0 A I% o0 d
x [ (expicagk®) s, K TT 0 =G0k ) p 0™
k=1 k=1
S . J
<y ( . )(chﬂ)'Al'—K D (creden) ] Jexp(—cak®)) s
K=0 ng k=1
K <|ng|<oo

o0

L ~L~m
X
E (le)n "¢l a0

L=|ng|
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=3 (Wi > (F )
= * 4 = gl ?
= B L=|ng|
K<|ng|<oc

o0
x [ [exp(—c2k®)" 5™ ¢l .o
k=1

1 .
< (e24 en?)! M ——— o™ Bl a0
—€2—1

1
< c26i" |1l a9 (106)
Again this also holds foA C A1 and so
oA N a0 Ledasliags < caellpllag i (107)
C:lengthC)=m,
1(C)=0
Therefore
N
N ~
17a1 © LN agypage IL(HA 0 Ilags). Hap ol lag.on < D c26i"
m=0
o
<> coeii”
m=0
<c20 (108)
which was to be shown. O
Proof of Theorem 2.1First we consider the cas¥ > Ng. The difference between
T, © L:]}//\on/\zvf oma, andmy, o U}’A%T%e omas for A1 € Ap C Az € Fisduetothe

summands involving configurations that do not lie completely (with all their triangles) in
A2 x {0,—1,...}. For those summands we have the lower bound for the spatial extension
of the set of triangles:

o
b€ LS kng
k=1

> dist(A1, AS) (109)

As the analysis in the proof of Proposition 8.1 shows we have in the estimate for each such
configuration a factor

o0 o0 o0

[ [(exp—cak®y"st < [ lexp(— (2 — £)kH1"#* [ | (exp(—£kng 0))

k=1 k=1 k=1

o0
< [ Jlexp—(é2 — ©)k)1"#+ exp(—¢ dist(A1, AS)).  (110)
k=1
If we take& > 0 small enough we can take out a factor @xp dist(A1, Ag)) and do the
analysis with the remaining factor as before siage- £ > 0. So we get

N N
I7Ay © Lpnyopage ©Taz = Tay © Lng rage © TAIL(Hy,I19).(Hag oI 1ag.00)

< co7exp(—§ dist(A1, AS)) (111)
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with some constanto7 and the limit in (7) exists fotv > Np. The proof for the case
N < Np is similar. We use the modified estimates that we get by replacing in (97) and
(105)% by a sufficiently smalff. For example, (97) and (103) become

~ [Aq]
- N ~ -
gl 3" ||nA1o£c¢A2||A15c28<ez+cm’v—+cw> IBllap.0i™
)
C:lengthC)=N

(112)

and the term in parentheses is smaller than one #@nd /9 are small enough. The
statement for systems with finite-range interaction follows from the fact that in that case
all limits are already attained for some sufficiently lasgg € F and that all considered
sums are finite.

For the proof of Theorem 2.1(2) we use results from Proposition 6.1 that we prove
below. By (7) the operator8y ... € L(Hy, || - Ils) are well defined fov > N and, by
Proposition 6.1(2), give rise to a Cauchy sequence. With the same argument we see that
the infinite sum in the definition of, (cf. (59)) converges and € Hy. v > 0 and so
v € HP follow from of Proposition 6.1(6).

The difference in (9) is only due to configurations of lengthN and we estimate
it, using Proposition 6.1(2), byzi¥. Sov = limy_o LY ;ch and by (3) and (4)
of Proposition 6.1 Lr.7¢v = v andu(v) = 1, respectively. For ang € Hy with
Lroredp = ¢ andu(¢p) = 1 we have by (9)

¢ = lim Ly =pn@v=y. (113)
This shows uniqueness ofand so ofv* and the proof of Theorem 2.1(2) is completel

Proof of Proposition 6.1Using the same argument as in the proof of Theorem 2.1(1),
we see that the right-hand side term in (60) differs from the operator in (49) only in
the summands fo€ with 5(C) > dist(A1, Ag). So the difference is bounded by
co9exp(—& dist(A1, Ag)) for somecyg > 0 and (60) follows from taking the limit
Aoy — 74,

In order to prove Proposition 6.1(2) we first observe that configuratioask y (A1)
of length< N — 1 extend canonically t6' € En11(A1) with Lo = L because there
are only h-lines in the step from timeN to —N + 1. So we can extend to C’ on
Az x {—N —1,...,0} (whereA is so large thatA, x {—N — 1, ..., 0} contains all
triangles o) by adding h-lines fronip, —N—1) to (p, —N) forall p € A and obviously
Lo =L

Note that a configuratiof in A2 x {—N —1, ..., 0} oflength< N — 1 is the extension
in the above sense of a (uniquely definéd)So in the difference (61), all term&: with
length(C) < N — 1 are cancelled. Using Proposition 8.1(1), (107) and Proposition 6.1(1)
we get forallA; € F

N N+1 N N SN+1
I(may 0 LEope — Ay 0 Lpdr)Pllags < (cron” + c20m” + c107” THllglly

< ca0i” plly (114)
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with c30 independent ofA1.  This proves Proposition 6.1(2); next we prove
Proposition 6.1(3). FoA1 € F,

N N N
Ay © £Fin ° ﬁFinqj = Z a0 Le, (ﬁFin ®)
C2€En, (A1)
= > <7TA1 oLe,o ) Way© 561¢A<01)>
C2€En, (A1) C1€EN,(A(C2)
= Z Ay © Ly, Pacy)
CaeEn, (A1)
C1eEn, (A(C2)
= Z Ay © Les@accs
C3€EN +N, (A1)
N1+N.
= 715, 0 L3220 (115)

Note that we sum over infinitely margs, C2. A priori, the distribution is only valid for
finite partial sums. In terms of configurations we ‘GatonCo’ to getCz = C2 o C1 (which
might be a zero configuration), in fact such a splitting exists and is unique for every non-
zeroCsz. So the net of finite partial sums ov€s converges to the infinite expansion (60)
of the right-hand side of (62) and Proposition 6.1(3) is proved.

To prove (64), we consider first the special case C((SH):

/dugoSqﬁ: lim /dugoSA1¢
M M

A]_*)Zd

= lim / dutg o Sp,ha,
A1—Z4 J(sHAL

= Iim/ dputg Lony rageda
A1—2Z4 J sty FRLoT o0

= lim / dplgma o Lpaygpase 0 TAL @
A1—Z4 J (s1)A

:/ d,ugﬁFOTe(ﬁ. (116)
M

So (64) is true fog € C((SHA). Takingg = 1, we get (65).
Now we show (63), using the special case of (64) for the second equality:

ILForc¢llvar = SUp  sup digLroreg
AeF gec(shHM) /M
lglloo<1

= sSup sup dugoSo
AeF geC(shHM IM
lglloo<1

<sup sup [igllecll®llvar
AEF geC((sHM)
lglloo<1

= ¢ llvar. (117)
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We can conclude (64) for any € C(M). By assumptiorp and then by (63 r.r<¢ are
in H"?, i.e. the integrals in (64) correspond to continuous linear functional¥ &h. The
net(ga)acr converges uniformly tg asA — Z4, as doegga o S)acr t0 g 0 S, S0 (64)
follows by uniform approximation of by functionsg, and Proposition 6.1(4) is proved.

We show Proposition 6.1(5) by indirect proof. We have, by definitid@yore ) o def
IimAﬁZd A o Lpar,parePa,. If that was negative somewhere there would bejee F

with ma o Lpas rarepa, having negative values and we could find a non-negative
g € C((SH™) such that

/ dplgma o Lpayopazepa, <0 (118)
sha

However, by Proposition 6.1(4) the integral equals

[, dutigoson =0 (119)
(sHA1
S0 Lrore IS NON-negative. ]
Proof of Theorem 7.1.
VAUA, = Z TTALUA, © ECh
CeE(A1UA»)
= > (A, © Loyh) (a, © Leyh)
C=C1UCy
b(C)=3dist(A1,A2)
+ > maua 0 Leh. (120)

C
b(C)>3distA1,Ap)

In estimating the second summand we note that if we sum in formulae (97) and (105)
just overC for which b6(C) > Ldist(A1, Ao) (b(C) was defined in (109)), we can take
out from ]_[,fozl(exp(—c”zkd))”ﬂvk a factor exp—s%dist(Al, A2)) (similar to the proof of
Proposition 6.1). We do so by choosing & (0, 1) so that

Gtk =cr—co1—coo—co3+ 3N +Ink >0 (121)

and by defining by exp(—g%) = k. Note that such a choice exists@s> 0 by (100).
The rest of the analysis is as in the proof of Proposition 8.1. We get

H E TTALUA, © Lch
C
b(C)>3dist(A1, A2)

(122)

AqUA>

iSt(Aq1,A —|A1|—|A
§Kd'5t( 1, Z)C31||h||1919 [A1l—1Az]

< 63219—|A1|—\A2\Kdi5t(A1,A2). (123)
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We write for the first summand in (120)

> (T, © Logh)(ma, o Leyh)
C=C1UC,
b(C)<3dist A1, A2)

= VA VA, — > (A, © L) (a, 0 Leyh) (124)
C=C1UC,
b(C)>3dist(A1,A2)

and estimate, in a similar way,
H > (7T, © Logh) (Ta, 0 Leyh)

C=C1UCy
b(C)> 3dist(A1,A2)

< cag—IAal—IAzl  distALAS).
A1UA2

(125)
Equations (123) and (125) also hold for alf < A1, A, € Az and Theorem 7.1(1)
follows:
AL (fV) = A (fVauA,)
=7A, (fvava, — f(VALVA, — VALUAL))
=v(f)va; — A (F (VAL VA, — VALUAL)) (126)
and, using|ma, [l = 1, we get

”nAl(f(vAlvAz - vAlUAz))”Al =< ”f”Az”vAlvAg - UA1UA2”A1UA2 (127)
and so by Theorem 7.1(1)
I7a; (f (VayvA; — Vasua) Ay < c160 ~ALTIAZl | £ 5 i BSUAL A2, (128)

This holds for allA] C A1, so Theorem 7.1(2) is proved.

We selp = fv—v(f)v. SOma, 0 LY e (fV) —v(f)va, = ma, 0 LN c¢p. We estimate
the]| - ||A1’1~9—norm of the last term as in the proof of Proposition 8.1, but this time using the
finer estimates from Theorem 7.1(2)

Iéa llac) < 87 MOlerry 71421 |5, HANO-AD

< Cllﬂ—\l\z\ ||f||A219—|Ar (C)|_Zl?0:1(3k)dn/3,kKdiSt(ALAZ)_Z:il knp.k (129)

where as befora (C) d=8f[\c U A,. So we get analogously to formulae (97) and (98):

Ml N sy 0 Lodasliag
C:length(C)=N

3IA1] e |A1| K = d ng k [ngl
=9y K > A [ Jexpicak)) #* (cre)
ng k=1

K<|ng|<oo

o0

x [Texp—cakhyee 3 ( y )C'r”f"nL [ T expeaak®))s+
k=1 Ingl k=1

L=|ng|

O MUK A - K |A1|—K —1
% l_[(exmczgkd))nﬁ,knmaXXO,NfL} Z ( )(crnN)lch 1

k=1 =0 !
_ oo d ; N
% Cllﬂ |A2|||f||A219 ) Zk:l(3k) nlg,deISt(Al,Az) Zk:lk"ﬂ.k
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[Aq]
- A
< cpp!Ml E (' Kl|) E 4K (crec, )]
k=0

np
K <|ng|<oo

(exp((co1 — 2+ 22+ c23 — 31 I — Ink)k?))"s+

18

X
k=1
= |Aql max{L,N},q—1 . . N |[A1]—K q—|As]| dist(Aq,A2)
> LN (9L, N gy MK IR g e BISEAL A2,
L=|ng|
(130)
Using (121), we get with the same analysis as (98)—(103):
_& |Al‘ )
<caa (ez o s+ chﬂ) 9182l £ e SN AD N, (131)

For sufficiently smalks and? the term in brackets is smaller than one. Note that there
is no condition onV. So we get the same estimates forralk 0 and these also hold for
A C Aj. Soin analogy with (61) we get

ILY e — LETFbllay < casd ™2l g ML AIZN (132)

and asu(¢) = 0 we conclude Theorem 7.1(3). O
Proof of Theorem 2.2Applying Theorem 7.1(1) we get

s =(fpans) ([ o)

/(Sl)Alqu dMMUAZ(UAlUAz a v[\lw\z)gf’

< lvagua, — varvasllajunaslligllooll flleo
—|A1|—|A dist(A1, A
< 100 MR g |l g || £ [looic SUALA) (133)

so Theorem 2.2(1) is proved.
We have

’/Mvdy,goroS"f—</Mvdy,gor>(/Mvd,u,f>'

= ‘ / d,ug @) T(T[‘(—l(Al) (o) EI;OTe (fU) — l)(f)l)t—l(Al))
M

Agl+|A ist(z—1 ~
< c1e A2 £l glloorc ST (AL AD 7, (134)

Here we have used Theorem 7.1(3) ands8E' 51, From
dist(t 1 (A1), A2) = m(t) —max|p —qll : p € A1, q € A2} (135)
follows

Kdist(r_l(Al),Az) < (A1, Ao, K)K'"(T) (136)
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wherec(A1, A2, k) is as defined in Theorem 2.2. #fand S commute, Theorem 2.2(3)
follows from Theorem 2.2(2).

We prove Theorem 2.2(4) by approximatiggand f by functions for which we can
apply estimate Theorem 2.2(2). For apy> 0 we can choosé1 € F so large that
lg — ga,ll0 < y. Furthermore, there exists aﬁz S H(Ag\z) with || f — fA2||c>0 <y
(sup-norm on(sHZ%. So

‘/MvdugoroS"f—</Mvdugot)(//wvduf>‘

/vdu(g—gAl)oroS”f’JrU vdugAloroS”(fAz—f)’
M M

+ /MvdugAloroS"fAz—</MV€1M8A1°T></M””[“JFA2>
+ (/Mvdug,\lor></MvdM(f—fAz))’
+ (/Mvdu(g—gAl)0T></MVdﬂf)’

< llg = garllooll flloo + 181 llooll £ = fazlloo
+ (A1, Az e 2 g ool Fag a7 k™@
+lgarllosllf = fazlloo + 1§ — gy llsoll fazllos

< @2l fllo + 2lglloc + 3¥)Y

+e(A, Az, e T2 (g llog + Y11 Fas Nl 2,7k ™ @) (137)

=<

and this gets arbitrarily small as we can first chopsand then (depending gn) A1, A2
and f, and finally maxm (o), n(o)}.
Theorem 2.2(5) follows from Theorem 2.2(4) and the commutation oftheith S. O
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