Synthesis, anti-GABA activity and preferred conformation of bicuculline and norbicuculline enantiomers

J Kardos ${ }^{1}$, T Blandl ${ }^{1}$, ND Luyen ${ }^{1}$, G Dörnyei ${ }^{1}$, E Gács-Baitz ${ }^{1}$, M Simonyi ${ }^{1}$, DJ Cash ${ }^{2}$, G Blaskó ${ }^{3}$, Cs Szántay ${ }^{1}$
${ }^{1}$ Central Research Institute for Chemistry, The Hungarian Academy of Sciences, 1525 Budapest, PO Box 17, Hungary;
${ }^{2}$ Biochemistry Department, School of Medicine, University of Missouri, Columbia, MO, 65201 USA;
${ }^{3}$ EGIS Pharmaceuticals, 1475 Budapest, PO Box 100, Hungary

(Received 19 October 1995; accepted 18 March 1996)

Abstract

Summary - Synthesis of erythro- $(\pm)-[1 S R, 9 R S]$-norbicuculline and threo- $(\pm)-[1 S R, 9 S R]$-noradlumidine from piperonal was performed using Bischler-Napieralski cyclization as a key step. Resolution gave rise to $(+)$)-[1S,9R]-norbicuculline ($[1 S, 9 R]$ norBIC) and $(-)-[1 R, 9 S]$-norbicuculline ($[1 R, 9 S]$ norBIC) in $>99.5 \%$ enantiomeric purity. Bicuculline enantiomers were readily obtained by methylation of the latter products. $[1 S, 9 R] \mathrm{BIC}$ was about 70 times more potent than $[1 R, 9 S] \mathrm{BIC}$ as an inhbitor of GABA ${ }_{\mathrm{A}}$ receptor binding and was about 100 and 900 times more potent than $[1 S, 9 R]$ norBIC at pH 7.1 and 5.0 respectively. Similarly, $[1 S, 9 R]$ norBIC was much less potent than $[1 S, 9 R]$ BIC as an inlibitor of GABA-specific ${ }^{36} \mathrm{Cl}^{-}$ion flux. The observed increase of about two orders of magnitude in the in vitro biological activity caused by $N 2-\mathrm{CH}_{3}$ substitution in $[1 S, 9 R]$ norBIC was attributed to different conformations for erythro- and nor-erythro-bicucullines indicated by ${ }^{1} \mathrm{H}$ nuclear Overhauser enhancements of [$1 S, 9 R$] BIC and [1S,9R] norBIC. bicuculline enantiomer / norbicuculline enantiomer / Bischler-Napieralski cyclization / $1 \mathbf{H}$ nuclear Overhauser enhancement / $\left[{ }^{3} \mathrm{H}\right] \mathrm{GABA}$ binding $/{ }^{36} \mathrm{Cl}^{-}$ion flux

Since the announcement by Curtis et al [1] that the phthalideisoquinoline (PIQ) alkaloid, $[1 S, 9 R]$ BIC possessed potent inhibitory activity against the depressant action of GABA in the central nervous system, it has been of interest to study the effect of its antipode, $[1 R, 9 S]$ BIC. The effect of $[1 R, 9 S]$ BIC, however, has not been unequivocally reported because of the scarcity of this natural product and the confusion caused by the reversal of the sign of optical rotation for quaternary bicuculline derivatives [2]. Based on the available structural data and in vitro biological activity measurements of 39 PIQ derivatives, a good correlation was found [3] between activities and preferred conformations of erythro and threo PIQs and analogs.

We report herein a synthetic route for bicuculline and norbicuculline enantiomers. The effect of N methyl substitution on $\mathrm{GABA}_{\mathrm{A}}$ receptor activity and preferred conformations were evaluated by $\left[{ }^{[3} \mathrm{H}\right]$ GABA binding, GABA specific ${ }^{36} \mathrm{Cl}^{-}$ion flux and ${ }^{1} \mathrm{H}$ nuclear Overhauser enhancement (nOe) measurements respectively.

Chemistry

[$1 S, 9 R$] BIC 11a, first encountered as a constituent of Dicentra cucullaria [4] and subsequently found in other species of genera Rhoeadales [5, 6], was first totally synthesized by Groenewoud and Robinson [7] as early as 1936. Reissert synthesis of [$1 S R, 9 R S$] norBIC has been cited [8] as an unpublished result of Kerekes [8], however, total synthesis of [1SR, $9 R S$] norBIC 9 has not been described up to now.

As demethylation of PIQ alkaloids results in decomposition of the molecule, a linear approach to [$1 S R, 9 R S$] BIC via [$1 S R, 9 R S$] norBIC had to be elaborated to meet our demand to produce $[1 S, 9 R]$ BIC and $[1 S, 9 R]$ norBIC as well as $[1 R, 9 S]$ BIC and $[1 R, 9 S]$ norBIC. For this purpose the Bischler-Napieralski route, applied to the synthesis of (\pm)-[1SR,9RS]-α-narcotine [9-11], seemed to be appropriate. The two building blocks needed for Bischler-Napieralski cyclization, ie, carboxylic acid 4 (scheme 1; stereostructures are represented according to [12]) and homopiperonylamine 6 [13], were both prepared from pipe-

Scheme 1.
ronal 1. According to Ziegler and Fowler [14], 1 gave a Schiff base 2 with cyclohexylamine. This was treated with butyllithium at $-78^{\circ} \mathrm{C}$, then with CO_{2} in $\mathrm{THF} /$ hexane solution to produce carboxylic acid 3 after hydrolysis. Phthalide-3-carboxylic acid 4 was obtained from 3 in two steps; addition of HCN was followed by aqueous sulfuric acid hydrolysis [9]. Compound 4 was then converted to acyl chloride 5 with thionyl chloride, which, without isolation, was reacted with homopiperonylamine 6 obtained from piperonal 1 in two steps via nitrostyrol [13], to supply amide 7. POCl_{3} cyclization of 7 led to $\Delta^{1,9}$-norBIC 8 containing a double bond between the two rings ("enamine form') even in the protonated salt form (no C9-H
signal could be observed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 8 in $\mathrm{D}_{2} \mathrm{O}$ solution). Sodium borohydride reduction of $\mathbf{8}$ resulted in a diastereomeric mixture of erythro-[1SR, $9 R S]$ norBIC 9 and its threo epimer (\pm)-[1SR,9SR]noradlumidine ($[1 S R, 9 S R]$ norADLD, 10) in a ratio of about $5: 1$. The relative stereochemistry of the chiral atoms Cl and C 9 in the two compounds was deduced from the characteristic chemical shifts of the C 2 '- H protons (5.90 and 6.93 ppm for the major and minor epimers respectively) and by comparing the different nOe values of protons $\mathrm{C} 1-\mathrm{H}, \mathrm{C} 8-\mathrm{H}, \mathrm{C} 9-\mathrm{H}$ and $\mathrm{C} 21-\mathrm{H}$ (table I) with other erythro and threo PIQ alkaloids [15].

After separating the two diastereomeric racemates on the column, the major erythro base 9 was resolved in acetone with (-)- and (+)-O,O-dibenzoyltartaric acid and the enantiomeric purity was checked on a chiral HPLC column (Chiralcel OD) showing a baseline separation of $9 \mathbf{a}$ and $\mathbf{9 b}$. After repeated recrystallization of the two diastereomeric salt-pairs, $[1 S, 9 R]$ norBIC 9a and $[1 R, 9 S]$ norBIC $9 \mathbf{b}$ were obtained in more than 99.5% optical purity. Eschweiler-Clark or methyl iodide methylation of the optically pure [$1 S, 9 R$] norBIC and $[1 R, 9 S]$ norBIC gave $[1 S, 9 R]$ BIC and $[1 R, 9 S]$ BIC $11 \mathbf{a}$ and $\mathbf{1 1 b}$ respectively, the

Table I. Nuclear Overhauser enhancement data (\%) in ${ }^{1} \mathrm{H}$ NMR.

Proton irradiated	Proton observed				
	$\mathrm{C} 2^{\prime}-\mathrm{H}$	$\mathrm{Cl}-\mathrm{H}$	C8-H	C9-H	$\mathrm{N} 2-\mathrm{CH}_{3}$
$10^{\text {a }}$					
H8	-	4.4	-	15.4	-
H9	2.4	6.3	15.3	-	-
H1	5.6	-	5.5	7.4	-
$12^{\text {b }}$					
H8	-	6.8	-	3.5	-
H9	2.2	7.3	4.4	-	4.4
H1	2.0	-	9.8	8.2	$6.4{ }^{\text {c }}$
$9 \mathrm{a}^{\text {d }}$					
H8	1.9	3.4	-	15.0	-
H9	2.3	6.4	17.8	-	-
H1	1.0	-	5.4	6.8	-
$11 a^{\text {e }}$					
H8	-	7.6	-	10.7	-
H9	3.0	8.3	12.0	-	0.8
H1	3.6	-	10.3	8.9	$6.4{ }^{\text {c }}$

${ }^{\mathrm{a}} J_{\mathrm{Cl}-\mathrm{H}, \mathrm{C} \cdot \mathrm{H}}=3.2 \mathrm{~Hz} ; \delta_{\mathrm{C} 4 \mathrm{Hax}}=2.74 \mathrm{ppm} .{ }^{\mathrm{b}} J_{\mathrm{Cl} \cdot \mathrm{H}, \mathrm{C} \cdot \mathrm{H}}=3.3 \mathrm{~Hz} ;$ $\delta_{\text {C } 4 \text { Hax }}=2.75 \mathrm{ppm}$. c Share of $\mathrm{C} 3-\mathrm{H}$ is higher in [1SR,9SR] ADLD than in $[1 S, 9 R]$ BIC. ${ }^{d} J_{\text {C1-н.c9-H }}=4.0 \mathrm{~Hz} ; \delta_{\mathrm{C} 4-\mathrm{Hax}}=$ 2.43 ppm . ${ }^{\mathrm{e}}{J_{\mathrm{C} 1-\mathrm{H}, \mathrm{Cy}-\mathrm{H}}}=4.1 \mathrm{~Hz} ; \delta_{\mathrm{C} 4-\mathrm{Hax}}=2.24 \mathrm{ppm}$; no nOe was observed between $\mathrm{N} 2-\mathrm{CH}_{3}$ and $\mathrm{C} 4-\mathrm{H}_{\text {ax }}$ protons suggesting the following configuration: $\mathrm{N} 2-\mathrm{CH}_{3}$ is equatorial (α); lone pair electrons at $N 2$ ($N 2$-LPE) are axial (β).
former being identical in every respect (mp, TLC, IR, ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{MS}$) with the natural sample, thus providing a final proof of the erythro assignment for [1SR,9RS] norBIC (9).

The threo racemate ($[1 S R, 9 S R]$ norADLD, 10) and its methylated product ($[1 S R, 9 S R]$ ADLD, 12) were also obtained but not biologically evaluated.

Biological data

Enantiomers of 9 and $\mathbf{1 1}$ were initially evaluated for inhibition of $\left[{ }^{3} \mathrm{H}\right] \mathrm{GABA}$ binding in membranes from the rat cerebral cortex. As shown in table II, GABA ${ }_{A}$ receptors expressed greater enantioselectivity towards 11a and 11b than 9a and 9b, a result that is consistent [3] with the higher potency of 11a. As racemic bicuculline and norbicuculline appeared to have identical activities and so were thought to possess similar conformations [3], we were quite surprised to find that $N 2-\mathrm{H} \rightarrow N 2-\mathrm{CH}_{3}$ substitution in 11a caused an approximately 100 -fold increase in inhibition of $\mathrm{GABA}_{\mathrm{A}}$ receptor binding compared with 9 a .

The effect of $\mathrm{N} 2-\mathrm{H} \rightarrow \mathrm{N} 2-\mathrm{CH}_{3}$ substitution on [$\left.{ }^{3} \mathrm{H}\right]$-GABA binding was further evaluated with the protonated 9a and 11a analogs. By protonation at pH 5.0 [16], the affinity of 11a increased ($K_{i}=$ $0.39 \mu \mathrm{M}, K_{\mathrm{GABA}} / K_{i}=0.11$), while that of 9 a decreased ($K_{i}=340 \mu \mathrm{M}, K_{\mathrm{GABA}} / K_{i}=0.0001$).

Substantial increase in the affinity caused by $N 2$ CH_{3} substitution of unprotonated ($K_{9 a} / K_{13 a}=100$) and protonated ($K_{9 a} / K_{11 \mathrm{a}}=870$) analogs and the differential effect of protonation on the affinities of 11a ($K_{112} / \mathrm{K}_{112, \mathrm{H}+}=2.3$) and $9 \mathrm{a}\left(K_{99} / \mathrm{K}_{9 a, \mathrm{H}+}=0.27\right)$ suggested that the erythro conformations of bicuculline and norbicuculline were different. A comparison of the nOe values and the chemical shift data for 11a and 9a (table I) revealed that (i) nOe interactions of $\mathrm{C} 1-\mathrm{H}$ and $\mathrm{C} 8-\mathrm{H}$ in $[1 S, 9 R]$ BIC were twice as large as in $[1 S, 9 R]$ norBIC; (ii) smaller $\delta_{\text {C4Hax }}$ in $[1 S, 9 R]$ BIC (2.24 ppm vs 2.43 ppm) indicated that $\mathrm{C} 4-\mathrm{H}_{\mathrm{ax}}$ is in the shielding
zone of the phthalide ring; (iii) the nOe effects of C 8 H and both $\mathrm{C}^{\prime}-\mathrm{H}$ and $\mathrm{C} 9-\mathrm{H}$ were larger in $[1 S, 9 R]$ norBIC than in $[1 S, 9 R]$ BIC. These nOe interactions are indicated in figure 1. The nOe data are in agreement with a conformational change of [$1 S, 9 R$] norBIC which results in an increased distance between the lone-pair electrons ($N 2$-LPE) and the carbonyl group (fig 1).
The inhibitory effect of these bicuculline derivatives (9a, 9b, 11a and 11b) on bicuculline-sensitive GABA binding and GABA receptor function was compared (table II). Inhibition of the in vitro binding of [$\left.{ }^{3} \mathrm{H}\right]$ GABA is parallel to the inhibition of GABAmediated influx of ${ }^{36} \mathrm{Cl}^{-}$ions into the membrane vesicles ($40 \mu \mathrm{M}$ GABA, $6 \mathrm{~s}, 30^{\circ} \mathrm{C}$) by the same concentrations $(46 \mu \mathrm{M})$ of the bicuculline derivatives. It is apparent that 9 a was a less potent antagonist of $\mathrm{GABA}_{\mathrm{A}}$ function (${ }^{36} \mathrm{Cl}^{-}$flux) than 11a.

The $N 2-\mathrm{H} \rightarrow \mathrm{N} 2-\mathrm{CH}_{3}$ substitution is apparently responsible for a substantial improvement of antiGABA activity of erythro PIQ derivatives. The unusually large effect was explained by the conformational change in ring B resulting in different $N 2$-LPEcarbonyl distances in nor-erythro- and erythro-bicucullines.

A

B

Fig 1. Different conformations of the bicuculline (A) and norbicuculline (\mathbf{B}) skeleton as indicated by the nOe interactions.

Table II. $[3 \mathrm{H}]$ GABA binding and GABA-specific ${ }^{36} \mathrm{Cl}^{-}$ion flux inhibition data in membranes from the rat cerebral cortex.

Compound	Binding ${ }^{\text {a }}$ inhibition affinity			${ }^{36} \mathrm{Cl}^{-}$transport ${ }^{\mathrm{b}}$ inhibition influx	
	$K_{i}(\mu M)$	$K_{11 a} / K_{i}$	$K_{G A B A} / K_{i}$	dpm	\%
GABA	0.018 ± 0.001	49.4	1.0	383 ± 48	0 ± 7
9 a	91.5 ± 9.2	0.01	0.002	274 ± 59	28 ± 8
9b	365 ± 70	0.002	0.0005	360 ± 15	6 ± 4
11a	0.89 ± 0.04	1.0	0.02	5 ± 20	99 ± 5
11b	64.0 ± 6.4	0.014	0.0003	282 ± 37	26 ± 10

${ }^{\text {a }}$ Reduced $\chi_{\mathrm{r}}{ }^{2}$ values were the following: $0.34,2.81,1.52,7.35$ and 0.94 for GABA, 9a, 9b, 11a and 11b respectively; other displacement experiments gave similar results; bdata \pm SEM were from six to ten determinations.

Experimental protocols

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were taken on a UXR 400 spectrometer. Mass spectra were run on a MS 902 spectrometer. Infrared spectra were taken on a Nicolet 205 FT-I. HPLC was run on a PU 4000 with a Chiralcel OD column eluted with isopropanol. Analyses indicated by the symbols of the elements were within $\pm 0.4 \%$ of theoretical values.

Synthesis

2-Formyl-5,6-methylenedioxybenzoic acid 3

Compound 3 was prepared from piperonal 1 in three steps according to Ziegler and Fowler [14] in 63% yield, mp $164-165^{\circ} \mathrm{C}$ (ref [14]: mp 165-165.5 ${ }^{\circ} \mathrm{C}$).

6,7-Methylenedioxyphthalide-3-carboxylic acid 14

To the stirred suspension of $\mathbf{3}(5 \mathrm{~g}, 25.7 \mathrm{mmol})$ in water (15 mL), cooled to $0-5{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{KCN}(10 \mathrm{~g}, 154 \mathrm{mmol})$ in water (25 mL) was added over 15 min and stirred for an additional 15 min . A mixture of conc $\mathrm{HCl} \mathrm{aq}(17.5 \mathrm{~mL})$ and water (17.5 mL) was added and stirred for 5 h while cooling. The precipitate was filtered off and the reaction mixture was extracted with EtOAc. The combined precipitate and oil, obtained by evaporating the dried EtOAc solution, was refluxed for 2 h in a mixture of conc $\mathrm{H}_{2} \mathrm{SO}_{4}(3.5 \mathrm{~mL})$ and water (15 mL). After cooling, the mixture was extracted with EtOAc and the organic phase was dried and evaporated. $\mathrm{On} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ treatment the residue gave colourless crystals of $4(4.65 \mathrm{~g}, 81 \%) \mathrm{mp} 190-192^{\circ} \mathrm{C}$; anal $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6}(\mathrm{C}, \mathrm{H}, \mathrm{O}) ;$ IR (KBr) γ-lactone, $1775 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{O}, 1720$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6} / \mathrm{CDCl}_{3}\right) \delta 5.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 6.21$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 8.80$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$).

Amide 7

To a stirred solution of carboxylic acid $4(4.0 \mathrm{~g}, 18 \mathrm{mmol})$ in dry benzene, (40 mL) thionyl chloride (20 mL) was added dropwise at room temperature, then the mixture was refluxed for 2 h . The mixturc containing acyl chloride 5 was evaporated in vacuo. The amine 6 [13] ($2.9 \mathrm{~g}, 18 \mathrm{mmol}$) was dissolved in benzene (80 mL) and $2.5 \% \mathrm{aq} \mathrm{NaOH}$ solution (18 mL) was added with stirring. A solution of acyl chloride 5 in benzene (30 mL) was added and stirred for 1 h . The precipitate formed was filtered off. The benzene solution was dried and evaporated. The residue and the precipitate were combined and recrystallized from EtOAc to yield amide $7(3.6 \mathrm{~g}, 54 \%)$, mp 165$166^{\circ} \mathrm{C}$; anal $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{7}(\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O})$; mass spcctrum $m / z(\%)$ 369 ($\mathrm{M}^{+}, 126$), 339 (2), 177 (25), 148 (100); IR (KBr) NH, $3280 \mathrm{~cm}^{-1}$, lactone $\mathrm{C}=\mathrm{O}, 1760 \mathrm{~cm}^{-1}$, amid $\mathrm{C}=\mathrm{O}, 1660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.71\left(\mathrm{t}, 2 \mathrm{H}\right.$, benzyl- $\left.\mathrm{CH}_{2}\right), 3.46(\mathrm{~m}, 2 \mathrm{H}$, NHCH_{2}), $5.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 5.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.20(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}$, C5-H), 7.12 (m, 1H, C3'-H), $7.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $/ \mathrm{CDCl}_{3}$); 34.65 (benzyl-C), $40.32\left(\mathrm{CH}_{2} \mathrm{NH}\right.$), 78.47 $(\mathrm{OCH}), 100.50+103.25\left(\mathrm{OCH}_{2} \mathrm{O}\right), 106.33\left(\mathrm{C}^{\prime}\right), 107.85(\mathrm{C} 5)$, 108.65 (C2), 114.11 (C2'), 115.89 (C3'), 121.27 (C6), 131.77 (C1), 137.36 (Cl^{\prime}), 144.57, 145.79, 147.27 and 149.41 ($\mathrm{C} 3, \mathrm{C} 4$, C 4 and $\left.\mathrm{C}-5^{\circ}\right), 166.07(\mathrm{C}=\mathrm{O})$.

$\Delta^{1,9-N o r b i c u c u l l i n e 8} 8$

Amide $7(3.50 \mathrm{~g}, 9.5 \mathrm{mmol})$, dissolved in freshly distilled $\mathrm{POCl}_{3}(35 \mathrm{~mL})$, was stirred at $100^{\circ} \mathrm{C}$ for 1 h under argon. The cooled mixture was poured onto ice (300 g), cxtracted with diethyl ether, the water phase was then neutralized with conc $\mathrm{NH}_{4} \mathrm{OH}$, the yellow precipitate filtered, dissolved in EtOAc and acidified with conc HCl to pH 4 . The crystals were filtered to
give $\Delta^{1,9}$-norBIC. $\mathrm{HCl} 8(2.7 \mathrm{~g}, 76 \%) \mathrm{mp} 173-174^{\circ} \mathrm{C}$ (MeOH); anal $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}_{6} \mathrm{Cl}(\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}, \mathrm{Cl})$; mass spectrum m / z (\%) 351 ($\mathrm{M}-\mathrm{HCl}, 85$), 322 (100), 294 (11), 177 (91), $36(\mathrm{HCl})$; $\mathrm{IR}(\mathrm{KBr})=\mathrm{N}^{+} \mathrm{H}_{2}, 3290 \mathrm{~cm}^{-1}$, lactone $\mathrm{C}=\mathrm{O}$, $1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 4-\mathrm{H}_{2}\right), 3.90$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{2}\right), 6.12+6.22\left(\mathrm{~s}-\mathrm{s}, 2-2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.98(\mathrm{~s}, 1 \mathrm{H}$, C8-H), $7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 7.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 3^{\prime}-\mathrm{H}\right), 7.42(\mathrm{~d}, 1 \mathrm{H}$, C2'-H).

Norbicuculline 9 and noradlumidine 10

Cyclized product $8(5.4 \mathrm{~g} 13.9 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and $\mathrm{AcOH}(6 \mathrm{~mL})$, conled to $0-5^{\circ} \mathrm{C}$. To the stirred mixture $\mathrm{NaBH}_{4}(1.62 \mathrm{~g}, 42.8 \mathrm{mmol})$ was added in small portions ($\sim 3 \mathrm{~h}$) then stirred for 1 h . Excess reducing agent was then decomposed with acetone (2 mL). The mixture was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. Chromatography on 250 g 63-200 mesh Kieselgel 60 (eluent: benzene/acetone, 1:1) gave $9(2.1 \mathrm{~g}, 43 \%) \mathrm{mp} 184-$ $185^{\circ} \mathrm{C}$ and $10(0.4 \mathrm{~g}, 8 \%) \mathrm{mp} 203-204^{\circ} \mathrm{C}$. 9: Anal $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{6}$ (C, H, N, O); mass spectrum $m / z(\%) 353\left(\mathrm{M}^{+}, 1\right), 335(2), 176$ (100), 149 (3); IR (KBr) $\mathrm{C}=\mathrm{O}, 1750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) 1.86 (br s, 1H, NH), 2.43 (m, $J=15.5+8.05+5.4 \mathrm{HZ}, 1 \mathrm{H}$, C4- I_{ax}), $2.53\left(\mathrm{~m}, J=15.5+5.4+4.5 \mathrm{IIz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{II}_{\mathrm{eq}}\right), 2.73$ $\left(\mathrm{m}, J=11.6+5.4+5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}\right), 2.83(\mathrm{~m}, J=11.6+$ $\left.8.0+4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}\right), 4.73(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}), 5.72$ $(\mathrm{dd}, J=4+1 \mathrm{~Hz}, 1 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}), 5.99+6.15(\mathrm{~s}-\mathrm{s}, 2-2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.90\left(\mathrm{~d}, J=7+1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}^{2}-\mathrm{H}\right), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H})$, 6.74 (s, $1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 6.83(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3 '-\mathrm{H})$, see table I for nOe data; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 29.72$ (C4), 40.65 (C3), $56.76(\mathrm{C} 1), 84.62(\mathrm{C} 9), 100.91+103.15\left(\mathrm{OCH}_{2} \mathrm{O}\right), 106.28$ (C8), 109.16 (C5), 109.88 (C6'), 113.21 (C2'), 115.29 (C3'), 124.93 (C4a), 130.80 (C8a), 139.78 (Cl^{\prime}), 144.49 (C5'), 146.07 and 146.54 (C 6 and C 7), 148.95 (C 4 '), 167.48 ($\mathrm{C}=\mathrm{O}$). 10: Anal $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{6}(\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O})$; mass spectrum $m / z(\%) 353\left(\mathrm{M}^{+}, \mathrm{I}\right)$, 335 (3), 176 (100), 149 (4); IR (KBr) $\mathrm{C}=0,1750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.55-2.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 4-$ $\left.\mathrm{H}_{2}\right), 2.90-3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{2}\right), 4.45(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cl}-\mathrm{H})$, $5.77(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}), 5.88+6.16\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right)$, $6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 6.93(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$, C2'-H), $7.08\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3^{\prime} \mathrm{H}\right)$, see table I for nOe data; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.91(\mathrm{C} 4), 41.52(\mathrm{C} 3), 58.04(\mathrm{C} 1), 84.63$ $(\mathrm{C} 9), 100.82+103.35\left(\mathrm{OCH}_{2} \mathrm{O}\right), 106.21(\mathrm{C}), 109.11$ (C5), 109.78 (C^{\prime}), 113.65 (C^{\prime}), 114.62 (C^{\prime}), 126.26 (C4a), 130.32 (C8a), 140.42 (Cl^{\prime}), 144.85 (C 5 '), 145.94 and 146.45 (C 6 and C7), 149.23 (C^{\prime}), 167.24 ($\mathrm{C}=\mathrm{O}$).
$(+)-[1 S, 9 R]-$ and (-)- $11 R, 9 S]-$ Norbicuculline 9 a and $9 b$
To the solution of $9(200 \mathrm{mg}, 0.6 \mathrm{mmol})$ in acetone (12 mL), a solution of (-)- O, O-dibenzoyltartaric acid (DBTA, 200 mg , 0.6 mmol) in acetone (4 mL) was added. After stirring for 30 min the mixture was left to stand at room temperature for $2-3 \mathrm{~h}$. The tartrate salt was filtered, recrystallized from acetone, then dissolved in water (20 mL) treated with conc $\mathrm{NH}_{4} \mathrm{OH}$ (pH 8), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Having distilled off the solvent the residue was crystallized from MeOH to produce $9 \mathrm{a}\left(80 \mathrm{mg}, 40 \%\right.$) $\mathrm{mp} 195-197^{\circ} \mathrm{C}$: optical rotation ($c=1$, CHCl_{3}) $[\alpha]_{\mathrm{D}}{ }^{25}=+256^{\circ}$; enantiomeric purity (HPLC) $>99-95 \%$. Mother liquor treated with (+)-DBTA ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$) similarly gave $9 \mathbf{~ b}$ ($90 \mathrm{mg}, 45 \%$): optical rotation ($c=1, \mathrm{CHCl}_{3}$) $[\alpha]_{\mathrm{D}}{ }^{25}=-250^{\circ}$; enantiomeric purity (HPLC) $>99.5 \%$.

$(+)-[1 S, 9 R]-$ and $(-)-[1 R, 9 S]-$ Bicuculline 11a and 11b

To 9 a or 9 b ($200 \mathrm{mg}, 0.58 \mathrm{mmol}$ each) dissolved in HCOOH $(2.5 \mathrm{~mL}), 37 \% \mathrm{HCHO}$ was added $(0.5 \mathrm{~mL})$ and stirred at $100^{\circ} \mathrm{C}$ for 15 min , then evaporated in vacuo. The residue was dissolved in $10 \% \mathrm{HCl}(20 \mathrm{~mL})$, neutralized with conc $\mathrm{NH}_{4} \mathrm{OH}$
and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over MgSO_{4}, evaporated and purified on 20 g 63-200 mesh Kieselgel 60 column (eluent: $\mathrm{CHCl}_{3} / \mathrm{MeOH}, 10: 1$) to yield 11a identical with an authentic sample ($170 \mathrm{mg}, 81 \%$), $\mathrm{mp} 192-$ $193^{\circ} \mathrm{C}$: optical rotation $\left(c=1, \mathrm{CHCl}_{3}\right)[\alpha]_{\mathrm{D}}{ }^{25}=+126^{\circ}($ ref $[6]$: $[\alpha]_{D^{20}}=+132.7^{\circ}, c=0.49, \mathrm{CHCl}_{3}$); and 11b ($175 \mathrm{mg}, 84 \%$): optical rotation $\left(c=1, \mathrm{CHCl}_{3}\right)[\alpha]_{\mathrm{D}}{ }^{25}=-124.8^{\circ}\left(\right.$ ref $[6]:[\alpha]_{\mathrm{D}}{ }^{33}=$ $\left.-128^{\circ}, c=0.27, \mathrm{CHCl}_{3}\right)$.

(+)-[1SR,9SR]-Adlumidine 12

Compound 10 ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$) was methylated as above. Purification on 10 g 63-200 mesh Kieselgel 60 column (eluent: $\mathrm{CHCl}_{3} / \mathrm{MeOH}, 20: 1$) gave 12 ($70 \mathrm{mg}, 67 \%$) mp $201-202^{\circ} \mathrm{C}$ ($205^{\circ} \mathrm{C}$ in ref [7]; ${ }^{1} \mathrm{H}$ NMR nOe data are summarized in table I.

Inhibition of [$\left.{ }^{3} \mathrm{H}\right] G A B A$ binding and GABA-specific ${ }^{36} \mathrm{Cl}^{-}$ion flux
Cortical membranes in 50 mM Tris HC 1 pH 7.1 buffer were incubated in the dark for 40 min with $4 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ GABA at $4^{\circ} \mathrm{C}$ in the presence or absence of test compounds [3]. Stock solutions (2 mM) of PIQ derivatives were freshly prepared in diluted HCl solution (pH 3) and stored in the dark on ice until use. After incubating 9a and 11a with membranes for 40 min at $4^{\circ} \mathrm{C}$, relative changes in UV absorbances at $\lambda_{\max 2}=326 \mathrm{~nm}$ $\left(A_{2}\right)$ and $\lambda_{\text {max } 1}=292 \mathrm{~nm}\left(A_{1}\right), A_{2} / A_{1}$, indicated less than 5-6\% opening of the phthalide ring [17]. Non-specific binding was determined in the presence of $46 \mu \mathrm{M} 11 \mathrm{a}$. Goodness of fit for one-site ligand analysis [18] of the displacement experiment was expressed as the reduced χ_{r}^{2} value (table II.) Saturation data with $2-250 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{GABA}$ indicated $0.8 \mathrm{pmol} / \mathrm{mg}$ protein density of 11a-sensitive binding sites.

For GABA-specitic ${ }^{36} \mathrm{Cl}^{-}$transport, the fast kinetic technique [19-21] was applied. In the presence or absence of $46 \mu \mathrm{M}$ 9a, 9b, 11a or 11b, a cortical membrane vesicle suspension [21] (0.225 mL) in 10 mM HEPES buffered physiological salt solution (HBSS, pH 7.5) was rapidly mixed with 0.225 mL of HBSS containing $15 \mu \mathrm{Ci} / \mathrm{mL}{ }^{36} \mathrm{Cl}^{-}$ion, $40 \mu \mathrm{M} \mathrm{GABA}$ and incubated for $6[19,20]$ at $30^{\circ} \mathrm{C}$; under the conditions the $\mathrm{A}_{2} / \mathrm{A}_{1}$ ratio for 9 a and 11a did not change.

Acknowledgment

This work was supported by EGIS Pharmaceuticals (Budapest, Hungary) and by grants OTKA 1762 (Hungary) and US-Hungarian JF 277 (JK).

References

1 Curtis DR, Duggan AW, Felix D, Johnston GAR (1970) Nature (Lond) 226 , 1222-1224
2 Simonyi M, Blaskó G, Kardos J, Kajtar M (1989) Chirality 1, 178-179
3 Kardos J, Blaskó G, Kerekes P, Kovács I, Simonyi M (1984) Binchem Pharmacol 33, 3537-3545
4 Manske RHF (1933) Can J Chem 8, 142-146
5 Glasby JS (1975) In: Encyclopedia of the Alkaloids Vol 1, Plenum Press, New York
6 MacLean DB (1985) In: The Alkaloids Vol 24 (Brossi A, ed) Academic Press, Orlando, pp 253-286
7 Groenewoud PWG, Robinson R (1936) J Chem Soc 199-202
8 Blasko G, Kerekes P, Makleit S (1987) In: The Alkaloids Vol 31 (Brossi A, ed) Academic Press, San Diego, pp 1-18
9 Perkin Jr WH, Ray JN, Robinson R (1925) J Chem Soc 127, 740-744
10 Kerekes P, Bognár R (1971) J Prakt Chem 313, 923-928
11 Varga Zs, Blaskó G. Dornyei G, Szántay Cs (1991) Acta Chim Hung 128, 831-837
12 Simonyi M, Gal J. Testa B (1989) Trends Pharmacol Sci 10, 349-354
13 Schales O (1935) Berichte 68, 1579-1581
14 Ziegler FE, Fowler KW (1976) Org Chem 41, 1564-1566
15 Kövér KE, Kerekes P (1986) Magn Res Chem 24, 113-12?.
16 Olsen RW (1976) In: GABA in Nervous System Function (Roberts E, Chase TN, Tower DB, eds) Excerpta Medica and American Elsevier Publishing Co, Amsterdam, 287-304
17 Olsen RW, Ban M, Miller T, Johnston GAR (1975) Brain Res 98, 383-387
18 Munson PJ, Rodbard D (1980) Anal Biochem 107, 220-239
I9 Cash DJ, Subbarao K (1987) Biochemistry 26, 7556-7562
20 Cash DJ, Subbarao K (1987) Biochemistry 26, 7562-7570
21 Serfózó P, Cash DJ (1992) FEBS Leti 310, 55-59

