

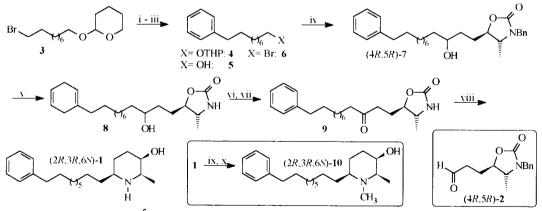
Tetrahedron Letters 39 (1998) 2095-2096

TETRAHEDRON LETTERS

Syntheses of (-)-(2R,3R,6S)-Irnigaine and (+)-(2R,3R,6S)-N-Methylirnigaine

Axel Pahl,^a Rudolf Wartchow,^b Hartmut H. Meyer^{*a}

^aInstitut für Organische Chemie. Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany


^bInstitut für Anorganische Chemie, Universität Hannover, Callinstr. 9, D-30167 Hannover, Germany

Received 23 January 1998: accepted 30 January 1998

Abstract: Syntheses of irnigaine 1 and the N-methyl derivative 10 were performed starting from chiral building block 2. Synthetic and spectroscopic data are given including the absolute structure of 1 by an X-ray structure of the hydrochloride. \bigcirc 1998 Elsevier Science Ltd. All rights reserved.

The alkaloid irnigaine 1 was first described in 1995 by Melhaoui and Bodo and is a recent representative of the group of 2,6-disubstituted 3-piperidinols. It was isolated in small amounts from the tubers of *Arisarum* vulgare (Araceae). The biological activity was examined, its structure and relative configuration were elucidated and the absolute configuration was proposed on the basis of its optical rotation.¹

Since the assignment of the absolute configuration was in contradiction to previous results from our group regarding this class of all-cis-piperidinols^{2,3} we decided to synthesize (2R, 3R, 6S)-1⁴ and also (2R, 3R, 6S)-10 according to Scheme 1.

i) 0.2 cq LiCl. 0.1 cq CuCl₂, 1 cq 3.5^{5} 2.5 cq PhMgBr. THF, 0°C \rightarrow rt. 24h. FC, 93%. ii) McOH. cat. HCl. RF, 1h. FC, 99%. iii) 1.1 cq CBr₄, 1.15 cq PPh₃, DCM, 0°C, 1h. FC, 100%. iv) 1.4 cq 6, Mg. THF, 1h RF \rightarrow rt, 1.0 cq (4*R*.5*R*)-2,² rt, 45min, FC, 87%. v) 12 cq ¹BuOH. 10 eq Li, EtNH₂. 1h -78°C \rightarrow rt, FC, 96%. vi) 1.5 eq DDQ, PhCH₃, 100°C, 24h, FC (Alox N, then SiO₂), 78% (contains ~12% 9). vii) 0.67 eq Jones' reagent, acetone, 0°C, 5min, FC, 91%, viii) 10 cq 2N NaOH, EtOH, RF, 3.5h; 10% Pd/C, McOH, H₂, 14h, rt, 90% (2 steps), 1.43g. ix) 3 cq Et₃N, 2 eq Boc₂O, DMF, 60°C, 2h, FC, 88%. x) 5 cq LiAJH₄, RF, 14h, FC, 60%.

Scheme 1. Syntheses of (2R,3R,6S)-irnigaine 1 and of N-methylirnigaine (2R,3R,6S)-10.6

Whereas the natural occurring alkaloids have often been isolated on a mg scale we obtained (2R,3R,6S)-1 on a gram scale (1.43g, 6 steps, 53% overall yield starting from 2). The Xray structure of the hydrochloride of 1⁷ (Figure 1) re-

presents the correct absolute configuration of the molecule and is independent evidence for the (-)-(2R,3R,6S)-configuration of 1 and, respectively, for the (+)-(2R,3R,6S)configuration of 10. With these results at hand, the (2S,3S,6R)-configuration sug-

Figure 1. X-ray crystal structure of (2R, 3R, 6S)-1 · HCl.

+6.53 (c= 1.01)

 $[\alpha]_{D}^{20}(CHCl_{3})$

	synthesized (2R,3R,6S)	isolated from natural source
1	-9.2° (c= 1.085)	-14° (c= 0.3)
1 HCl	+2.84 (c= 0.95)	
10	+15.41 (c= 1.22)	-8.0 (c= 5.0)

gested in the literature for the isolated alkaloids seems to be questionable. The Table shows that derivatives of irnigaine display great varieties in their optical rotations. A determination of absolute configuration of the free base irnigaine 1 by correlation of its optical rotation to that of the hydrochloride of the piperidinol cassine⁸ is clearly not possible, and leads to the questionable results. Inconsistently the rotatory data of the natural derivatives would have suggested that irnigaine and N-methylirnigaine belong to different stereochemical families, which is unlikely for biogenetic reasons.

10 · HCl

This is probably a result of the difficulties of isolating pure natural materials in small amounts, so these inconsistencies can only be resolved after isolation of further material. Consequently a clearcut assignment of absolute configurations to the natural products is not possible at present.

References and Notes

- 1. Melhaoui, A.; Bodo, B. Natural Prod. Lett. 1995, 7, 101.
- 2. Pahl, A.; Oetting, J.; Holzkamp, J.; Meyer, H.H. Tetrahedron 1997, 53(21), 7255.
- 3. Oetting, J.; Holzkamp, J.; Pahl, A.; Meyer, H.H. Tetrahedron Asymm. 1997, 8(3), 477.
- 4. Spectroscopic data for 1: 2-Methyl-6-(9'-phenyl-nonyl)-piperidin-3-ol $C_{21}H_{35}NO$ (317.51). ¹H NMR (400MHz, CDCl₃): δ = 1.09 (d, ³J= 6.4Hz; 3H, 2-CCH₃), 1.21–1.39, 1.41–1.53 (2m; 17H, 4-CH_{ax}, 5-CH₂, 1'-7'-CH₂), 1.60 (quint, ³J= 7.2Hz; 2H, 8'-CH₂), 1.89 (dq, ²J= 14.7Hz, ³J= 2.9Hz; 1H, 4-CH_{eq}), 2.47–2.56 (m; 1H, 6-CH_{ax}N), 2.60 (t, ³J= 7.7Hz; 2H, 9'-CH₂), 2.74 (dq, ³J= 1.5, 6.6Hz; 1H, 2-CH_{ax}N), 3.54 (sb; 1H, 3-CH_{eq}O), 7.14–7.20, 7.24–7.30 (2m; 5H, Ar-CH) ppm. ¹³C NMR (100MHz, DEPT, CDCl₃): δ = 18.78 (4-CCH₃), 25.83, 26.24, 29.32, 29.49, 29.51, 29.57, 29.81, 31.51, 32.11, 37.10 (4–5-CH₂, 1'-8'-CH₂), 35.99 (9'-CH₂), 55.77 (6-CHN), 57.20 (2-CHN), 68.07 (3-CHO), 125.55, 128.21, 128.39 (Ar-CH), 142.92 (Ar-C_q) ppm. IR (CHCl₃): $\tilde{\nu}$ = 3460, 3024, 2928, 2856, 1496, 1464, 1436, 1392, 1264, 1116, 1092 cm⁻¹. MS (50°C): m/e= 317 (1), 316 (5, M⁺), 258 (2), 114 (100), 96 (10), 91 (22). HRMS: calc. for C₂₁H₃₅NO: 317.2719; found: 317.2720.
- 5. Side chain building block **3** was synthesized according to lit.² and reference cited therein.
- 6. All synthetic intermediates were fully characterized and gave satisfactory analytical and spectroscopic data.
- Crystal data for 1: C₂₁H₃₆ClNO (353.96); monoclinic; space group: P 21(no. 4); a, b, c [Å]: 7.912(2), 8.097(2), 17.130(3); β: 92.77(2)°; V= 1096.1(4)Å³; Z= 2; D_c= 1.072^g/_{cm}³; T= 300K; 2θ range: 4.7 to 48.1°; data observed (I₀>2σ(I₀)): 1682; R₁= 0.0375; wR₂= 0.0548; Flack x: -0.10(6); Complete crystallographic data were deposited as supplementary publication no. CCDC-101053 and can be obtained under the following address from the Cambridge Crystallographic Data Centre in Great Britain: The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +(1223) 336-033; deposit@ccdc.cam.ac.uk.
- 8. Rice, W.Y.jr.; Coke J.L. J. Org. Chem. 1966, 31, 1010.