Medicinal Flowers. IV.¹⁾ Marigold. (2): Structures of New Ionone and Sesquiterpene Glycosides from Egyptian *Calendula officinalis*

Toshiyuki MARUKAMI, Akinobu KISHI, and Masayuki YOSHIKAWA*

Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607–8412, Japan. Received February 20, 2001; accepted April 16, 2001

> Following the characterization of hypoglycemic, gastric emptying inhibitory, and gastroprotective principles and the structure elucidation of calendasaponins A, B, C, and D, two new ionone glucosides (officinosides A and B), and two sesquiterpene oligoglycosides (officinosides C and D), were isolated from the flowers of Egyptian *Calendula officinalis*. The structures of the officinosides were elucidated on the basis of chemical and physicochemical evidence.

Key words officinoside; Calendula officinalis; marigold; ionone glucoside; sesquiterpene oligoglycoside; Compositae

In the course of our studies on the bioactive constituents of medicinal flowers,^{1,2)} we have found that the methanolic extract and its 1-butanol-soluble fraction from the flowers of Egyptian Calendula (C.) officinalis exhibited hypoglycemic, gastric emptying inhibitory, and gastroprotective effects. Thus far, we have isolated four oleanene-type triterpene oligoglycosides (calendasaponins A-D), two new ionone glucosides [officinosides A (1) and B (2)], and two new sesquiterpene oligoglycosides [officinosides C (3) and D (4)], from the 1-butanol-soluble fraction together with eight known saponins, one sesquiterpene glucoside, and seven flavonol glycosides. In the preceding paper,¹⁾ we reported the isolation and structure elucidation of calendasaponins A-D. Furthermore, we described the inhibitory activities of the principle saponins from the flowers of C. officinalis on the increase of serum glucose levels in oral glucose-loaded rats, on gastric emptying in carboxymethyl cellulose sodium salt test meal-loaded mice, and on ethanol- or indomethacin-induced gastric mucosal lesions in rats and also discussed the structure requirements for these activities. This paper offers the structure elucidation of officinosides A (1), B (2), C (3), and D (4).

Structures of Ionone Glucosides, Officinosides A (1) and B (2) Officinoside A (1) was isolated as a white powder with positive optical rotation ($[\alpha]_D^{22} + 13.0^\circ$). In the negative- and positive-ion FAB-MS of 1, quasimolecular ion

peaks were observed at m/z 387 (M-H)⁻ and m/z 411 $(M+Na)^+$, respectively. High-resolution MS analysis of the quasimolecular ion peak (M+Na)⁺ revealed the molecular formula of 1 to be $C_{19}H_{32}O_8$. The IR spectrum of 1 showed absorption bands at 1671 cm⁻¹ ascribable to olefin and strong absorption bands at 3432, 1076, and 1038 cm⁻¹ suggestive of a glycosidic structure. Acid hydrolysis of 1 with 5% aqueous sulfuric acid-1,4-dioxane liberated D-glucose, which was identified by GLC analysis of the trimethylsilyl thiazolidine derivative.³⁾ Enzymatic hydrolysis of 1 with β -glucosidase liberated $(3S,5R,8S,9\xi)$ -5,8-epoxy-6-megastigmene-3,9-diol (5). Since the stereostructure of 5 was tentatively presented,⁴⁾ we investigated the total structure of 1 including the aglycone moiety. The ¹H-NMR (1: pyridine- d_5 , 5: CDCl₃) and ¹³C-NMR (Table 1) spectra of 1 and 5, which were assigned by various NMR experiments,⁵⁾ indicated the presence of three singlet methyls [1: δ 1.13, 1.42, 1.92 (all s, 12, 11, 13-H₃), 5: δ 1.19, 1.32, 1.61 (all s, 12, 11, 13-H₃)], a doublet methyl [1: δ 1.43 (d, J=6.6 Hz, 10-H₃), 5: δ 1.17 (d, J=6.4 Hz, 10-H₃)], three methines bearing an oxygen function [1: δ 3.94 (m, 9-H), 4.49 (m, 3-H), 4.76 (br d, J=ca. 7 Hz, 8-H), 5: δ 3.81 (dd, J=3.1, 6.4 Hz, 9-H), 4.24 (dd-like, 3-H), 4.71 (br d, J=ca. 5 Hz, 8-H)], and an olefinic methine [1: δ 5.76 (br s, 7-H), 5: δ 5.37 (br s, 7-H)] together with a β -D-glucopyranosyl moiety [δ 4.87 (d, J=8.4 Hz, 1'-H)] in **1**. As shown in Fig. 1, the planar structure of the aglycone and the position

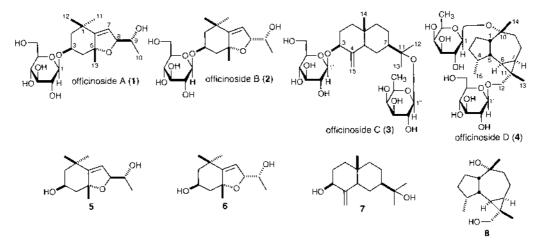


Chart 1

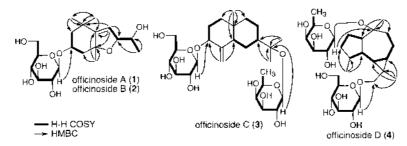


Fig. 1. H-H COSY and HMBC Correlations of 1-4

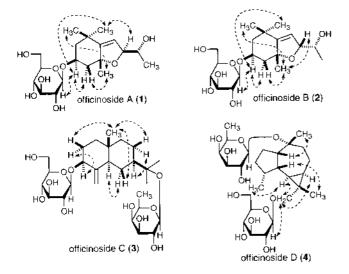


Fig. 2. NOE Correlations of 1-4

Table 1. $^{13}\text{C-NMR}$ Data of Officinosides A (1), B (2), C (3), and D (4), 5, and 6

	1 ^{<i>a</i>)}	2 ^{<i>a</i>)}	3 ^{<i>a</i>)}	4 ^{<i>a</i>)}	5 ^{b)}	6 ^{b)}		1 ^{<i>a</i>)}	2 ^{<i>a</i>)}	3 ^{<i>a</i>)}	4 ^{<i>a</i>)}
C-1	34.0	34.1	40.1	55.0	33.8	33.8	C-1′	102.6	102.6	103.1	103.8
2	45.8	45.8	31.9	25.8	46.6	46.7	2'	75.4	75.4	75.7	75.9
3	73.8	73.8	78.9	29.3	67.6	67.6	3'	78.9	78.9	78.7	78.7
4	44.2	44.3	150.2	38.7	47.5	48.0	4'	71.9	71.9	71.9	72.0
5	87.3	87.3	48.7	38.7	86.7	87.2	5'	78.3	78.3	78.5	78.5
6	154.6	154.6	22.7	18.7	155.4	155.4	6'	63.0	63.0	63.0	63.0
7	119.0	118.0	48.9	26.8	116.1	117.4	C-1″			98.8	98.1
8	87.6	87.4	25.4	19.2	86.1	86.8	2″			72.4	72.5
9	70.7	70.1	41.3	37.1	68.4	70.9	3″			75.6	75.2
10	20.0	20.0	36.0	81.2	17.8	18.8	4″			72.8	72.8
11	28.8	28.7	79.2	23.4	28.9	28.5	5″			70.9	71.0
12	31.4	31.5	23.8	79.4	31.3	31.4	6″			17.5	17.4
13	29.2	29.3	25.0	12.6	28.5	28.7					
14			16.7	27.6							
15			104.7	16.6							

a) 125 MHz, pyridine- d_5 or b) CDCl₃.

of a glycoside linkage in **1** were confirmed by ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY and HMBC experiments, which showed long-range correlations between the following protons and carbons: 11, 12-H₃ and 1, 2, 6-C; 13-H₃ and 4, 5, 6-C; 10-H₃ and 8, 9-C; 7-H and 1, 6, 8-C; 8-H and 7, 9-C; 1'-H and 3-C. The relative stereostructures of **1** and **5**, except for the 9-position, was confirmed by pNOESY experiment, in which NOE correlations were observed between the following protons: 3-H and 4α , 1'-H; 11-H₃ and 2α , 3, 8-H; 13-H₃ and 12-H₃, 4β -H.

Officinoside B (2) was isolated as a white powder with positive optical rotation ($[\alpha]_{D}^{22} + 1.2^{\circ}$) and its IR spectrum was similar to that of 1. The molecular formula $C_{10}H_{32}O_8$ of 2, which was the same as that of 1, was characterized from the negative- and positive-ion FAB-MS [m/z 387 (M-H)]and m/z 411 (M+Na)⁺] and by high-resolution MS measurement. Acid hydrolysis of 2 with 5% aqueous sulfuric acid-1,4-dioxane furnished D-glucose,3) while a new aglycone (6) was obtained by enzymatic hydrolysis. The ¹H-NMR $(CDCl_{2})$ and ¹³C-NMR (Table 1) spectra⁵⁾ of **6** showed signals assignable to three singlet methyls [δ 1.18, 1.33, 1.60 (all s, 12, 11, 13-H₃)], a doublet methyl [δ 1.18 (d, J=6.4 Hz, 10-H₃)], two methylenes [δ 1.47 (m), 1.82 (dd, J=3.7, 14.0 Hz) (2-H₂), 1.75 (ddd, J=1.8, 4.0, 14.0 Hz), 2.15 (ddd-like) (4-H₂)], three methines bearing an oxygen function [δ 3.57 (dd-like, 9-H), 4.22 (dd-like, 3-H), 4.52 (br d, J=ca. 6 Hz, 8-H)], and an olefin methine [δ 5.30 (br s, 7-H)], while those of 2 indicated the presence of an aglycone part and a β -Dglucopyranosyl moiety [δ 4.90 (d, J=8.4 Hz, 1'-H)]. The proton and carbon signals in the ¹H- and ¹³C-NMR spectra of 2 and 6 were shown to be superimposable on those of 1 and 5, except for the signals due to the 7, 8, and 9-positions. The HMBC experiment of 2 showed long-range correlations between the following protons and carbons: 11, 12-H₂ and 1, 2, 36-C; 13-H₃ and 4, 5, 6-C; 10-H₃ and 8, 9-C; 7-H and 1, 5, 6-C; 8-H and 7, 9-C; 1'-H and 3-C. On the basis of this evidence and the ¹H–¹H COSY data (Fig. 1), the planar structure of 2 and 6 were characterized. NOE correlations were observed in the pNOESY experiment between the following protons: 3-H and 4α , 1'-H; 11-H₃ and 2α , 3-H; 13-H₃ and 12-H₃, 8-H. This evidence led us to elucidate the relative stereostructure of 2 to be as shown.

In order to clarify the absolute stereostructures of 1 and 2, the aglycones, 5 and 6, were subjected to a modified Mosher's method.⁶⁾ Namely, **5** and **6** were treated with (R)- and (S)- α -methoxy- α -trifluoromethylphenyl acetate (MTPA) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)cardoiimide (EDC · HCl) and 4-dimethylaminopyridine (DMAP) to give the 3,9-di-(R)-MTPA ester (5a, 6a) and the 3,9-di-(S)-MTPA ester (5b, 6b), respectively. As shown in Fig. 3, the signals due to protons attached to the 2, 7, 8, 11, and 12-positions in 5a and 6a were observed at lower fields ($\Delta\delta$: negative) as compared to those of **5b** and **6b**, while the signal due to the 4 and 10-positions in 5a and 6a was observed at higher fields ($\Delta\delta$: positive) as compared to those of **5b** and **6b**. On the basis of the above evidence, the absolute stereostructures of officinosides A and B were determined to be (3S,5R,8S,9R)-5,8-epoxy-6-megastigmene-3,9-diol $3-O-\beta$ -D-glucopyranoside (1) and (3S, 5R, 8R, 9R)-5,8-epoxy-6-megastigmene-3,9-diol

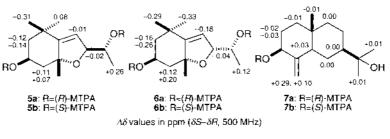


Fig. 3

3-O- β -D-glucopyranoside (2).

Officinoside C (3) was isolated as a white powder with negative optical rotation ($[\alpha]_{D}^{27}$ -7.0°), and its IR spectrum showed absorption bands due to hydroxyl and exo-methylene functions at 3432 and 1655 cm⁻¹. In the negative- and positive-ion FAB-MS of 3, quasimolecular ion peaks were observed at m/z 545 (M-H)⁻ and m/z 569 (M+Na)⁺ and the molecular formula, $C_{27}H_{46}O_{11}$, of **3** was determined by highresolution MS measurement. Acid hydrolysis of 3 with 5% aqueous H₂SO₄-1,4-dioxane liberated D-glucose and D-fucose,³⁾ while enzymatic hydrolysis of **3** with naringinase furnished selin-4(15)-en-3 β ,11-diol (7).⁷⁾ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra⁵⁾ of **3** showed signals due to a selin-4(15)-en-3 β ,11-diol moiety [δ 0.71, 1.39, 1.42 (s, 14, 12, 13-H₃), 4.46 (m, 3-H), 4.79, 6.81 (br s, 15-H₂)], a β -D-glucopyranosyl moiety [δ 5.03 (d, J=7.6 Hz, 1'-H)], and a β -D-fucopyranosyl moiety [δ 1.51 (d, J=6.1 Hz, $6''-H_3$, 4.81 (d, J=7.4 Hz, 1"-H)]. The planar structure and the glycoside linkages of 3 were constructed on the basis of ¹H⁻¹H COSY and HMBC. Thus, the ¹H⁻¹H COSY experiment for 3 indicated the presence of the partial structures from the 1-position to the 3-position and from the 5-position to the 9-position. In the HMBC experiment, long-range correlations were observed between the 15-protons and the 3, 4, 5-carbons, between the 14-protons and the 1, 5, 9, 10-carbons, between the 12, 13-protons and the 11, 7-carbons, between the 1'-proton and the 3-carbon, and between the 1"proton and the 11-carbon. The relative stereostructure of 3 was characterized by pNOESY experiment, which showed NOE correlations between the following protons: 14-H₃ and 2β , 6β , 8β , 9β -H; 2α -H and 3-H; 8α -H and 7, 9α -H. Since the absolute stereostructure of 7 was not yet determined, 7 was subjected to a modified Mosher's method.⁶⁾ Consequently, the signals due to protons attached to the 1 and 2carbons in the ¹H-NMR spectrum of the 3-(S)-MTPA ester (7b) were observed at higher field as compared to those of the 3-(R)-MTPA ester (7a) ($\Delta\delta$: negative), while the signal due to protons on the 15-carbon of the 3-(S)-MTPA (7b) was observed at lower field than those of the 3-(R)-MTPA (7a) $(\Delta \delta$: positive). On the basis of the above evidence, the absolute stereostructure of officinoside C was elucidated to be 12-O- β -D-fucopyranosyl selin-4(15)-en-3 β ,11-diol 3-O- β -Dglucopyranoside (3).

Officinoside D (4), isolated as a white powder with negative optical rotation ($[\alpha]_D^{26} - 14.5^\circ$), gave the quasimolecular ion peaks at m/z 545 (M–H)⁻ and m/z 569 (M+Na)⁺ in the negative- and positive-ion FAB-MS and the molecular formula was defined as C₂₇H₄₆O₁₁ from the high-resolution MS analysis. Acid hydrolysis of 4 with 5% aqueous H₂SO₄-1,4dioxane (1:1, v/v) liberated D-fucose and D-glucose,³⁾ while enzymatic hydrolysis of 4 with naringinase liberated flourensadiol (8).⁸⁾ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra⁵⁾ of 4 showed a flourensadiol moiety [δ 0.31 (ddlike, 6-H), 0.89 (d, J=6.7 Hz, 15-H₃), 1.07 (ddd-like, 7-H), 1.24, 1.36 (s, 13, 14- H_3), 3.29, 4.16 (d, J=10.1 Hz, 12- H_2)], a β -D-fucopyranosyl moiety [δ 1.47 (d, J=6.4 Hz, 6'-H₃), 4.80 (d, $J=7.7 \,\text{Hz}$, 1'-H)], and a β -D-glucopyranosyl moiety [δ 4.87 (d, J=7.9 Hz, 1"-H)]. In the HMBC experiment of 4, long-range correlations were observed between the 1'-proton of the β -D-fucopyranosyl moiety and the 10-carbon and between the 1"-proton of the β -D-glucopyranosyl moiety and 12-carbon. Furthermore, in the pNOESY experiment, NOE correlations were observed between the following protons: 12-H₂ and 6, 7, 1"-H; 13-H₃ and 8β , 5-H; 14-H₃ and 1, 8β , 9β -H; 15-H₂ and 6-H. On the basis of the above evidence, officinoside D was determined to be $12-O-\beta$ -D-fucopyranosyl flourensadiol 10-O- β -D-glucopyranoside (4).

Experimental

The instruments used to obtain physical data and the experimental conditions for chromatography were the same as described in our previous paper.¹⁾

Isolation of Officinosides A (1), B (2), C (3), and D (4) from the Dried Flowers of *C. officinalis* L. Officinosides A (1), B (2), C (3), and D (4) were isolated from the dried flowers of *C. officinalis* cultivated in Egypt, as described earlier.¹⁾

Officinoside A (1): A white powder, $[\alpha]_{22}^{D2} + 13.0^{\circ}$ (c=0.6, MeOH). IR (KBr): 3432, 1671, 1076, 1038 cm⁻¹. High-resolution positive-ion FAB-MS: Calcd for C₁₉H₃₂O₈Na (M+Na)⁺: 411.1995. Found: 411.2008. ¹H-NMR (500 MHz, pyridine- d_5) δ : 1.13, 1.42, 1.92 (3H each, all s, 12, 11, 13-H₃), 1.43 (3H, d, J=6.6 Hz, 10-H₃), 1.52 (1H, dd, J=3.3, 13.8 Hz, 2 α -H), 1.98 (1H, dd, J=4.0, 13.8 Hz, 4 β -H), 2.05 (1H, br d, J=ca. 14 Hz, 2 β -H), 2.62 (1H, br d, J=ca. 14 Hz, 4 α -H), 3.94 (1H, m, 9-H), 4.49 (1H, m, 3-H), 4.76 (1H, br d, J=ca. 7 Hz, 8-H), 4.87 (1H, d, J=8.4 Hz, 1'-H), 5.76 (1H, br s, 7-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_C : given in Table 1. Negative-ion FAB-MS: m/z 387 (M-H)⁻, 225 (M-C₆H₁₁O₅)⁻. Positive-ion FAB-MS: m/z 411 (M+Na)⁺.

Officinoside B (2): A white powder, $[\alpha]_D^{26} + 1.2^{\circ}$ (c=0.5, MeOH). IR (KBr): 3432, 1670, 1078, 1036 cm⁻¹. High-resolution positive-ion FAB-MS: Calcd for $C_{19}H_{32}O_8Na$ (M+Na)⁺: 411.1995. Found: 411.1981. ¹H-NMR (500 MHz, pyridine- d_5) δ : 1.14, 1.42, 1.90 (3H each, all s, 12, 11, 13-H₃), 1.43 (3H, d, J=6.4 Hz, 10-H₃), 1.52 (1H, dd, J=3.6, 13.8 Hz, 2α -H), 1.97 (1H, dd, J=4.3, 13.8 Hz, 4β -H), 2.06 (1H br d, J=ca. 14 Hz, 2β -H), 2.59 (1H, br d, J=ca. 14 Hz, 4α -H), 4.01 (1H, dd, J=5.2, 6.4 Hz, 9-H), 4.48 (1H, m, 3-H), 4.90 (1H, d, J=8.4 Hz, 1'-H), 4.94 (1H, br d, J=ca. 5 Hz, 8-H), 5.56 (1H, br s, 7-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_C : given in Table 1. Negative-ion FAB-MS: m/z 387 (M-H)⁻. Positive-ion FAB-MS: m/z 411 (M+Na)⁺.

Officinoside C (3): A white powder, $[\alpha]_D^{27} - 7.0^{\circ}$ (c=0.7, MeOH). IR (KBr): 3432, 1655, 1074, 1038 cm⁻¹. High-resolution positive-ion FAB-MS: Calcd for C₂₇H₄₆O₁₁Na (M+Na)⁺: 569.2938. Found: 569.2953. ¹H-NMR (500 MHz, pyridine- d_5) δ : 0.71, 1.39, 1.42 (3H each, all s, 14, 12, 13-H₃), 1.06 (1H, m, 9 α -H), 1.09 (1H, m, 1 α -H), 1.31 (1H, m, 1 β -H), 1.34 (1H, m, 8 β -H), 1.35 (1H, m, 6 α -H), 1.42 (1H, m, 9 β -H), 1.51 (3H, d, J=6.1 Hz, 6"-H₃), 1.57 (1H, m, 5-H), 1.59 (1H, m, 7-H), 1.77 (1H, m, 2 α -H), 1.81 (1H, m, 6 β -H), 1.96 (1H, m, 8 α -H), 2.11 (1H, m, 2 β -H), 4.46 (1H, m, 3-H), 4.79, 6.81 (1H each, both br s, 15-H₂), 4.81 (1H, d, J=7.4 Hz, 1"-H), 5.03 (1H, d, J=7.6 Hz, 1'-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_{c} : given in Table 1.

Negative-ion FAB-MS: m/z 545 (M-H)⁻. Positive-ion FAB-MS: m/z 569 (M+Na)⁺.

Officinoside D (4): A white powder, $[\alpha]_D^{26} - 14.5^{\circ}$ (c=0.3, MeOH). IR (KBr): 3432, 2940, 1167, 1075 cm⁻¹. High-resolution positive-ion FAB-MS: Calcd for C₂₇H₄₆O₁₁Na (M+Na)⁺: 569,2938. Found: 569,2924. ¹H-NMR (500 MHz, pyridine- d_5) δ : 0.31 (1H, dd-like, 6-H), 0.89 (3H, d, J=6.7Hz, 15-H₃), 1.07 (1H, ddd-like, 7-H), 1.24, 1.36 (3H each, both s, 13, 14-H₃), 1.25 (1H, m, 3 α -H), 1.47 (3H, d, J=6.4 Hz, 6'-H₃), 1.56 (2H, m, 2-H₂), 1.62 (1H, m, 8 α -H), 1.65 (1H, m, 9 β -H), 1.72 (1H, m, 3 β -H), 1.92 (1H, m, 9 α -H), 1.95 (1H, m, 4-H), 2.07 (1H, dd-like, 8 β -H), 2.22 (1H, m, 5-H), 2.24 (1H, m, 1-H), 3.29, 4.16 (1H each, both d, J=10.1 Hz, 12-H₂), 4.80 (1H, d, J=7.7 Hz, 1'-H), 4.87 (1H, d, J=7.9 Hz, 1"-H). ¹³C-NMR (125 MHz, pyridine- d_5) δ_c : given in Table 1. Negative-ion FAB-MS: m/z 545 (M-H)⁻, 383 (M-C₆H₁₁O₅)⁻. Positive-ion FAB-MS: m/z 569 (M+Na)⁺.

Acid Hydrolysis of and Officinosides (1—4) A solution of 1—4 (5 mg each) in 5% aq. H₂SO₄–1,4-dioxane (2 ml, 1 : 1, v/v) was heated under reflux for 1 h. After cooling, the reaction mixture was neutralized with Amberlite IRA-400 (OH- form) and the residue was removed by filtration. After removal of the solvent from the filtrate *in vacuo*, the residue was transferred to a Sep-Pak C18 cartridge with H₂O and MeOH. The H₂O eluate was concentrated and the residue was treated with L-cysteine methyl ester hydrochloride (4 mg) in pyridine (0.5 ml) at 60 °C for 1 h. After reaction, the solution was treated with *N*,*O*-bis(trimethylsilyl)trifluoroacetamide (0.2 ml) at 60 °C for 1 h. The supernatant was then subjected to GLC analysis to identify the derivatives of D-glucose (i) from 1—4; D-fucose (ii) from 3 and 4; GLC conditions: column: Supeluco STBTM-1, 30 m×0.25 mm (i.d.) capillary column, column temperature: 230 °C, He flow rate: 15 ml/min, t_R : i: 24.2 min, ii: 17.2 min.

Enzymatic Hydrolysis of Officinoside A (1) A solution of **1** (12 mg) in 0.2 M acetate buffer (pH 4.4, 2.0 ml) was treated with β -glucosidase (Oriental Yeast Co., 20 mg) and the whole mixture was stirred at 38 °C for 48 h. The reaction mixture was poured into EtOH and removal of the solvent under reduced pressure gave a product. The product was purified by normal-phase silica gel column chromatography [1.0 g, CHCl₃–MeOH–H₂O (30:3: 1, lower layer, v/v)] to give (3*S*,*SR*,*8S*,*9ξ*)-5,8-epoxy-6-megastigmene-3,9-diol (**5**, 4.3 mg, 61.5%), which was identified by comparison of the ¹H-NMR data and [α]_D with reported values.⁴

5: An amorphous powder, $[\alpha]_{0}^{23} + 10.6 \,^{\circ}\text{C}$ (*c*=0.1, CHCl₃). IR (film): 3453, 1632, 1078 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 1.17 (3H, d, *J*=6.4 Hz, 10-H₃), 1.19, 1.32, 1.61 (3H, all s, 12, 11, 13-H₃), 1.50 (1H, m), 1.84 (1H, dd, *J*=4.0, 13.6 Hz) (2-H₂), 1.75 (1H, ddd, *J*=2.0, 4.0, 13.6 Hz), 2.15 (1H, ddd-like) (4-H₂), 3.81 (1H, dd, *J*=3.1, 6.4 Hz, 9-H), 4.24 (1H, dd-like, 3-H), 4.71 (1H, br d, *J*=*ca*. 5 Hz, 8-H), 5.37 (1H, br s, 7-H). ¹³C-NMR (125 MHz, CDCl₃) δ_{C} : given in Table 1.

Preparation of the (*R***)-MTPA Ester (5a) and the (***S***)-MTPA Ester (5b) from (3***S*,**5***R*,**8***S*,**9***§***)-5,8-Epoxy-6-megastigmene-3,9-diol (5)** A solution of **5** (0.8 mg) in CH₂Cl₂ (0.5 ml) was treated with (*R*)-MTPA (50 mg) in the presence of EDC·HCl (50 mg) and 4-DMAP (20 mg), and the mixture was stirred at 50 °C under an N₂ atmosphere for 2 h. It was poured into ice-water and the whole was extracted with AcOEt. The AcOEt extract was successively washed with 5% aqueous HCl, aqueous saturated NaHCO₃, and brine, then dried over MgSO₄ and filtered. Removal of the solvent from the filtrate under reduced pressure furnished a residue, which was purified on a normalphase silica gel column [0.6 g, *n*-hexane–AcOEt (5 : 1, v/v) to give **5a** (1.1 mg, 47%). Through a similar procedure, **5b** (0.9 mg, 44%) was prepared from **5** (0.7 mg) by the use of (*S*)-MTPA (50 mg), EDC·HCl (50 mg), and 4-DMAP (20 mg).

5a: A white powder. ¹H-NMR (500 MHz, CDCl₃) δ : 1.17, 1.23, 1.28 (3H each, all s, 12, 13, 11-H₃), 1.26 (3H, d, J=5.8 Hz, 10-H₃), 1.68 (1H, dd, J=3.8, 15.2 Hz), 2.05 (1H, dd-like) (2-H₂), 1.82 (1H, dd, J=3.8, 15.2 Hz), 2.38 (1H, dd-like) (4-H₂), 3.54, 3.58 (3H each, both s, MTPA-OMex₂), 5.54 (1H, dd-like, 8-H), 5.70 (1H, br s, 7-H), 7.40—7.55 (10H).

5b: A white powder. ¹H-NMR (500 MHz, CDCl₃) δ : 0.86, 1.20, 1.25 (3H each, all s, 12, 11, 13-H₃), 1.52 (3H, d, J=5.8 Hz, 10-H₃), 1.54 (1H, m), 1.93 (1H, dd-like) (2-H₂), 1.89 (1H, dd, J=4.1, 15.1 Hz), 2.49 (1H, dd-like) (4-H₂), 3.58 (6H, s, MTPA-OMex₂), 5.52 (1H, dd-like, 8-H), 5.69 (1H, br s, 7-H), 7.41-7.55 (10H).

Enzymatic Hydrolysis of Officinoside B (2) A solution of **2** (13 mg) in 0.2 M acetate buffer (pH 4.4, 2.0 ml) was treated with β -glucosidase (Oriental Yeast Co., 20 mg) and the whole mixture was stirred at 38 °C for 48 h. The reaction mixture was poured into EtOH and removal of the solvent under reduced pressure gave a product. The product was purified by normal-phase silica gel column chromatography [1.0 g, CHCl₃–MeOH–H₂O (30:3: 1, lower layer, v/v)] to give (3*S*,5*R*,8*R*,9*ξ*)-5,8-epoxy-6-megastigmene-3,9-

diol (6, 3.5 mg, 46.2%).

6: An amorphous powder, $[\alpha]_D^{25} - 61.1^\circ$ (*c*=0.1, CHCl₃). IR (film): 3453, 1632, 1028 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ: 1.18 (3H, d, *J*=6.4 Hz, 10-H₃), 1.18, 1.33, 1.60 (3H, all s, 12, 11, 13-H₃), 1.47 (1H, m), 1.82 (1H, dd, *J*=3.7, 14.0 Hz) (2-H₂), 1.75 (1H, ddd, *J*=1.8, 4.0, 14.0 Hz), 2.15 (1H, ddd-like) (4-H₂), 3.57 (1H, dd-like, 9-H), 4.22 (1H, dd-like, 3-H), 4.52 (1H, br d, *J*=*ca*. 6 Hz, 8-H), 5.30 (1H, br s, 7-H). ¹³C-NMR (125 MHz, CDCl₃) $\delta_{\rm C}$: given in Table 1.

Preparation of the (R)-MTPA Ester (6a) and the (S)-MTPA Ester (6b) from (3S,5R,8R,9\xi)-5,8-Epoxy-6-megastigmene-3,9-diol (6) A solution of **6** (1.0 mg) in CH₂Cl₂ (0.5 ml) was treated with (*R*)-MTPA (50 mg) in the presence of EDC·HCl (50 mg) and 4-DMAP (20 mg), and the mixture was stirred at 50 °C under an N₂ atmosphere for 2 h. It was poured into ice-water and the whole was extracted with AcOEt. The AcOEt extract was successively washed with 5% aqueous HCl, aqueous saturated NaHCO₃, and brine, then dried over MgSO₄ and filtered. Removal of the solvent from the filtrate under reduced pressure furnished a residue, which was purified on a normalphase silica gel column [0.6 g, *n*-hexane–AcOEt (5 : 1, v/v) to give **6a** (0.5 mg, 17%). Through a similar procedure, **6b** (1.4 mg, 48%) was prepared from **6** (1.0 mg) by the use of (*S*)-MTPA (50 mg), EDC·HCl (50 mg), and 4-DMAP (20 mg).

6a: A white powder. ¹H-NMR (500 MHz, CDCl₃) δ : 1.01, 1.11, 1.14 (3H each, all s, 11,12, 13-H₃), 1.25 (3H, d, J=5.8 Hz, 10-H₃), 1.76 (1H, dd, J=3.8, 15.2 Hz), 1.80 (1H, dd-like) (2-H₂), 1.76 (1H, dd, J=3.8, 15.2 Hz), 1.80 (1H, dd-like) (2-H₂), 1.76 (1H, dd, J=3.8, 15.2 Hz), 1.99 (1H, dd-like) (4-H₂), 3.53, 3.57 (3H each, both s, MTPA-OMex₂), 5.38 (1H, dd-like, 8-H), 5.24 (1H, br s, 7-H), 7.38—7.55 (10H).

6b: A white powder. ¹H-NMR (500 MHz, CDCl₃) δ : 0.68, 0.82, 1.35 (3H each, all s, 11, 12, 13-H₃), 1.37 (3H, d, J=5.8 Hz, 10-H₃), 1.50 (1H, m), 1.64 (1H, dd-like) (2-H₂), 1.96 (1H, dd, J=4.1, 15.1 Hz), 2.11 (1H, dd-like) (4-H₂), 3.56 (6H, s, MTPA-OMex₂), 5.06 (1H, br s, 7-H), 5.42 (1H, dd-like, 8-H), 7.36–7.52 (10H).

Enzymatic Hydrolysis of Officinoside C (3) A solution of **3** (10 mg) in 0.2 M acetate buffer (pH 4.0, 2.0 ml) was treated with naringinase (Sigma Co., Ltd., 20 mg) and the whole mixture was stirred at 40 °C for 24 h. The reaction mixture was poured into EtOH and removal of the solvent under reduced pressure gave a product. The product was purified by normal-phase silica gel column chromatography [1.0 g, CHCl₃–MeOH–H₂O (30:3:1, lower layer, v/v)] to give selin-4(15)-en-3 β ,11-diol (7, 4.0 mg, 91.8%), which were identified by comparison of their physical data ([α]_D, IR, ¹H-NMR, ¹³C-NMR) with reported values.⁷)

Preparation of the (*R***)-MTPA Ester (7a) and the (***S***)-MTPA Ester (7b) from Selin-4(15)-en-3\beta,11-diol (7)** A solution of 7 (0.6 mg) in CH₂Cl₂ (0.5 ml) was treated with (*R*)-MTPA (50 mg) in the presence of EDC · HCl (50 mg) and 4-DMAP (20 mg), and the mixture was stirred at 50 °C under an N₂ atmosphere for 3 h. It was poured into ice-water and the whole was extracted with AcOEt. The AcOEt extract was successively washed with 5% aqueous HCl, aqueous saturated NaHCO₃, and brine, then dried over MgSO₄ and filtered. Removal of the solvent from the filtrate under reduced pressure furnished a residue, which was purified on a normal-phase silica gel column [0.6 g, *n*-hexane–AcOEt (5 : 1, v/v) to give 7a (0.4 mg, 35%). Through a similar procedure, 7b (0.4 mg, 19%) was prepared from 7 (1.1 mg) by the use of (*S*)-MTPA (50 mg), EDC · HCl (50 mg), and 4-DMAP (20 mg).

7a: A white powder. ¹H-NMR (500 MHz, CDCl₃) δ : 0.72 (3H, s, 14-H₃), 0.85 (2H, m, 9-H), 0.87 (2H, m, 1-H₂), 1.20 (6H, s, 12, 13-H₃), 1.64 (1H, dd-like, 5-H), 1.66 (2H, m, 7-H), 1.81 (2H, m, 6-H₂), 1.69 (1H, dd-like), 2.04 (1H, m) (2-H₂), 3.61 (3H, s, MTPA-OMe), 4.51, 4.66 (1H each, both br s, 15-H₃), 5.40 (1H, m, 3-H), 7.38–7.58 (5H).

7b: A white powder. ¹H-NMR (500 MHz, CDCl₃) δ : 0.71 (3H, s, 14-H₃), 0.85 (2H, m, 9-H), 0.86 (2H, m, 1-H₂), 1.21 (6H, s, 12, 13-H₃), 1.61 (1H, dd-like, 5-H), 1.66 (2H, m, 7-H), 1.81 (2H, m, 6-H₂), 1.66 (1H, dd-like), 2.02 (1H, m) (2-H₂), 3.56 (3H, s, MTPA-OMe), 4.61, 4.95 (1H each, both br s, 15-H₂), 5.39 (1H, m, 3-H), 7.38–5.58 (5H).

Enzymatic Hydrolysis of Officinoside D (4) A solution of 4 (20 mg) in 0.2 M acetate buffer (pH 4.0, 2.0 ml) was treated with naringinase (40 mg) and the whole mixture was stirred at 40 °C for 24 h. The reaction mixture was poured into EtOH and removal of the solvent under reduced pressure gave a product. The product was purified by normal-phase silica gel column chromatography [1.0 g, CHCl₃–MeOH–H₂O (30:3:1, lower layer, v/v)] to give flourensadiol (**8**, 7.6 mg, 87%), which was identified by comparison of their physical data ([α]_D, IR, ¹H-NMR, ¹³C-NMR) with reported values.⁸⁾

References and Notes

 Part III: Yoshikawa M., Murakami T., Kishi A., Kageura T., Matsuda H., Chem. Pharm. Bull., 49 (7), 863—870 (2001). 978

- a) Yoshikawa M., Morikawa T., Murakami T., Toguchida I., Harima S., Matsuda H., *Chem. Pharm. Bull.*, **47**, 340–345 (1999); b) Yoshikawa M., Morikawa T., Toguchida I., Harima S., Matsuda H., *ibid.*, **48**, 651–656 (2000).
- Hara S., Okabe H., Mihashi K., Chem. Pharm. Bull., 34, 1843—1845 (1986).
- Behr D., Wahlberg I., Nishida T., Enzell C. R., Acta Chem. Scand. B, 33, 701-704 (1979).
- The ¹H- and ¹³C-NMR spectra of 1—8 were assigned on the basis of homo- and hetero-correlation spectroscopy (¹H-¹H, ¹H-¹³C COSY),

homo- and hetero-nuclear Hartmann–Hahn spectroscopy ($^{1}H-^{1}H$, $^{1}H-^{13}C$ HOHAHA), heteronucler multiple bond correlation (HMBC), phase-sensitive nuclear Overhauser effect spectroscopy (pNOESY) experiments.

- Ohtani I., Kusumi T., Kashman H., Kakisawa H., J. Am. Chem. Soc., 113, 4092–4096 (1991).
- Pascual-T. De J., Bellido I. S., Gonzales M. S., *Tetrahedron*, 36, 371– 376 (1980).
- 8) Kingston D. G. I., Phytochemistry, 14, 2033-2037 (1975).