A Study of the Physical and Chemical Properties of the Esters of Indophenols I. Preparation

DAVID N. KRAMER, ROBERT M. GAMSON, AND F. M. MILLER

Received May 18, 1959

A series of indophenol esters has been prepared. Methods are given for the acylation of unsymmetrically substituted indophenols. Acyl anhydride alone yields 2,6 dihalo indophenyl esters whereas acyl anhydride and pyridine yields predominately the 3',5' dihalo esters. Ultraviolet, visible, and infrared spectra of the esters are reported along with the pKa values of the free indophenols.

Indophenols have been extensively employed for many years as redox indicators¹ as in the determination of ascorbic acid,² and the detection of bacteriological contamination in foodstuffs.³ Early attempts to use the indophenols as dvestuffs in color photography⁴ were unsuccessful because of the instability and high water solubility of the colored indophenolate ion. The conversion of phenols to indophenols is the basis for an extremely sensitive method for the quantitative determination of phenolic compounds.5,6

The authors⁷ have recently introduced the use of esters of this series of compounds as chromogenic substrates for the estimation of acetylcholinesterase activity. Moreover, Nachlas et al.8 have attempted to employ these substances in the histochemical localization of esteratic enzymes.

Indophenols have been prepared by a variety of procedures. However, as reported by Gibbs, Hall, and Clark,¹ the method of Hirsch⁹ or some modification thereof yields the best results. This method is essentially the coupling of the appropriate Nchloro quinoneimine with a phenol under alkaline

(2) R. E. Buck and W. S. Ritchie, Ind. Eng. Chem., Anal. Ed. 10, 25 (1938); M. H. Menaker and N. B. Guerrant, Ind. Eng. Chem., Anal. Ed. 10, 26 (1938); O. H. Keyes, Ind. Eng. Chem., Anal. Ed. 11, 293 (1939)

(3) J. Tillmans, P. Hirsch, E. Reinshagen, Z. Unters. Lebensm. 56, 272 (1928); Chem. Abstr., 23, 3277⁵ (1929). (4) P. W. Vittum and G. H. Brown, J. Amer. Chem. Soc.,

68, 2236 (1946).

(5) H. D. Gibbs, J. Biol. Chem., 72, 649 (1927).

(6) M. B. Ettinger and C. C. Ruchhoft, Anal. Chem., 20, 1191 (1948).

(7) D. N. Kramer and R. M. Gamson, Anal. Chem., 30, 251(1958)

(8) M. Nachlas, A. Young, and A. M. Seligman, J. Histochem. and Cytochem., 5, 565 (1957).

(9) A. Hirsch, Ber., 13, 1903 (1880).

conditions. While previous workers^{1,10} encountered difficulties in obtaining pure indophenol salts, we found that esters could be readily made following a modification of the method of Heller¹¹ and purified from suitable solvents vielding vellow to red crvstalline solids with characteristic physical properties.

A series of esters of the indophenols was prepared in an endeavor to study the effect of structure on the enzymatic activity of various esterases with particular attention to acetylcholinesterase and serum cholinesterase. The results of these studies will be published elsewhere. Tables I-III list the indophenol esters that have been prepared. The physical constants of these compounds are presented in Table IV.

Other than the N(4'-acetoxy phenyl)-p-quinoneimine (IPA) reported by Heller,¹¹ no other esters of the indophenols have been recorded in the literature. However, Meyer and Elbers¹² did prepare the benzoate of the indophenol-N-oxide.

We are likewise preparing a variety of esters in the indophenol-N-oxide series and the results of these investigations will be published at a later date.

As there is a possibility for acylation to occur on either oxygen of the unsymmetrically substituted mesomeric ionic salt, two possible isomeric esters can be prepared. In the case of dichloroindophenol acetate, these are I and II. These compounds were actually prepared and identified, one being red and

⁽¹⁰⁾ M. M. Brooks, J. Am. Chem. Soc., 53, 1826 (1931).

(12) K. H. Meyer and W. E. Elbers, Ber., 54B, 343 (1921).

⁽¹⁾ W. M. Clark and B. Cohen, Public Health Reports, 38, 933 (1923) (Reprint no. 834); B. Cohen, H. D. Gibbs, and W. M. Clark, Public Health Reports, 39, 381 (1924) (Reprint no. 904); B. Cohen, H. D. Gibbs, and W. M. Clark, Public Health Reports 39, 804 (1924) (Reprint no. 915); H. D. Gibbs, B. Cohen and R. K. Cannan, Public Health Reports 40, 649 (1925) (Reprint no. 1001); H. D. Gibbs, W. L. Hall and W. M. Clark, Supplement No. 69 to Public Health Reports (1928); W. L. Hall, P. W. Preisler, and B. Cohen, Supplement No. 71 to Public Health Reports (1928); B. Cohen and M. Phillips, Supplement No. 74 to Public Health Reports (1929).

⁽¹¹⁾ G. Heller, Ann., 392, 28 (1912).

		Haloger	:	÷	:			:	: :		38.5	:	37.2	37.9		:	:	÷	: :	28.4	:	÷	:		<i>.</i>	19.6		:	÷	:	• •				:		
	puno	N	5.7	÷		4.6	:		+. 		3.5	÷	. c?	3.7	3.1	6.0	3.0	: c		7.6	÷	:			07 -		, .	.4	:	; ¤	0	6	4.	: •	o,	<u>.</u> 5	:
	F	H	5.2	5.1	4 X 0 X	4.9	5.1	5 0 0 0	0 00 10 10	3.0	0.0 0.0	9.7 3 - 7	3.0	3.2	3.0				20	2.7	1-1		,	0.	о 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 9 . 9	5	E.1 4	0. 0	ہ . صرح	, . .	.4 3	.7 3	ء . • •	4. c.	8 7	6.
ses		C	39.6	69.4 66 1	70.F	62.9	0.07	1 2.2	13.2 13.2	1 3.7	13.9	5.0 5	12.6	ł6.6	13.5 2.5	6.10		0.0	00 00 101	4.8		ט ה ט ע ייי	0.4	4.5	4-и 0-е	o	3.1	6.8 • •	0.4 6.4 7.4	0.0 0 0	0.0	8.5 4	3.8 .8 .9	0.	4.0 2.0 2.4	. % . %	5.8 3.8
Analy		gen						-	~	•	, , ,	טי כ ייי		5			N 4	ר ה ק	• =	4	т. т.	0	0.0	ις,		ол с 0	• 5	ເວັນ	οŭ O	04	1.20	й 	ະດັ	юй	ನೆ ಬೆನೆ	õ	ñ
	ed	Halo	:	:	: :		::	1 0.	38.		80. F	37.	37.	37.	34.		<u>5</u> 6.			28.	31.	37.	22	Ċ	21.2	28	20.6	21.(- 19. - 19.	7 0. 7 8	53	20.3	18.7	10.4	19.4 19.4	18.6	21.0
,	lculat	z	5.8	0.0 0.0	5.2	4.7	5.5 1	3.5 2	3.4		3.4 9.6	ာက က	3.3	00 00	3.0 0.0	0.0 0.0	2 X 2 X	6.1	6.1	7.5	ີ ເ	ð.ð	4.5		4 4 2 8	4.1	4.1	4.1 o 6	6.6 1 1	4.1.	3.9	4.0	3.7	4.0 8 9	2.6	7.4	4.1
a	Ö	Η	4.6	- 4 - 5 - 8	5.6	5.0	5.1	2.3	2.7		2. C	9.0	2.6	3.0	01 0 4 1	- 1	L.7	2.6	2.6	2.3	07 C	9.0	2.9		ю с 4 4	3.2	3.2	ດຸ- ຕຸ⊽	4 C	0 0 0 0	2.8	3.7	6.7 7.0	ა. 4. წ	, 	3.7	9.S
		0	69.7	66.4 66.4	71.4	63.8	20.6	42. I	43.6	07	45.0	45.0	42.0	45.0	43.5 7	00.00 97.0	30.2 30.2	42.1	42.1	44.8	42.0	10.04	54.2	2 2 2	00.00 55.6	52.9	52.9	26.8 26.8	56.4	48.8	50.2	58.3 -	53.7 69.7	27.20 27.3	52.3 52.3	53.5	50.8
e, e,	ılar	ula	33	ົ້	ີ		ر مریر	NO	$^{2}NO_{3}$	CIV.	ñ N N	NO3	NO	NO3	NO ²		်ပိုင် ဒီသ	N ₂ O	N_2O_4	N ³ 0°	N20°N	14 03	ЧОз	Q.	őő	NO ⁶	NO.	ő	ð ç	20	VO3	40 ,	ဦး	LO,	1204	$1_{2}^{2}O_{4}$	ő
¦z	Molecı	Form	H _{in} N(EH ISN(H ₁₅ N(⁶ H ₁₆ N(hisN(tusbr2	HuBr	т н.	HBr	HuBr	HuBr	HuBr	HuBr BuBr	H B.	H,Bra	$H_{12}Br_{2}$	$H_{12}Br_2$	${\rm H}_{{ m 13}}{ m Br}_{2}$	$H_{14}Br_2$	1113112	H _s Cl ₂ I	Ę		HCl	H _i Cl _o T		H.Cl.	F CI3N	H ₁₀ Cl ₂ I	H _i Cl ₂		1.aClar H.,ClaN	In ClaN	Incl ₂ N	
e e	. ,		ರೆಂ	50	ಲ	ರೆಂ	วีเ	5	ΰ	ζ	50	ť	ů,	ບັ້ບ	ว็ป	້ວັ້	30	บ้	ບ້ຳ	ບໍ່ໃ	ว็ป	5	C ₁₄	ζ	55	C.	50	32		C.C.	U U		まご ここ	C. L	Cut		
ERS ()		~	CH,	CH.	CH3	CH,	Car.	CH.	CH,	CH,	CH.	CH ₃	CH,	сн СН	н Н С Н С	CH.	CH.	CH,	CH,	CH,	йн" СН"С	άH ² Ο	CH.	H.	Ë	\mathbf{H}_{3}	Ë,	C.H.	Д,	Щ,	Щ,	Ë.	ц Ц	Ë,	H,	Η̈́Ρ	3117
rt, Esr		£			Ή3	CH3	£	7	4	•	-	5	5	-			1	- -		ะ เ	 	. •	_			Ŭ				0			ے ر	0	0	bc	20
CN3H4C					0	0	ц		£	q	9	£	μų	B TI	ų		B	B	Ξí	n c	n n n	5	Ð		Ũ	I	55	50	50		55	5 5	0 1	5 5	5	5	ξ
A, INDC		èn				3									Т Л Л Ц																	TOOOF					
					CH_3	OCF	Rr	5	\mathbf{Br}	R.	5	Br	ųt		C.H.C	Pr.	ųų	\mathbf{Br}	ų B	n L	n Br		ū		C	į	55	ಶರ	5	5 5	ರ೯	CHC	500	ಶ	ರನ	5	ξ
TICA	5	è1							100	CH3	C_2H_5													СH.		DCH ₃											
	tituen	0						Br	Ë.	ЪГ	\mathbf{Br}			b. B.	Br B	Br	Br					\mathbf{Br}	ξ	5 5 5	1	5	СН.	CH		55	CH3	5	5			Ŧ	5
	Subs	n																										-	CH_3	-	-	-				C	
101	6	3	,H,	CH3					:H ₃									HCOCH ₃	HCOCH NO	HCOC, H.COOH	noodniaoon													ICOCH ₃		LUUU2ID5	
			Ö	0				i	C)									Z	Z	z											Ľ	2		ΗN	ΠN		
	6											5							non an								m				Ю <u>—</u> Н:				OCH3		
								Br	Br	CH,	Br	H C C	CH.	Br	Br	Br	\mathbf{Br}					Br	5	55	CH ₃	С СС П	CH ₃	CH3	CH ₃	ರ ರ	CH.C	50	C_6H_5	0	NHC	IJ	
	Compound	-	- 0	∾ -	т г.	9 9	$2A^{a}$	Å B	B ^b	6	10	11	ខា	14	15	16	17	21 C	20	21	$22A^{a}$	B°	$^{23A^{u}}_{R^{b}}$	24	52 52	07 20	58 87	29	30 57	31 32	2 č:	34	35	36 26	37 38	368	40

NOVEMBER 1959

1743

TABLE II Analytical Data, Indonaphthyl Acetates

,	Substi	tuent ^a	Molecular	Ca	lculated 9	70	0	bserved %	0
Compound	2	6	Formula	C	H	N	C	H	N
41			$C_{18}H_{13}NO_3$	74.2	4.6	4.8	74.1	4.6	
42	Cl	Cl	$C_{18}H_{11}Cl_2NO_3$	60.0	3.1	3.9	60.7	3.2	4.2
43	\mathbf{Br}	\mathbf{Br}	$\mathrm{C}_{18}\mathrm{H}_{11}\mathrm{Br}_{2}\mathrm{NO}_{3}$	48.1	2.5	3.1	48.1	2.5	3.5

^{*a*} Position of acyl group (1 or 8') was not determined.

TABLE III Analytical Data Indoquinolinyl Acetates

	Su	bstitue	ent^a	Molecular	Cal	culated	%	Fo	und %	
Compound	2	6	2'	Formula	С	Н	N	C	Н	Ν
44				C ₁₇ H ₁₂ N ₂ O ₃	69.9	4.1	9.6	70.1	4.4	9.6
45	Cl	\mathbf{Cl}		$C_{17}H_{10}Cl_2N_2O_3$	56.5	2.8	7.8	56.8	3.1	
46	Cl	Cl	CH_3	$C_{18}H_{12}Cl_2N_2O_3$	57.6	3.2	7.5	58.0	3.3	
47	\mathbf{Br}	\mathbf{Br}		$C_{17}H_{10}Br_2N_2O_3$	45.3	2.2	6.2	44.2	2.5	6.8
48	\mathbf{Br}	\mathbf{Br}	CH_3	$\mathrm{C}_{18}\mathrm{H}_{11}\mathrm{Br}_{2}\mathrm{N}_{2}\mathrm{O}_{3}$	46.6	2.6	6.0	46.5	2.7	6.0

^a Position of acyl group (1 or 8') was not determined.

Fig. 1. Infrared spectrum of indophenyl acetate in a potassium bromide pellet

one orange. The red form is predominantly obtained by procedure A and the orange form by procedure B. The isolation of the two isomers and assignment of structures will be discussed in another publication.¹³ The infrared spectrum of indophenyl acetate is given in Figure 1.

EXPERIMENTAL

Preparation of Indophenol Sodium Salts. Some of these compounds are available from the Eastman Kodak Co. and National Aniline and Dye Co. The other salts were prepared by the following procedure: A mixture of 0.1 mole of appropriate phenol and 0.21 mole of sodium carbonate was dis-

⁽¹³⁾ R. M. Gamson, D. N. Kramer and F. M. Miller, J. Org. Chem., in press (paper II).

TABLE IV	Physical Constants of Indophenyl Esters
----------	---

Indophenylate Ion	pKa	λ_{\max} (log ϵ) Observed Lit. ^a	625(4.50) 8.1 8.10	650(4.32) 8.8 8.55	605(4.00)	595(4.23) 8.7 8.9	600(4.18) 9.0		620(4.30) 5.8 5.70		000(4.11) 0.0 0.9	595(4.24) 5.4 5.4	595(3.33) 6.4	595(4.20) 5.2	575(3.99) 6.0 5.6	580(3.18) 5.4	625(4.01) 5.7	610(4.18) 6.1	650(4.05) 5.4 5.1	630(4.09) 6.1	•••	•••				615(4.30) 5.8 5.70		595(3,56) 5.9 ···		095(3.85) 0.2	575(4 18) 5 9		590(4.10) 6.1	650(4.11) 5.7 5.80	620(4.15) 5.5	600(4.26)	632(4.34) 5.6	620(4.27) 5.8			
	Ester	$\lambda_{\max} (\log \epsilon)^{b,c}$	233(3.94), 262(4.23), 290(4.13), 460(3.52)	263(4.13), 290(4.00), 460(3.38)	285(3.83), 455(3.45)	233(3.81), 285(4.14), 443(3.49)	222(4.12), 313(4.26), 444(3.55)	2258(3.74), 256(3.89), 455(3.05)	213(4.44), 266(4.43), 433(3.47)	ZZ0(4.19), Z00(4.Z1), Z/48(4.17), 470(3.76) 09774 10) 06074 07) 44779 94)	223(4 01), 233s(3 88), 316(3 04), 405(3 64)	226(4.12), 272(4.29), 440(3.40)	225(4.27), 450(3.11)	226(4.24), 270(4.23), 440(3.45)	227(4.18), 298(4.16), 420(3.35)	226(4.23), 282(4.46), 432(3.47)	225(4.32), 274(4.26), 302s(4.19), 475(3.49)	226(4.36), 302(4.00), 460(3.64)	228(4.18), 313(4.14), 465(3.57)	227(4.28), 311(4.21), 470(3.45)	226(3.bU), 398(3.bb)	Z15(4.41), Z82(4.19), 443(5.48) 990/4 27) 988/4 24) 459/2 29)	229(4 09) 275(3 95) 3058(3 89) 436(3 36)	267(4.39), 435(3.48)	313(4.23), 470(3.77)	226(4.23), 264(4.20), 274s(4.15), 445(3.44)	229(4.07), 274s(4.00), 305(4.07), 470(3.76)	223(4.26), 280(4.12), 492(3.46)	ZZ/(3.90), 209(4.20), 435(3.42) 696/4.00) 666-79 665 67773 613 466/9 605	228(4.09), 2028(0.00), 210(0.91), 400(0.29) 993(4-93)-983(3-95)-433(3-39)	226(3.83), 284(4.27), 435(3.39)	221(4.25), 282(4.41), 434(3.35)	228(3.76), 283(4.28), 435(3.29)	227(4.18), 278(4.17), 457(3.45)	227(4.13), 283(4.18), 447(3.33)	217(4.29), 274(4.26), 445(3.46)	225(4.35), 288(4.31), 475(2.81)	229(4.37), 262(4.29), 434(3.56)	229(4.29), 276(4.05), 404(3.56)	232(4.06), 293(4.06), 443(2.26)	
	M.P.ª	°C.	115-118	110-112	109	82-84	175	48-49	119-121	140 110 119	171-011	130	132-136	108	98-100	129	142-146	64-68	64	190	111-201	100-109	104 - 105	77	79-81	88	101-103	70-74	112-10.5	135	118-119	107	75	125	119	95 - 96	74-76	116	205 - 208	154-156	
		Appearance	Red needles, red plates	Red needles	Ked-orange needles	Ked platelets	Orange-red microcrystals	rea needles	Urange needles	Ded chennes mismonus needles	Deen red	Orange microcrystals	Deep-red microcrystals	Red-orange microcrystals	Orange microcrystals	Orange needles	Brick-red microcrystals	Red microcrystals	Red microcrystals	Deep-red microcrystals	Y ellow microcrystals	I епоw-огалде писгосгузцанз Отапла microcrystals	Red-orange microcrystals	Orange microcrystals	Red microcrystals	Orange needles	Red needles	Deep-red microcrystals	Ded microcrystals	neu merotrystais Red-orange microcrystals	Red-orange needles	Orange needles	Red-orange microcrystals	Orange-red microcrystals	Red-brown microcrystals	Orange platelets	Red microcrystals	Red-orange needles	Yellow microcrystals	Y ellow-orange microcrystals	
		Compound	1	c1 i	- 52	4,	ۍ ۲	oī	A) D	0 48	B	6	10	11	12	13	14	15	16	17	10	61 61	21	22A	в	23Λ	а ,	24	07 77	272	28	29	30	31	32	33	34	35	36	31 90	

NOVEMBER 1959

		M D a	Ester		puenyiaue ton pKa	
Compound	Appearance	°C.	$\lambda_{\max} (\log \epsilon)^{b,c}$	$\lambda_{\max} (\log \epsilon)$	Observed	Lit.
40	Deep-orange needles	136-137	233(4.32), 266(4.35), 440(3.45)	•	•	:
41	Red-orange microcrystals	149 - 152	230(4, 20), 260(4, 30), 455(3, 50)	598(4.13)	9.1	
42	Orange-red platelets	150 - 153	227(4.18), 262(4.25), 428(3.41)	580(3.97)	6.8	:
43	Orange red plátelets	146 - 148	227(4, 38), 263(4, 35), 436(3, 40)	585(4.06)	6.9	:
44	Red needles	151	242(4.26), 445(3.51)	620(4.23)	9.5	:
45	Orange microcrystals	183	231(4.21), 268(4.29), 425(3.42)	590(4.03)	5.9	:
46	Red-orange plates	192 - 194	223(4.27), 268(4.37), 425(3.43)	585(4.06)	5.9	:
47	Orange plates	212 - 214	228(4.42), 265(4.39), 428(3.42)	590(4.10)	6.0	:
48	Yellow-orange needles	197 - 200	225(4.36), 268(4.40), 420(3.49)	595(3.98)	6.0	:

solved in 100 ml. of water. This solution was placed in a round bottom flask, immersed in an ice bath and was stirred magnetically until solution was complete, small amounts of dioxane being added if necessary. The appropriate *N*chloroquinoneimine (0.1 mole) was dissolved in 100 ml. of dioxane and added dropwise to the cooled phenolic solution over a period of about 30 minutes. Mixing was continued for another 15 minutes. The solid sodium salt was filtered and air dried. If no solid formed, the solution was evaporated to dryness. No attempts were made to further purify the sodium salts.

Preparation of Esters. Procedure A. The following procedure is typical for the compounds described in Table I. The dry sodium salt (0.1 mole) was placed in an Erlenmeyer flask and 0.3 mole of acid anhydride added. The flask was then shaken on a mechanical wrist-action shaker for 2 hr. and allowed to stand at room temperature for 1 hr. It was poured onto crushed ice (600 g.) and after 1.5 hr. was filtered and the solid precipitate was washed with water. Glasses were sometimes obtained and washed with water, taken up in ether, and dried over sodium sulfate. The dried ether was concentrated on a steam bath to about 10 ml., diluted with four volumes of petroleum ether until a cloudiness appeared, and filtered. The filtrate was cooled in a freezer and the crystalline ester filtered. It was recrystallized from ether-petroleum ether.

Procedure B. The dry sodium salt (0.1 mole) was placed in a flask and 0.3 mole of acid anhydride and 0.1 mole of pyridine were added. The mixture was stirred for about 30 minutes, poured onto crushed ice and stirred for 1 hr. at room temperature until the excess acetic anhydride had hydrolyzed. The product was extracted with ether and the extracted portion washed free of acetic acid and pyridine and dried over anhydrous magnesium sulfate. The ether was removed under vacuum and a glassy product obtained. It was triturated with methanol and a yellow-orange solid thus formed was collected by filtration. Recrystallization from hot methanol gave the desired substance.

Spectra. Ultraviolet and visible spectra were determined in C.P. dioxane with a Perkin-Elmer Model 13U Spectrophotometer. Concentrations were $2 \times 10^{-5}M$ and $2 \times 10^{-4}M$ respectively. Spectra of the hydrolyzed product were determined immediately after hydrolysis of the dioxane solutions with 0.1N NaOH and dilution to volume so as to obtain $2 \times 10^{-5}M$ solutions. Infrared absorption spectra were obtained with a Perkin-Elmer Infracord using a sodium chloride prism and potassium bromide pellets.

pKa Values.¹⁴ The pKa values were obtained spectrophotometrically by the addition of 0.2 ml. of $2 \times 10^{-3}M$ dioxane solutions of the substrate to 4 ml. of 0.1N sodium hydroxide. After a predetermined time to obtain maximum hydrolysis, a solution of 0.1M potassium dihydrogen phosphate was added until the solution turned from blue to purple. It was sometimes necessary to add hydrochloric acid to effect the color change. The solutions were diluted to 10 ml. with deionized water and the pH determined. The absorption of the solution was simultaneously obtained at the

⁽¹⁴⁾ Some difficulties were noted in obtaining the pKa values. As the rate of hydrolysis varied between compounds, a determination was made of the time required for complete hydrolysis of each compound. After hydrolysis for the required period using a second sample, the solution was immediately neutralized to its intermediate color. This color was usually purple, but in some cases a grey range was obtained and these compounds were adjusted to the grey end of the blue range. During neutralization, the solution was not rendered strongly acid as the indophenols are unstable in their acidic forms.¹ However, best results were obtained by making the solution just pink and then adding dilute alkali to obtain a purple solution.

 λ max of the hydrolyzed product. The pKa were then calculated in the usual manner. 15

Acknowledgment. The authors wish to express their gratitude to the Analytical Research Branch

(15) E. Salm, Z. physik. Chem., 57, 471 (1907); L. Flexser,
L. P. Hammet, A. Dingwall, J. Am. Chem. Soc., 57, 2103 (1935).

of the Research Directorate, U. S. Army Chemical Warfare Laboratories for the analyses herein reported and to Vera Isaacs, Mary D. Pankau, Howard Stroterhoff, Nathan Ingber, Joseph Handelman, and Arthur Jones, Jr., for their technical assistance.

ARMY CHEMICAL CENTER, MARYLAND

[CONTRIBUTION FROM U. S. ARMY CHEMICAL WARFARE LABORATORIES, PROTECTIVE DEVELOPMENT DIVISION]

A Study of the Physical and Chemical Properties of the Esters of Indophenols. II. Structural Studies of the Isomeric Esters

ROBERT M. GAMSON, DAVID N. KRAMER, AND F. M. MILLER

Received May 18, 1959

A study is reported on isomeric dihalo substituted indophenyl esters leading to the identification of a red form as the 2,6 dihalo derivative and an orange form as the 3',5' dihalo ester. Structural assignments were made on the basis of comparative preparative methods and hydrolytic and spectral characteristics.

The authors have reported¹ the synthesis and chemical properties of esters of various indophenols for use as synthetic chromogenic substrates for hydrolytic enzymes. As previously indicated, the existence of the isomeric esters I and II was anticipated.

This has been verified by the isolation of two distinct compounds, obtained in red (I) and orange (II) forms. Structural assignments of the two stereoisomeric esters were made on the basis of comparative preparative, hydrolytic, and spectral

(u.v., visible, and I.R.) data which are the subject of this report.

Comparative preparative studies. Of the two isomeric forms, the orange product was obtained by the procedure involving the use of the halogenated sodium indophenol, acyl anhydride, and pyridine catalyst.¹ On the other hand, the red isomer was produced following the procedure employing the acyl anhydride without a catalyst.²

Experiments are now in progress to elucidate the mechanism of the acylation reaction with or without pyridine as a catalyst. Preliminary results indicate that the following rationalization may account for the two courses of the reaction.

Pyridine reacts with acetic anhydride to yield an acetylpyridinium complex III.³ The acetyl

$$\begin{bmatrix} O \\ N - C - CH_3 \end{bmatrix}^+ \xrightarrow{k_1} \sum_{k_2} N + \begin{bmatrix} O \\ CH_3 - C \end{bmatrix}^+ (1)$$

pyridinium complex may dissociate as shown in equation 1, where $k_2 > k_1$. Since the esterification employs the sodium salt of the indophenol as the starting material, the acetyl pyridinium ion will associate with the oxygen bearing the highest electron density to form an ion pair as follows:

The formation of the ion pair results in an orientation of the dihalo indophenolate ion which, for steric and energetic reasons, prevents attack on the more nucleophilic oxygen and promotes the acylation of the less nucleophilic oxygen. As the acylation step is completed, the ion pair is destroyed. The above is essentially an SN_2 reaction, yielding II.

On the other hand, in the absence of pyridine, the course of the reaction proceeds as expected with the attack of the nucleophilic oxygen of the indophenolate ion directly on the acetic anhydride, as shown:

⁽¹⁾ D. N. Kramer, R. M. Gamson, and F. M. Miller, J. Org. Chem., 24, 1742 (1959). (Paper I.)

⁽²⁾ The complete separation of the isomers was confirmed by gas chromatography of the individual compounds and of a mixture of the two. Only one peak was obtained with either form; a mixture produced two well defined peaks.

⁽³⁾ V. Gold and E. G. Jefferson, J. Chem. Soc., 1409 (1953).