Hybrid Gold/Chiral Brønsted Acid Relay Catalysis Allows an Enantioselective Synthesis of (-)-5-epi-Eupomatilone-6

Xiang Wu,* Ming-Li Li, and Pu-sheng Wang
Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

S Supporting Information

Abstract

An enantioselective synthesis of (-)-5-epi-eupomatilone-6 has been accomplished by using relay catalytic cascade intramolecular hydrosiloxylation and Mukaiyama aldol reaction of 2,3,4-trimethoxy-6-(phenylethynyl)phenyl dimethylsilanol with fluorenylglyoxylate.

Lignans, a large family of phenylpropanoid dimers, have been found in more than 70 families of plants (Figure 1). ${ }^{1}$ The biological activities of lignans are diverse, including antitumor, anti-inflammatory, immunosuppression, and so on. ${ }^{1}$ In 1991, eupomatilone-6 (Figure 1) and its analogues were isolated from the Australian shrubs Eupomatia bennettii by Carroll and Taylor. ${ }^{2}$ Later, the stereochemistry of eupomati-lone- 6 was revised by Coleman and co-workers. ${ }^{3}$ Eupomati-lone-6 and the epimers have been synthesized by several groups. ${ }^{3-6}$ The catalytic enantioselective build-up of stereogenic centers in these syntheses includes asymmetric Sharpless dihydroxylation, ${ }^{5}$ enantioselective desymmetrization of mesocyclic anhydrides, ${ }^{6}$ dynamic kinetic resolution of unsaturated lactones by using copper-catalyzed reductions, ${ }^{7}$ and asymmetric [2,3]-Wittig rearrangement as well. ${ }^{8}$ Although the asymmetric catalytic methods provided efficient access to these chiral molecules, the development of new asymmetric synthetic pathways remains highly desired. Herein, we will report that the asymmetric relay catalytic cascade intramolecular hydrosiloxylation and Mukaiyama aldol reaction could be applied to an enantioselective synthesis of eupomatilone-6 or its epimers.

Very recently, we established a practical relay catalytic cascade intramolecular hydrosiloxylation of arylacetylenes and asymmetric Mukaiyama aldol reactions by using a gold complex and chiral Brønsted acid binary system (eq 1). ${ }^{9}$ This reaction actually inspired us to investigate a new approach to access eupomatilone-6.

The retrosynthetic analysis indicates that the eupomatilone-6 and its epimers could be accessed from optically pure lactone 3 presumably by Suzuki-Miyaura coupling. The lactone 3 would be prepared from a conjugate addition to the unsaturated lactone 4, which might be synthesized from chiral intermediate 5 by dehydration reaction. The chiral intermediate 5 would be reached by a series of classical transformations from 6, which

would be conveniently prepared from the compound 2 by Baeyer-Villiger oxidation and Arndt-Eistert reaction (Scheme 1).

Following up the consideration of the retrosynthetic analysis, the starting material, 2,3,4-trimethoxy-6-(phenylethynyl)phenyl dimethylsilanol 1, was first prepared from the commercially available $3,4,5$-trimethoxyiodobenzene 7 (Scheme 2). The bromination of 3,4,5-trimethoxyiodobenzene 7 in AcOH gave rise to 2 -bromo-1-iodo-3,4,5-trimethoxybenzene 8, which directly underwent Sonogashira coupling ${ }^{10}$ with ethynylbenzene in the presence of $\operatorname{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2}$ and CuI to furnish the corresponding alkyne 9 in overall 95% yield in two steps. The lithiation of 9 with n-butyllithium at $-78{ }^{\circ} \mathrm{C}$ afforded the corresponding organolithium intermediate, which reacted with chlorodimethylsilane to deliver a 2,3,4-trimethoxy-6(phenylethynyl)phenyl dimethylsilane 10 in 92% yield. ${ }^{11}$ The oxidation of $\mathbf{1 0}$ catalyzed by a ruthenium complex $\left[\mathrm{RuCl}_{2}(p\right.$ Cymene) $]_{2}$ afforded 2,3,4-trimethoxy-6-(phenylethynyl)phenyl dimethylsilanol 1 in 94% yield. ${ }^{12}$

Received: October 30, 2013
Published: December 12, 2013

Eupomatilone-6

Metasequirin-B

Podophyllotoxin

Schisantherin A

Figure 1. Lignans, structurally diverse family of phenylpropanoid dimers.

Scheme 1. Retrosynthetic Analysis of Eupomatilone-6 and Its Epimers

-)-Eupomatilone-6
3
4

Scheme 2. Synthesis of Silanol 1

Then, the relay catalytic asymmetric intramolecular hydrosiloxylation and asymmetric aldol reaction with 2,3,4-trimethoxy-6-(phenylethynyl)phenyl dimethylsilanol 1 was carried out in 5 g scale. To our delight, the desired product 2 was obtained in 74% yield with 89% ee and 10:1 dr (Scheme 3). The assignment of the absolute configurations of 2 to be $3 S, 4 \mathrm{~S}$ was determined by X-ray crystallographic analysis of the single crystal. ${ }^{13}$ Mechanistically, the intramolecular hydrosiloxylation of alkyne $\mathbf{1}$ would occur to generate silyl enol ether I catalyzed by the gold complex. Subsequently, the ether I would participate in the asymmetric Mukaiyama aldol reaction to provide the intermediate II in the presence of chiral Brønsted acid A. Finally, the oxygen attacks the silyl group to afford intermediate 2 (Scheme 3).

The stereoselectivity of 2 can be explained by proposing a transition-state model as shown in Figure 2. The reactions occur via bidentate binding of glyoxylate with the proton of the chiralphosphoric amide to give intermediate III, which places the fluorenyl glyoxylate moiety in a chiral sphere. ${ }^{14}$ Since Mukaiyama aldol reaction proceeds through attacking Si-face and $R e$-face, four different transition states (TS) originating from intermediate III are considered. Si-face attack of III
leading to TS I is disfavored because of steric repulsion between the phenyl moiety of substrate and the isopropyl group of A. In contrast, formation of TS II is favored through Si-face attack. However, when the silyl enol ether attacks Reface, the resulting TS III and IV are disfavored because of steric repulsion between the substrate and the $2,4,6-(i \operatorname{Pr})$-phenyl group of A. As a result, only one (TS II) out of the four possible transition states is favored, affording the enantioenriched product.

The treatment of the chiral compound 2 with metachloroperoxybenzoic acid (m-CPBA) and $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ in dichloroethane (DCE) led to a smooth Baeyer-Villiger oxidation to furnish 11 in 70% yield without change in its absolute configuration (Scheme 4). The hydrogenolysis of 11 afforded acid 12, which was directly transformed into a diazoketone 13 without purification by exposure to a mixture of $\mathrm{ClCO}_{2} \mathrm{Et}$ and $\mathrm{Et}_{3} \mathrm{~N}$ at $0{ }^{\circ} \mathrm{C}$ and followed by the addition of excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$. The diazoketone 13 was able to undergo Arndt-Eistert reaction ${ }^{15}$ to form a homologated ester 6 in 78\% yield with $6 / 1 \mathrm{dr}^{16}$ under the catalysis of silver benzoate ($\mathrm{PhCO}_{2} \mathrm{Ag}$). Subsequently, we attempted to synthesize 14 via palladium-catalyzed Hiyama cross-coupling reaction ${ }^{17}$ of ester 6 with 3,4-methylenedioxyiodobenzene. However, maybe because of the steric hindrance of a methoxyl group ortho to the silanol, the desired cross coupling product 14 could not be obtained, instead leading to complex mixtures. ${ }^{18}$
Therefore, we had to switch to an alternative synthetic route. The mixture of the two diastereoisomers of ester 6 was first treated with sodium methoxide in methanol to provide an unstable alcohol 15. In the presence of p-toluenesulfonic acid, alcohol 15 was transformed into lactone 5 as a single compound after purification, but unfortunately accompanying with the removal of silyl group (Scheme 5). The treatment of alcohol 5 with $\mathrm{MeSO}_{2} \mathrm{Cl} / \mathrm{Et}_{3} \mathrm{~N}$ at $0{ }^{\circ} \mathrm{C}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to the generation of butenolide 4 in 92% yield. The

Scheme 3. Proposed Mechanism of the Synthesis of Chiral Intermediate 2

Figure 2. Proposed transition-state model.

Scheme 4. Synthesis of Ester 6

 conjugate addition of dimethyl copper lithium (in situ formed from methyllithium and copper iodide in ether at $-20^{\circ} \mathrm{C}$) to butenolide $\mathbf{4}$ provided 16 in 85% yield with perfect diastereoselectivity. ${ }^{19}$ Iodination of 16 with I_{2} in the presence of silver trifluoroacetate delivered aryl iodide 17 in 89% yield. The Suzuki-Miyaura coupling of compound 17 with $3,4-$ methylenedioxyphenylboronic acid under the catalysis of $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ proceeded cleanly to give biaryl 18 as a $1: 1$ mixture of atropisomers in 85% yield. ${ }^{6}$ The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 18 was in complete agreement with the data provided by Gurjar. ${ }^{4 \mathrm{a}}$ The alkylation of lactone 18 was then executed by using the same reaction (LiHMDS-MeI) as reported by Gurjar ${ }^{4 a}$ to give synthetic (-)-5-epi-eupomati-lone-6 in 50% yield with 87% ee. And the spectroscopic data of the final product were in agreement with reported spectra. ${ }^{4 \mathrm{a}, \mathrm{b}}$

In summary, we have established an enantioselective synthesis of (-)-5-epi-eupomatilone-6 in 16 linear steps and in close to 9% overall yield via intramolecular hydrosiloxylation of arylacetylenes and asymmetric Mukaiyama aldol reactions,

Scheme 5. Synthesis of (-)-5-epi-Eupomatilone-6

Arndt-Eistert homologation, and Suzuki coupling. The relay catalytic cascade intramolecular hydrosiloxylation of arylacetylenes and asymmetric Mukaiyama aldol reactions turned out to be the key reaction to provide a chiral building block for the synthesis. This example shows that the asymmetric relay catalytic protocols holds great potential in the enantioselective total synthesis of natural products.

- EXPERIMENTAL SECTION

General Methods. NMR spectra were recorded on a 400 MHz spectrometer. Mass spectra were recorded on an Orbitrap ESI-MS spectrometer. Infrared spectra were recorded on a FT-IR spectrometer. The enantiomeric excess of the compounds was determined by chiral HPLC using racemic compounds as references. X-ray crystallography analysis was performed on a CCD diffractionmeter equipped with micro- $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184 \AA)$ radiation at room temperature. Melting points were determined on a melting point apparatus with microscope and were uncorrected. All starting materials, reagents and solvents were purchased from commercial suppliers and used as supplied unless otherwise stated. THF and $\mathrm{Et}_{2} \mathrm{O}$ were dried over Na and distilled prior to use.

2-Bromo-1-iodo-3,4,5-trimethoxybenzene (8). To a solution of 3,4,5-trimethoxyiodobenzene $7(4.04 \mathrm{~g}, 11.9 \mathrm{mmol}, 1.0$ equiv) in 35 mL of AcOH , bromine ($2.10 \mathrm{~g}, 13.1 \mathrm{mmol}, 1.1$ equiv) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h and then was quenched with 25 mL of $\mathrm{H}_{2} \mathrm{O}$ and 2 mL saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was diluted with 150 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL} \times 2)$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo to give a brown oil, which was used directly without further purification: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) $7.19(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 153.5,151.4,143.6,118.9,117.0$, 93.6, 61.1, 61.0, 56.4; IR (KBr) $\nu 1006,1106,1160,1232,1298,1369$, $1421,1475,1564 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrIO}_{3}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires $m / z 372.8931$, found $m / z 372.8935$.

2-Bromo-3,4,5-trimethoxy-1-(phenylethynyl)benzene (9). To a mixture of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(167 \mathrm{mg}, 0.24 \mathrm{mmol}, 0.02$ equiv), $\mathrm{CuI}(91 \mathrm{mg}, 0.48 \mathrm{mmol}, 0.04$ equiv), and 2 -bromo-1-iodo-3,4,5trimethoxybenzene (8) (4.44 g, $11.9 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{3} \mathrm{~N}(50$ $\mathrm{mL})$, ethynylbenzene ($2.45 \mathrm{~g}, 15.5 \mathrm{mmol}, 1.3$ equiv) was added slowly. The mixture was vigorously stirred at room temperature for 3.5 h and then filtered, and the filtrate was concentrated. The residue was purified by flash chromatography on silica gel (eluent, petroleum ether) to give 9 as a brown oil ($3.9 \mathrm{~g}, 95 \%$ yield over two steps): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 152.6,151.4,144.0,131.7,128.6$, 128.4, 123.0, 120.5, 112.7, 111.8, 93.1, 88.0, 61.3, 61.0, 56.3; IR (KBr) ν 689, 758, 828, 927, 967, 1007, 1047, 1111, 1161, 1196, 1251, 1360, 1380, 1425, 1480, 1494, 1554, 2156, 2828, 2847, 2937, $3002 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires m / z 347.0277, found $m / z 347.0279$.

Dimethyl(2,3,4-trimethoxy-6-(phenylethynyl)phenyl)silane (10). The brown oil 9 ($3.9 \mathrm{~g}, 11.2 \mathrm{mmol}, 1.0$ equiv) was dissolved in 55 mL of $\mathrm{Et}_{2} \mathrm{O}$ and then cooled down to $-78^{\circ} \mathrm{C}$ before slow addition of $n-\mathrm{BuLi}$ ($5.6 \mathrm{~mL}, 2.4 \mathrm{M}$ in n-hexane, 1.2 equiv). After stirring at -78 ${ }^{\circ} \mathrm{C}$ for 30 min under argon, chlorodimethylsilane ($1.59 \mathrm{~g}, 16.8 \mathrm{mmol}$, 1.5 equiv) was slowly added. Then the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min before quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent, petroleum ether/ethyl acetate $=50: 1$) to afford the product 10 as a white solid ($3.3 \mathrm{~g}, 92 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.75(\mathrm{~m}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .0 .45(\mathrm{~s}, 3 \mathrm{H}), 0.44$ (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 158.5,154.5,142.3$, 131.3, 128.4, 128.2, 125.2, 124.3, 123.5, 112.6, 91.2, 90.4, 61.1, 60.8, 56.1, -2.7; IR (KBr) ν 686, 751, 847,890, 1019, 1105, 1255, 1340, 1480, 1576, $2156 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires m / z 327.1411, found $m / z 327.1416 ; \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$ 67-69.

Dimethyl(2,3,4-trimethoxy-6-(phenylethynyl)phenyl)silanol (1). 10 ($5.35 \mathrm{~g}, 16.4 \mathrm{mmol}, 1.0$ equiv) was dissolved in 80 mL of MeCN and stirred at room temperature overnight after the addition of $\left[\mathrm{RuCl}_{2}(\mathrm{p} \text {-Cymene })_{2}\right]_{2}(200 \mathrm{mg}, 0.32 \mathrm{mmol}, 0.02$ equiv $)$ and $\mathrm{H}_{2} \mathrm{O}(1.5$ $\mathrm{mL}, 82 \mathrm{mmol}, 5.0$ equiv). The mixture was concentrated in vacuo when the reaction was complete, and the residue was purified by flash column chromatography (eluent, petroleum ether/ethyl acetate $=$ $40: 1)$ to afford the product as a white solid $\left(5.3 \mathrm{~g}, 94 \%\right.$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}$, $1 \mathrm{H}), 0.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 155.9$, 152.4, 140.1, 129.1, 126.4, 126.3, 123.8, 120.6, 120.5, 111.1, 89.5, 88.3, 59.2, 58.6, 53.9, 0.0; IR (KBr) $~$ 649, 754, 850, 887, 1012, 1049, 1249, 1338, 1375, 1478, 1574, $3522 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires $m / z 343.1360$, found $m / z 343.1366$; $\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right) 47-48$.
(3S,4S)-9H-Fluoren-9-yl-4-benzoyl-6,7,8-trimethoxy-1,1-di-methyl-3,4-dihydro-1H-benzo[c][1,2]oxasiline-3-carboxylate (2). A mixture of $\operatorname{IPrAuMe}(138 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.01$ equiv $), N$-trifyl phosphoamide A ($685 \mathrm{mg}, 0.78 \mathrm{mmol}, 0.05$ equiv), silanol 1 (5.3 g , $15.5 \mathrm{mmol}, 1.0$ equiv), and fluorenyl glyoxylate ($5.96 \mathrm{~g}, 23 \mathrm{mmol}, 1.5$ equiv) were added in toluene (100 mL) in one portion under argon. The resulting mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 4 days, and then the mixture was concentrated, and the residue was subjected to flash column chromatography on silica gel (eluent, petroleum ether/ethyl acetate $=10: 1)$ directly to afford 2 as a white solid ($6.66 \mathrm{~g}, 74 \%$ yield) and $2^{\prime}\left(0.63 \mathrm{~g}, 7 \%\right.$ yield): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $8.02-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dt}, J=6.7,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15(\mathrm{dt}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}$, $1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 195.3,171.0,155.3,153.2,139.6,139.4,139.2$, 139.1, 138.7, 133.8, 133.3, 131.4, 127.7, 127.1, 126.7, 126.0, 125.8, 123.8, 119.0, 118.1, 118.0, 107.4, 73.8, 73.1, 58.7, 58.5, 54.0, 52.3, 25.1, $0.0,-0.7$; $\mathrm{IR}(\mathrm{KBr}) \nu 742,788,835,854,1101,1143,1190,1208$, 1395, 1456, 1484, 1587, 1685, 1755, 2842, 2903, 2936, $2968 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires $m / z 581.1990$, found $m / z 581.1995 ; \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right) 159-161$; $[\alpha]^{20}{ }_{\mathrm{D}}$ +144.0 (c 0.1, CHCl_{3}). HPLC analysis (Chiralpak IC, 95:5 hex/ $i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=13.8 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.5$ min) gave the isomeric composition of the product, 89% ee.
cis-9H-Fluoren-9-yl4-benzoyl-6,7,8-trimethoxy-1,1-dimeth-yl-3,4-dihydro-1H-benzo[c][1,2]oxasiline-3-carboxylate (2^{\prime}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.81(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39$ $(\mathrm{m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 0.58(\mathrm{~s}, 3 \mathrm{H})$, $0.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 196.8, 171.2, 157.2, 154.9, 141.1, 140.9, 140.8, 140.6, 140.0, 137.5, 137.1, 132.6, 129.3, 129.1, 128.4, 128.1, 127.6, 127.5, 126.2, 125.9, 119.6, 119.4, $119.3,108.3,75.9,73.2,60.3,60.1,55.6,50.5,0.0,-0.7$; IR (KBr) ν $746,792,838,856,1103,1145,1195,1392,1456,1488,1557,1594$, 1685, 1754, 2839, 2908, 2940, $2963 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires $\mathrm{m} / \mathrm{z} 581.1990$, found m / z 581.1995; mp (${ }^{\circ} \mathrm{C}$) 138-140. HPLC analysis (Chiralpak IC, 95:5 hex/ $i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=7.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=6.6$ min) gave the isomeric composition of the product, 40% ee.
(3S,4S)-9H-Fluoren-9-yl 4-(benzoyloxy)-6,7,8-trimethoxy-1,1-dimethyl-3,4-dihydro-1 H-benzo[c][1,2]oxasiline-3-carboxylate (11). To a solution of $2(6.66 \mathrm{~g}, 11.5 \mathrm{mmol}, 1.0$ equiv) in DCE (80 mL) was added m-CPBA ($7.94 \mathrm{~g}, 46.0 \mathrm{mmol}, 4.0$ equiv) and $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}(8.9 \mathrm{~g}, 92.0 \mathrm{mmol}, 8.0$ equiv $)$ at room temperature. The reaction was allowed to stir at reflux for 15 min . Cooled to room temperature, the reaction was quenched with a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(120 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL} \times 3)$. The combined organic layers were washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on basic aluminum oxide (eluent, petroleum ether/ethyl acetate $=10: 1$) to give compound 11 as a white solid (4.80 g, 70% yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.00(\mathrm{dd}, J=8.4$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=7.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.43-$ $7.33(\mathrm{~m}, 4 \mathrm{H}), 7.22$ (ddd, $J=8.4,6.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{dt}, J=7.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 0.54(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 170.2,164.1,155.7,153.7,140.5,134.0,139.7,139.6,139.5$, $133.3,131.7,128.5,128.3,128.1,128.0,126.9,126.4,126.1,124.3$, 124.2, 118.8, 118.5, 118.4, 109.3, 74.1, 73.7, 72.2, 59.1, 59.0, 54.5, 25.5, $0.4,0.0$; IR (KBr) $\nu 665,712,764,791,843,970,1031,1101,1148$, 1251, 1321, 1435, 1481, 1584, 1720, 1748, 1831, 2906, $2939 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires $m / z 597.1939$, found $m / z 597.1940 ; \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right) 118-120 ;[\alpha]^{20}{ }_{\mathrm{D}}+59.0$ (c 0.1, CHCl_{3}). HPLC analysis (Chiralpak IC, $95: 5 \mathrm{hex} / \mathrm{PrOH}, 1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=9.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=7.9 \mathrm{~min}\right)$ gave the isomeric composition of the product, 91% ee.
(3S,4S)-3-(2-Diazoacetyl)-6,7,8-trimethoxy-1,1-dimethyl-3,4-dihydro-1H-benzo[c][1,2]oxasilin-4-yl benzoate (13). To a solution of $11(4.2 \mathrm{~g}, 7 \mathrm{mmol})$ in $\mathrm{EtOAc}(120 \mathrm{~mL})$ was added 10% palladium on carbon $(800 \mathrm{mg})$. The mixture was stirred at room temperature overnight under 1 atm of H_{2}. The resulting mixture was filtered through Celite, washed with EtOAc, and the combined filtrates were concentrated under reduced pressure. To the solution of the residue 12 in dry THF $(30 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.97 \mathrm{~mL}, 8.4 \mathrm{mmol}$, 1.2 equiv) and $\mathrm{ClCO}_{2} \mathrm{Et}\left(0.73 \mathrm{~mL}, 7.7 \mathrm{mmol}, 1.1\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon. The resulting mixture was stirred at the same temperature for 15 min and then was added dropwise to a stirred solution of diazomethane (ca. 3.0 equiv) in diethyl ether. The resulting mixture was allowed to warm to room temperature and stirred for 2 h . Excess diazomethane was destroyed by 0.5 M solution of AcOH in
$\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} \times 2)$. The combined organic phase was washed with saturated NaHCO_{3} solution $(50 \mathrm{~mL})$ and saturated NaCl solution (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent, petroleum ether/ethyl acetate $=10: 1)$ to afford 13 as a pale solid ($2.75 \mathrm{~g}, 86 \%$ yield): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.09-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}$, $1 \mathrm{H}), 4.89(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $0.55(\mathrm{~s}, 3 \mathrm{H}), 0.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 192.1, 164.0, 155.3, 154.0, 139.8, 134.4, 131.6, 128.4, 128.2, 126.9, 117.5, 108.7, 78.2, 71.5, 59.0, 58.9, 54.5, 52.4, 0.0; IR (KBr) $\nu 717$, 793, 843, 1019, 1113, 1195, 1262, 1321, 1357, 1627, 1713, $2110 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires $m / z 457.1426$, found $m / z 457.1433 ; \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right) 114-115 ;[\alpha]_{\mathrm{D}}^{20}+5.1$ (c 0.1, CHCl_{3}). HPLC analysis (Chiralpak IC, 95:5 hex/iPrOH, 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=28.3 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=24.3 \mathrm{~min}\right)$ gave the isomeric composition of the product, 92% ee.
(3R,4S)-6,7,8-Trimethoxy-3-(2-methoxy-2-oxoethyl)-1,1-di-methyl-3,4-dihydro-1H-benzo[c][1,2]oxasilin-4-yl benzoate (6). To a solution of $13(2.26 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) in methanol $(70 \mathrm{~mL})$ was added a solution of $\mathrm{PhCO}_{2} \mathrm{Ag}(0.34 \mathrm{~g}, 1.5 \mathrm{mmol}, 0.3$ equiv) in $\mathrm{Et}_{3} \mathrm{~N}$ ($3.5 \mathrm{~mL}, 25 \mathrm{mmol}, 5.0$ equiv). The mixture was stirred in dark overnight. The mixture was concentrated and was purified by flash column chromatography on silica gel (eluent, petroleum ether/ ethyl acetate $=12: 1$) to afford 6 as an oil with $6 / 1 \mathrm{dr}(1.80 \mathrm{~g}, 78 \%$ yield). The two diastereoisomers could not be separated at the step ($1.80 \mathrm{~g}, 78 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.07-8.04$ $(\mathrm{m}, 2.30 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1.15 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2.30 \mathrm{H}), 6.88(\mathrm{~s}$, $0.15 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.01-5.97(\mathrm{~m}, 1.15 \mathrm{H}), 4.79(\mathrm{dt}, J=6.8,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.75-4.69(\mathrm{~m}, 0.15 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 0.45 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.84(\mathrm{~s}, 0.45 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 0.45 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.68$ (ddd, $J=21.3,15.8,6.7 \mathrm{~Hz}, 0.30 \mathrm{H}), 2.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.46(\mathrm{~s}$, $0.45 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 0.45 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,164.8,156.0,154.6,140.1,136.1,132.2,128.8$, 127.4, 118.2, 108.1, 73.1, 70.9, 59.5, 59.4, 55.1, 50.7, 39.0, 0.00, -0.6; 170.3, 165.0, 156.0, 154.4, 140.3, 137.3, 132.1, 128.9, 127.4, 118.2, 109.3, 71.8, 69.3, $59.555 .0,38.4,28.7,-0.8,-1.6$; IR $(\mathrm{KBr}) \nu 710$, 795, 840, 1019, 1119, 1199, 1263, 1318, 1592, 1712, $1742 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires m / z 461.1632, found m / z 461.1630; $[\alpha]_{\mathrm{D}}^{20}+20.0$ (c 0.1, CHCl_{3}). HPLC analysis (Chiralpak AD-H, 75:25 hex/iPrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm} ; t_{\mathrm{R}}($ major $)=19.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=25.0 \mathrm{~min}\right)$ gave the isomeric composition of the product, 89% ee.
(4R,5S)-4-Hydroxy-5-(3,4,5-trimethoxyphenyl)dihydrofuran$\mathbf{2 (3 H})$-one (5). To a solution of $6(1.48 \mathrm{~g}, 3.2 \mathrm{mmol}, 1.0$ equiv) in methanol $(15 \mathrm{~mL}), \mathrm{NaOMe}(0.35 \mathrm{~g}, 6.4 \mathrm{mmol}, 2.0$ equiv) was added. The reaction mixture was stirred for 3 h .25 mL saturated aqueous of NaCl and 100 mL of EtOAc were added. The organic layer was separated, and the aqueous layer was extracted with EtOAc ($100 \mathrm{~mL} \times$ 2). The combined organic phase was washed with saturated NaCl solution (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and $p-\mathrm{TsOH}$ ($61 \mathrm{mg}, 0.32 \mathrm{mmol}, 0.1$ equiv) was added to the mixture. The reaction mixture was stirred for 2 h and then was concentrated. The residue was purified by flash column chromatography on silica gel (eluent, petroleum ether/ethyl acetate $=1: 1$) to afford 5 as a white solid $\left(0.69 \mathrm{~g}, 80 \%\right.$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.52$ $(\mathrm{s}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}$, 3 H), 2.96 (brs, 1 H), 2.89 (dd, $J=17.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (dd, $J=17.7$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 174.6,153.6$, 137.9, 132.5, 102.0, 87.5, 74.5, 60.9, 56.2, 37.2, 29.7; IR (KBr) ν 941, 1001, 1046, 1128, 1173, 1242, 1337, 1469, 1510, 1601, 1783, 1848, 2925, 3012, $3467 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires m / z 269.1020, found $\mathrm{m} / \mathrm{z} 269.1021$; mp $\left({ }^{\circ} \mathrm{C}\right)$ 99-101; $[\alpha]_{\mathrm{D}}^{20}+4.2$ (c 0.1, CHCl_{3}). HPLC analysis (Chiralpak IC, 80:20 hex $/ i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=25.8 \mathrm{~min}, t_{\mathrm{R}}$ $($ minor $)=30.0 \mathrm{~min})$ gave the isomeric composition of the product, 90\% ee.
(R)-5-(3,4,5-Trimethoxyphenyl)furan-2(5H)-one (4). To a stirred solution of $5(500 \mathrm{mg}, 1.86 \mathrm{mmol}, 1.0$ equiv) in dry DCM $(10 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}\left(0.53 \mathrm{~mL}, 3.72 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{MeSO}_{2} \mathrm{Cl}(0.16$ $\mathrm{mL}, 2.05 \mathrm{mmol}, 1.1$ equiv) were added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h and then was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain the residue. The residue was purified by flash column chromatography on silica gel (eluent, petroleum ether/ethyl acetate $=2: 1$) to afford 4 as a white solid $\left(0.43 \mathrm{~g}, 92 \%\right.$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.52$ (dd, $J=5.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 6.22(\mathrm{dd}, J=5.6,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.94(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 173.0,155.7,153.8,138.8,129.7,121.0,103.6$, 84.4, 60.9, 56.3; IR (KBr) ע 823, 913, 997, 1033, 1093, 1123, 1159, 1237, 1328, 1424, 1460, 1502, 1586, 1754, 1790, $2836 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires m / z 251.0914, found $m / z 251.0916 ; \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right) 68-70 ;[\alpha]_{\mathrm{D}}^{20}+178.1(c 0.1$, CHCl_{3}). HPLC analysis (Chiralpak IC, 90:10 hex/iPrOH, $1.0 \mathrm{~mL} /$ $\mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=48.2 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=66.8 \mathrm{~min}\right)$ gave the isomeric composition of the product, 93% ee.
(4R,5R)-4-Methyl-5-(3,4,5-trimethoxyphenyl)dihydrofuran-2(3H)-one (16). To a suspension of $\mathrm{CuI}(247 \mathrm{mg}, 1.30 \mathrm{mmol}, 2.0$ equiv) in ether (10 mL) cooled at $-20^{\circ} \mathrm{C}$ was added dropwise a solution of methyllithium 1.5 M in ether $(1.73 \mathrm{~mL}, 2.60 \mathrm{mmol}, 4.0$ equiv). The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred at this temperature until a colorless clear solution was obtained. To this solution cooled at $-78{ }^{\circ} \mathrm{C}$ was added a solution of butenolide 4 (162 $\mathrm{mg}, 0.65 \mathrm{mmol}, 1.0$ equiv) in ether $(5 \mathrm{~mL})$. The mixture was stirred for an additional 4 h at $-78^{\circ} \mathrm{C}$ and was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution $(20 \mathrm{~mL})$. The reaction mixture was warmed to room temperature. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain the residue. The residue was purified by flash chromatography on silica gel (eluent, petroleum ether/ethyl acetate $=1: 1$) to afford 16 as a white solid ($147 \mathrm{mg}, 85 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.52$ $(\mathrm{s}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.78$ (dd, J $=16.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=16.9,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 176.0, 153.5, 138.3, 133.5, 103.0, 88.3, 60.9, 56.3, 39.8, 37.3, 16.6; IR $(\mathrm{KBr}) ~ \nu 689,831,944,983,1006,1136,1159,1210,1249,1328,1425$, 1464, 1509, 1594, 1269, 2827, 2884, 2946, 2974, $3008 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires m / z 267.1227, found m / z 267.1229; mp $\left({ }^{\circ} \mathrm{C}\right) 74-77$; $[\alpha]^{20}{ }_{\mathrm{D}}+8.8$ (c 0.1, CHCl_{3}). HPLC analysis (Chiralpak OD-H, 70:30 hex/iPrOH, 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=8.8 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=9.9 \mathrm{~min}\right)$ gave the isomeric composition of the product, 92% ee.
(4R,5R)-5-(2-lodo-3,4,5-trimethoxyphenyl)-4-methyldihy-drofuran-2(3H)-one (17). To a solution of $16(73 \mathrm{mg}, 0.28 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ and $\mathrm{AgOCOCF}_{3}(124 \mathrm{mg}, 0.56 \mathrm{mmol}$, 2.0 equiv) was added a solution of $\mathrm{I}_{2}(142 \mathrm{mg}, 0.56 \mathrm{mmol}, 2.0$ equiv) in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ dropwise via syringe over 0.5 h . The reaction was stirred for an additional 10 min before being filtered through a pad of Celite that was washed thoroughly with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The filtrate was concentrated to yield a crude oil that was purified by flash column chromatography on silica gel (eluent, petroleum ether/ethyl acetate $=$ $1: 1)$ to afford 17 as a white solid ($98 \mathrm{mg}, 89 \%$ yield): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dd}, J=17.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-$ $2.41(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=17.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 176.9,154.3,153.2,142.2$, $136.5,105.7,89.8,84.9,60.9(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 56.3,39.2,35.8,18.6$; IR $(\mathrm{KBr}) \nu 690,804,837,940,1001,1100,1165,1202,1366,1391,1428$, 1477, 1567, 1780, 2850, 2871, 2932, $2965 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{IO}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires m / z 393.0193, found m / z 393.0199; $[\alpha]_{\mathrm{D}}^{20}+23.0$ (c 0.08, CHCl_{3}). HPLC analysis (Chiralpak IC, 70:30 hex $/ \mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$; t_{R} (major) $=11.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=10.8 \mathrm{~min}\right)$ gave the isomeric composition of the product, 92% ee.

Compound 18.4 A round-bottom flask equipped with a reflux condenser was charged with $4(60 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv), $3,4-$ methylenedioxyphenylboronic acid ($41 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.6$ equiv), and NaHCO_{3} ($48 \mathrm{mg}, 0.57 \mathrm{mmol}, 3.7$ equiv) in 1 mL of DME and 0.2 mL of $\mathrm{H}_{2} \mathrm{O} . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11 \mathrm{mg}, 0.0092 \mathrm{mmol}, 0.06$ equiv $)$ in 1 mL of DME was added, and argon was passed through the solution for 10 min before bringing the reaction to reflux for 18 h . The reaction was quenched with 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$, and the resulting aqueous layer was extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 3)$. The organic layers were combined, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to provide a crude yellow oil that was purified by flash column chromatography on silica gel (eluent, petroleum ether/ ethyl acetate $=1: 1$) to afford 18 as a white solid ($49 \mathrm{mg}, 85 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, two atropisomers) δ (ppm) $6.88(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-$ $6.66(\mathrm{~m}, 4 \mathrm{H}), 6.63(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ (ddd, $J=4.5,2.9,1.4$ $\mathrm{Hz}, 4 \mathrm{H}), 4.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $5 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{ddd}, J=17.2,8.0$, $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{dq}, J=15.3,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.15$ (ddd, $J=17.2,9.2$, $2.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two atropisomers) δ (ppm) 176.5, 176.4, 153.3, 153.2, 151.5, 151.4, 147.6, 147.5, 147.0, 146.9, 142.4, 142.3, 131.8, 131.7, 128.9, 128.9, 128.9, 128.8, 124.2, 123.2, 111.3, 110.4, 108.3, 108.0, 104.5, 101.2, 101.1, 84.8, 84.7, 61.2, 61.1, 60.9, 56.2, 39.3, 39.2, 36.9, 36.8, 16.8; IR (KBr) ע 927, 945, 1008, 1040, 1130, 1157, 1225, 1243, 1324, 1454, 1486, 1594, 1779, 2855, 2941, $2959 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{7}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires $\mathrm{m} / \boldsymbol{z}$ 387.1438, found m / z 387.1443; $\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right) 126-128 ;[\alpha]_{\mathrm{D}}^{20}-64.2$ (c 0.1, CHCl_{3}). HPLC analysis (Chiralpak OD-H, $88: 12 \mathrm{hex} / \mathrm{iPrOH}, 1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=15.3 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=23.4 \mathrm{~min}\right)$ gave the isomeric composition of the product, 90% ee.
(-)-5-epi-Eupomatilone-6. ${ }^{4 \mathrm{a}, \mathrm{b}}$ To a solution of $18(8.4 \mathrm{mg}, 0.03$ mmol, 1.0 equiv) in anhydrous THF $(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added LiHMDS (1 M solution in THF, $0.11 \mathrm{~mL}, 5$ equiv). After $1 \mathrm{~h}, \mathrm{MeI}$ ($0.007 \mathrm{~mL}, 0.11 \mathrm{mmol}, 5$ equiv) was added, and stirring was continued for an additional 1 h at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to provide a residue that was purified by flash column chromatography on silica gel (eluent, petroleum ether/ethyl acetate $=1: 1)$ to afford $(-)$-5-epi-eupomatilone-6 ($4 \mathrm{mg}, 50 \%$ yield) : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two atropisomers) δ (ppm) 6.93-6.82 $(\mathrm{m}, 2 \mathrm{H}), 6.73-6.64(\mathrm{~m}, 6 \mathrm{H}), 6.04-5.98(\mathrm{~m}, 4 \mathrm{H}), 4.80(\mathrm{t}, J=9.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.91(\mathrm{~s}, 12 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 2 \mathrm{H})$, $2.07-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.23(6 \mathrm{H}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.87(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 178.7,178.6,153.3$, 153.2, 147.5, 147.4, 147.0, 146.9, 142.6, 130.8, 130.7, 129.9, 129.0, 128.9, 124.3, 123.4, 111.4, 110.6, 108.2, 107.9, 105.2, 105.1, 101.2, 101.1, 82.7, 82.6, 61.1, 61.0, 60.9, 56.2, 47.6, 43.4, 43.3, 14.3, 12.9; IR $(\mathrm{KBr}) ~ \nu 930,945,1020,1138,1157,1243,1324,1454,1486,1594$, 1780, 2855, 2941, $2963 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{7}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$requires m / z 401.1595, found $m / z 401.1600$; $[\alpha]^{20}{ }_{\mathrm{D}}-19.0\left(c 0.1, \mathrm{CHCl}_{3}\right)$. HPLC analysis (Chiralpak OD-H, 85:15 hex $/ i \mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=13.5 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=$ 19.5 min) gave the isomeric composition of the product, 87% ee.

ASSOCIATED CONTENT

(S) Supporting Information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and HPLC spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: wxnk@ustc.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Prof. Liu-zhu Gong for his support. We are grateful for financial support from NSFC (21302177), FRFCU (WK2340000043).

REFERENCES

(1) (a) Whiting, D. A. Nat. Prod. Rep. 1985, 2, 191. (b) Ward, R. S. Nat. Prod. Rep. 1997, 14, 43. (c) Pan, J. Y.; Chen, S. L.; Yang, M. H.; Wu, J.; Sinkkonen, J.; Zou, K. Nat. Prod. Rep. 2009, 26, 1251.
(2) Carroll, A. R.; Taylor, W. C. Aust. J. Chem. 1991, 44, 1615.
(3) Mitra, S.; Gurrala, S. R.; Coleman, R. S. J. Org. Chem. 2007, 72, 8724.
(4) (a) Gurjar, M. K.; Karumudi, B.; Ramana, C. V. J. Org. Chem. 2005, 70, 9658 . (b) Yu, S. H.; Ferguson, M. J.; McDonald, R.; Hall, D. G. J. Am. Chem. Soc. 2005, 127, 12808. (c) Hutchison, J. M.; Hong, S.P.; McIntosh, M. C. J. Org. Chem. 2004, 69, 4185. (d) Coleman, R. S.; Gurrala, S. R. Org. Lett. 2004, 6, 4025. (e) Hong, S.; McIntosh, M. C. Org. Lett. 2002, 4, 19.
(5) Gurjar, M. K.; Cherian, J.; Ramana, C. V. Org. Lett. 2004, 6, 317. (6) Johnson, J. B.; Bercot, E. A.; Williams, C. M.; Rovis, T. Angew. Chem., Int. Ed. 2007, 46, 4514.
(7) Rainka, M. P.; Milne, J. E.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44, 6177.
(8) (a) Hirokawa, Y.; Kitamura, M.; Kato, C.; Kurata, Y.; Maezaki, N. Tetrahedron Lett. 2011, 52, 581. (b) Hirokawa, Y.; Kitamura, M.; Mizubayashi, M.; Nakatsuka, R.; Kobori, Y.; Kato, C.; Kurata, Y.; Maezaki, N. Eur. J. Org. Chem. 2013, 721.
(9) Wang, P.-S.; Li, K.-N.; Zhou, X.-L.; Wu, X.; Han, Z.-Y.; Guo, R.; Gong, L.-Z. Chem.-Eur. J. 2013, 19, 6234.
(10) Najera, C.; Chinchilla, R. Chem. Rev. 2007, 107, 874.
(11) Ilies, L.; Tsuji, H.; Nakamura, E. Org. Lett. 2009, 11, 3966.
(12) Lee, M.; Ko, S.; Chang, S. J. Am. Chem. Soc. 2000, 122, 12011.
(13) For details, see Supporting Information.
(14) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W.; Atodiresei, I. Angew. Chem., Int. Ed. 2011, 50, 6706.
(15) (a) Arndt, F.; Eistert, B. Org. React. 1942, 1, 38. (b) Organic Syntheses; Wiley \& Sons: New York, 2004; Collect. Vol. X, p 194.
(16) Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
(17) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918.
(18) For experimental details, see Supporting Information.
(19) Takahata, H.; Uchida, Y.; Momose, T. J. Org. Chem. 1995, 60, 5628.

