July, 1949

[CONTRIBUTION FROM THE STERLING-WINTHROP RESEARCH INSTITUTE]

Antifibrillatory Agents. The Preparation of Some N-Benzyl-N-methylphenethylamines

BY A. R. SURREY, A. MOORADIAN, R. A. CUTLER, C. M. SUTER AND J. S. BUCK

A series of compounds having the structure I

has been synthesized and found to have antifibrillatory action in varying degree.¹

The compounds described in Table II were

N-benzylphenethylamines. In a few cases, the Schiff bases were isolated and purified (Table I).

The secondary amines were alkylated with formaldehyde and formic acid to give the desired N - benzyl - N - methylphenethylamines. N-(3,4-Dimethoxybenzyl) - N - ethyl - 4 - methoxyphenethylamine, was prepared from the corresponding secondary amine by ethylation with ethyl sulfate in good yield.

TABLE I Schiff Bases

CH2CH2N=CH-	~~~~~ <u>`</u> ~R'						
	R'			Hyd	Nitrogen		
R'	M. p., °C."	Calcd.	Found	Caled.	Found	Calcd.	Found
$3-OCH_3-4-OC_2H_5^b$	68.2 - 69.4	72.82	72.91	7.40	7.48	4.47	4.34
4-OCH ₃	63.2-63.9	72.09	72.29	6.05	6.09	4.95	4.75
3,4-di-OCH₃	74.9-76.7	68.99	69.01	6.11	5.90	4.47	4.38
	R' 3-OCH ₃ -4-OC ₂ H ₅ ^b 4-OCH ₃	R' M. p., °C. ^a 3 -OCH ₃ -4-OC ₂ H ₃ ^b $68.2-69.4$ 4 -OCH ₃ $63.2-63.9$	$\begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & \\ R' & & & M. \ p., \ ^{\circ}C.^{a} & Calcd. \\ & & & & \\ 3\text{-OCH}_{3}\text{-}4\text{-OC}_{2}H_{5}^{b} & 68.2\text{-}69.4 & 72.82 \\ & & & & \\ 4\text{-OCH}_{3} & & 63.2\text{-}63.9 & 72.09 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a Corrected melting points. ^b All Schiff bases were recrystallized from Skellysolve B.

TABLE II

Hydrochlorides												
	H					CH.						
I	RCH2CH2N_CH2			$R - CH_2CH_2 - N - CH_2 - R'$								
R	R'	M. p., °C.	Carbon Calcd. Found	Analyse Hydro Calcd.	gen	Nitrogen Calcd. Found	M. p., °C. ^a	Carl Calcd.		Analyse Hydro Calcd.	gen	Nitrogen Calcd. Found
н	4-OCH ₃	$256 - 259^{b}$		Cl, 12.77	12.60		145-149			Cl, 12.15	12.00	4.80 4.70
н	3,4-di-OCH₃	$212 - 213^{c}$				4.554.43	190.8-191.9	67.17	67.34	7.52	7.31	4.35 4.26
4-0CH₃	3-OCH ₃	165 - 166		Cl, 11.52	11.57		149 - 152			Cl, 11.03	10.87	$4.35 \ 4.10$
4-OCH	4-OCH₃	c					145.5 - 147.6	67.17	67.24	7.52	7.80	$4.35 \ 4.32$
4-0CH3	3,4-di-OCH ₈	224-225°		Cl, 10.50	10.45		190 - 192			Cl, 10.10	10.12	3.98 3.99
4-0CH3	3,4-O2CH2	239 - 242		Cl, 11.01	11.05		169.5-171			Cl, 10.57	10.39	4.16 3.98
4-OCH ₃	3-OCH3-4-	209-210	64.85 65.15	7.45	7.30	$3.98 \ 3.84$	178.4-179.5	65.65	65.61	7.71	7.39	3.93 3.80
	OC_2H_b											
4-OCH₂	3,4,5-tri- OCH3	158–160 ^d		Cl, 9.67	9.58		198.8-200 ^d		1	Cl, 9.28	9.38	3.66 3.72
3,4-di-OCH₃	3-OCH ₃	138-140°		Cl, 10.50	10.55		166.5-167.5	i		C1, 10.10	10.09	3.98 3.91
3,4-di-OCH3	4-OCH₃	$225-228^{\circ}$					181-182	64.84	65.03	7.45	7,36	3.98 3.98
3,4-di-OCH3	3,4-di-OCH₂	166 - 168		C1, 9.67	9.71		199-201			C1, 9.30	9.33	3.66 3.65
3,4-di-OCH3	3,4-O2CH2	195–198°		Cl, 10.10	10.01		190-192	62.37	62.20	6.61	6.66	C1. 9.64
												9.72
$3,4-O_2CH_2$	4-OCH₃	248 - 249	63.45 63.56	6.26	6.11	4.35 4.27	182.4-183.2	64.37	64.55	6.60	6.57	4.17 4.06
$3,4-O_2CH_2$	3,4-di-OCH ₃	205.5-206	61.45 61.40	6.30	6.06	3.98 3.90	180-181	62.37	62.35	6.61	6.41	3.83 3.64
$3,4-O_2CH_2$	$3,4-O_2CH_2$	240-241 ^c	60.81 61.02	5.40	5.28	4.17 4.30	205.6-206.6	61.80	61.92	5.76	5.85	4.01 3.89
3,4,5-tri-	3-OCH₃	154.5 - 155	62.03 61.93	7.08	7.09	C1, 9.52	166-166.5	62.90	63.25	7.39	7.27	Cl, 9.28
OCH3						9.67						9.29
^a Correct	ted melting	points b	Shepard and	d Tickno	or THI	S TOURNAL.	38, 381 (1	916)	Ruci Ruci	k ihid	53 2	192 (1931)

^a Corrected melting points. ^b Shepard and Ticknor, THIS JOURNAL, **38**, 381 (1916). ^c Buck, *ibid.*, **53**, 2192 (1931). ^d Prepared in these Laboratories by Dr. G. Fohlen.

synthesized from the appropriate benzaldehydes and phenethylamines by condensation to give the corresponding Schiff bases. In most instances, the latter were not isolated but were reduced directly with palladium-charcoal to the

(1) We are indebted to Dr. J. R. DiPalma, Long Island College of Medicine, New York, for the pharmacological results, the details of which will be published elsewhere. The method employed for testing these compounds is described by DiPalma and Lambert, *Science*, **107**, 66 (1948). Of the compounds tested thus far, N-3,4-dimethoxybenzyl - N - methyl - 4 - methoxybenethylamine, and N-3,4-dimethoxybenzyl-N-methyl -3,4-dimethoxyphenethylamine, appear to be the best antifibrillatory agents. In anesthetized cats, the former proved to be 2.3 times more active than quinidine and 1.3 times more active than α -fagarine.² The ratio of its toxicity to its activ-

(2) J. R. DiPalma, J. J. Lambert, R. A. Reiss and J. E. Schults, to be published in the Fed. Proc., April, 1949.

ity is quite favorable. It is interesting to note that when a tertiary amine is quaternized, its antifibrillatory activity is lost. For example, the methiodide of N-3,4-dimethoxybenzyl-Nmethyl-4-methoxyphenethylamine shows no antifibrillatory activity.

Experimental³

Preparation of Secondary Amines (Table II) General Procedure.—A mixture of equimolecular quantities of the appropriate benzaldehyde and phenethylamine was allowed to stand at room temperature for twenty hours or heated *in vacuo* for one hour on a steam-bath. The mixture was dissolved in ethanol and reduced catalytically in the presence of palladium-charcoal. After filtering off the catalyst, alcoholic hydrogen chloride solution was added followed by ether where necessary. The solid hydrochloride which precipitated was filtered off, washed with ether, dried and recrystallized from water or isopropyl alcohol.

Preparation of Tertiary Amines (Table II) General Procedure.—A mixture of the secondary amine base (1 mole), 35-40% formaldehyde (1.1 mole) and formic acid (2.5 mole) was heated on the steam-bath for eight to twelve hours. An excess of sodium hydroxide solution was added to the reaction mixture and the base was extracted with ether. Addition of alcoholic hydrogen chloride solution to the dried ether extract yielded the desired tertiary amine hydrochloride. The products were purified by recrystallization either from isopropyl alcohol or a mixture of ethanol and ether.

N-(3,4-Dimethoxybenzyl)-N-ethyl-4-methoxyphenethylamine Hydrochloride.—Twenty grams of 3,4-dimethoxybenzyl-4-methoxyphenethylamine was added to a mixture of 8.1 g. of potassium hydroxide in 60 ml. of water and 120 ml. of acetone and the resulting mixture was refluxed to effect dissolution. Ethyl sulfate (11.5 g.) was added and the mixture refluxed for eight hours, acidified with dilute hydrochloric acid, and the acetone removed by

(3) Melting points are uncorrected unless otherwise specified.

distillation. The residual mixture was diluted with water and extracted with ether to remove a small amount of insoluble oil. The aqueous solution was made basic with sodium hydroxide solution. After ether extracting, the extract was dried and the ether removed by distillation. The residual material (17.5 g.) was dissolved in ethanol, alcoholic hydrogen chloride was added, and the solution was seeded with the hydrochloride of the starting material. On standing, 2 g. of this hydrochloride separated and was filtered off. The filtrate was diluted with ether to yield 16.5 g. of product, melting at 132–135°. After recrystallization from isopropyl alcohol it melted at 134.8– 136.6° cor.

Anal. Calcd. for $C_{20}H_{27}NO_3$ ·HCl: C, 65.65; H, 7.71; N, 3.83. Found: C, 65.77; H, 7.57; N, 3.70.

N-3,4-Dimethoxybenzyl-N-methyl-4-methoxyphenethylamine Methiodide.—The base from 5 g. of N-3,4dimethoxybenzyl - N - methyl - 4 - methoxyphenethylamine hydrochloride was dissolved in 75 ml. of acetone and to it was added 12 ml. of methyl iodide. The mixture was refluxed for two hours, cooled and filtered. The solid (6.2 g.) was triturated with hot acetone, filtered off and washed with acetone and then with ether. After being dried *in vacuo* the product melted at 206–207.2° cor.

Anal. Calcd. for $C_{20}H_{28}INO_3$: I, 27.75; OCH₃, 20.36. Found: I, 28.26; OCH₃, 20.12.

Acknowledgment.—The authors are indebted to M. E. Auerbach and K. D. Fleischer and coworkers for the analyses reported.

Summary

The preparation of a series of N-benzyl-Nmethylphenethylamines which has been found to possess antifibrillatory activity in varying degree is described.

The preparation of N-ethyl-N-(3,4-dimethoxybenzyl)-4-methoxyphenethylamine is also reported.

RENSSELAER, NEW YORK RECEIVED FEBRUARY 2, 1949

[CONTRIBUTION FROM ROHM & HAAS COMPANY]

Condensation of Acetylenes with Esters. Acetylene and Phenylacetylene with Methyl Benzoate¹

By W. J. CROXALL AND J. O. VAN HOOK

The ease with which acetylene² and mono substituted acetylenes¹ may be acylated with alkyl carbonates in the presence of quaternary ammonium alkoxides suggested that esters other than alkyl carbonates might also be suitable acylating agents. Accordingly, a number of attempts were made to condense acetylene and phenylacetylene with alkyl acetates in the presence of quaternary ammonium alkoxides. However, it was soon evident that self condensation of these esters in the presence of this base occurred to the exclusion of reaction with the alkyne. We have been able, however, to effect condensation with an ester having no active hydrogen atom, namely, methyl benzoate.

Similar condensations have been effected with esters of this general category. Ethyl benzoate³ and ethyl cinnamate⁴ have been reported to condense with sodium phenylacetylide to give phenylbenzoylacetylene and phenylcinnamoylacetylene, respectively. However, Nightingale and Wadsworth⁵ have proven the latter product to be bis-phenylethynylstyrylcarbinol rather than phenylcinnamoylacetylene. Ethyl propiolate⁶ has been shown to undergo a Claisen-type condensation with ethyl benzoate in the presence of metallic sodium. The use of quaternary ammonium alkoxides as condensation bases for reaction between alkyl benzoates and alkynes does not appear to have been tried before.

- (3) Moureu and De Lange, Compt. rend., 134, 45 (1902).
- (4) Worrall, THIS JOURNAL, **60**, 1266 (1938).
- (5) Nightingale and Wadsworth, ibid., 69, 1181 (1947).
- (6) Ingold, J. Chem. Soc., 127, 1199 (1925).

⁽¹⁾ For the second paper of this series see, Croxall and Fegley, THIS JOURNAL, 71, 1261 (1949).

⁽²⁾ Croxall and Schneider, ibid., 71, 1257 (1949).