A Convenient Synthesis of Substituted 3-Alkoxycarbonyl- β, γ-unsaturated Esters with Predominant Z-Selectivity

Yanchang Shen and Yuming Zhang
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People's Republic of China

Received 31 October 2002

Abstract

The consecutive reaction of bis[2,2,2-trifluoroethyl]phosphite with sodium hydride, dimethyl maleate, and aldehydes gives 3-alkoxycarbonyl- β, γ-unsaturated esters with predominant Z-selectivity in 62-94\% yields (Z/E = 85-60:15-40). The Z- and E-isomer can be separated conveniently by column chromatography. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:276-279, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc. 10142

INTRODUCTION

In the past few decades the use of the Horner-Wadsworth-Emmons (HWE) reaction in organic synthesis has increased significantly [1] and it was employed in a variety of versatile synthetic routes, enabling the synthesis of many functionalized compounds, particularly of naturally occurring products [2]. However, the usual HWE reagents with alkylphosphono groups produce thermodynamically favored E-olefins [le]. For the purpose of preparing Z-olefins, several attempts have been made by changing of reaction conditions or phosphonate reagents, but the success was still limited

[^0][3]. Among them, the methods of Still [3a] and Ando [3c-f] have been shown to be the most versatile and selective. The former used methyl [bis(trifluoroethyl)phosphono]acetate in the HWE reaction, while the latter employed ethyl (diarylphosphono)acetates as reagents.

RESULTS AND DISCUSSION

In recent years, 3-alkoxycarbonyl- β, γ-unsaturated esters have attracted much interest because they are useful intermediates for the synthesis of substituted tetrahydrofurans, which are essential components in a variety of naturally occurring bioactive compounds [4]. As part of our continuing investigation of synthetic application of consecutive reaction of phosphorus compounds in organic synthesis [5], herein we report a convenient synthesis of substituted 3 -alkoxycarbonyl- β, γ-unsaturated esters with predominant Z-selectivity by using bis[2,2,2trifluoroethyl]phosphite as a starting material via sequential transformations. The reaction sequence is shown in Scheme 1.

Bis[2,2,2-trifluoroethyl]phosphite (1) was treated with sodium hydride in tetrahydrofuran (THF) at $25^{\circ} \mathrm{C}$ and the resulting carbanion 2 reacted with dimethyl maleate 3 to form the intermediate 4, which was further reacted with aldehydes, followed by elimination of phosphonate anion, giving substituted 3-alkoxycarbonyl- β, γ-unsaturated esters (6) with predominant Z -selectivity in $62-94 \%$ yields $(Z / E=85-60: 15-40)$. The Z- and E-isomer can be

SCHEME 1
separated conveniently by column chromatography. The results are summarized in Table 1.

The chemical shift of vinyl proton in E-isomer of substituted 3-alkoxycarbonyl- β, γ-unsaturated esters has been reported in the range of $\delta=7.83-8.00$ ppm [6]. Thus, we assigned the chemical shift of vinyl proton in the range of $\delta=7.82-7.91$ as E-isomer, while that in the range of $\delta=6.73-6.89$ as Z -isomer. For the further confirmation of the configuration of the products we performed the NOESY spectrum of the major product of $\mathbf{6 b}$. It showed that the vinyl proton is cis with respect to the $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ group (Z-isomer).

EXPERIMENTAL

All boiling points are uncorrected. The IR spectra of liquid products were determined as films on a Digilab FTS-20E spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AM-300 (300 MHz) spectrometer (values in ppm from SiMe_{4}, in $\mathrm{CDCl}_{3} ; J$ values are given in Hz). Mass spectra were measured on a Finnigan GC-MS-4021 mass spectrometer.

TABLE 1 Substituted 3-Alkoxycarbonyl- β, γ-unsaturated Esters Prepared

	R	Yield (\%)	Ratio (Z/E)
$\mathbf{6 a}$	$4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	90	$85: 15$
6b	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	94	$82: 18$
$\mathbf{6 c}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	76	$81: 19$
6d	$\mathrm{C}_{6} \mathrm{H}_{5}$	80	$78: 22$
$6 \mathbf{e}$	$\mathrm{E}-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}$	93	$71: 29$
$\mathbf{6 f}$	$\mathrm{E}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}$	86	$68: 32$
$\mathbf{6 g}$	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	62	$60: 40$

[^1]Bis(2,2,2-trifluoroethyl)phosphite (1) was prepared according to the known method [7].

General Procedure for the Synthesis of 3-Alkoxy- β, γ-unsaturated Esters (6)

Bis(2,2,2-trifluoroethyl)phosphite (2.5 mmol) was added slowly with stirring to a suspension of sodium hydride $[\mathrm{NaH}, 0.1 \mathrm{~g}$ (60%), 2.5 mmol$]$ in THF (20 ml) at $20^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was stirred for 0.5 h at $20^{\circ} \mathrm{C}$ and dimethyl maleate ($0.34 \mathrm{~g}, 2.5 \mathrm{mmol}$) was slowly added. The mixture was further stirred for 0.5 h and the aldehyde (2 mmol) was added. After addition, the mixture was stirred further for 3 h and HCl solution ($2 \mathrm{M}, 30 \mathrm{ml}$) was added. The reaction mixture was extracted with ethyl acetate ($3 \times$ 20 ml). The combined organic layer was washed with brine (20 ml) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave a residue, which was purified by flash chromatography on silica gel, eluting with light petroleum ether ($\mathrm{bp} 60-90^{\circ} \mathrm{C}$)/ethyl acetate ($10: 1$) to give the product $\mathbf{6}$. The component in front was identified as E-isomer (minor product), while the one behind was the Z -isomer (major product). In the cases of $\mathbf{6 e}$ and $\mathbf{6 f}$, the reverse is true.

Z-Methyl 4-(4-Dimethylaminophenyl)-3-methoxy-carbonylbut-3-enoate (Z-6a). Yield: 77\%; oil. IR (neat): $\nu=2950,1740,1710,1610,1530,1440,1360$, 1220, 1190, 1170, $810 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.62$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.71 ($\mathrm{s}, 3 \mathrm{H}$), 3.69 ($\mathrm{s}, 3 \mathrm{H}$), 3.42 $(\mathrm{s}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}: m / z(\%)=278\left(\mathrm{M}^{+}+1,20\right)$, $277\left(\mathrm{M}^{+}, 100\right), 218$ (56), 159 (32), 158 (94). Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}$ (277.32): C, 64.97; H, 6.91; N, 5.05. Found: C, 64.74; H, 6.90; N, 4.83.

E-Methyl 4-(4-Dimethylaminophenyl)-3-methoxy-carbonylbut-3-enoate (E-6a). Yield: 13\%; oil. IR (neat): $\nu=2960,1740,1720,1700,1610,1530$, 1440, 1240, 1200, 1170, 1080, $810 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=7.82$ (s, 1 H), 7.31 (d, $J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.69$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.80 ($\mathrm{s}, 3 \mathrm{H}$), 3.74 (s, $3 \mathrm{H}), 3.63(\mathrm{~S}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 6 \mathrm{H})$. MS: $\mathrm{m} / \mathrm{z}(\%)=278$ $\left(\mathrm{M}^{+}+1,17\right), 277\left(\mathrm{M}^{+}, 93\right), 218$ (56), 159 (35), 158 (100). Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}$ (277.32): C, 64.97; H, 6.91; N, 5.05. Found: C, 64.62; H, 7.00; N, 5.00.

Z-Methyl 4-(4-Methylphenyl)-3-Methoxycarbonyl-but-3-enoate (Z-6b). Yield: 77%; bp $120^{\circ} \mathrm{C} / 0.5$ mm Hg. IR (neat): $\nu=2950,1740,1710,1440$, 1240, 1210, 1170, $1130 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=7.19$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.46$
$(\mathrm{d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}: m / z(\%)=248$ ($\mathrm{M}^{+}, 49$), 216 (45), 188 (30), 129 (100), 115 (28), 59 (18). Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$ (248.27): C, $67.73 ; \mathrm{H}$, 6.50. Found: C, 67.62; H, 6.50.

E-Methyl 4-(4-Methylphenyl)-3-methoxycarbonyl-but-3-enoate (E-6b) [8]. Yield: 17\%; oil. IR (neat): $\nu=3030,2950,1740,1710,1640,1610,1510,1440$, 1270, 1200, 1170, $1000 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right):$ $\delta=7.87$ (s, 1H), 7.25 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}$, 2H), 2.36 ($\mathrm{s}, 3 \mathrm{H}$). MS: $\mathrm{m} / \mathrm{z}(\%)=248\left(\mathrm{M}^{+}, 70\right), 216$ (46), 216 (50), 129 (100), 115 (28), 59 (16).

Z-Methyl 4-(4-Chlorophenyl)-3-methoxycarbonyl-but-3-enoate (Z-6c). Yield: 58%; bp $128^{\circ} \mathrm{C} / 0.5 \mathrm{~mm}$ Hg. IR (neat): $\nu=2950,1740,1720,1590,1490$, 1440, 1240, 1210, 1170, $1020 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64$ $(\mathrm{s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}: m / z(\%)=270\left(\mathrm{M}^{+}+2,25\right)$, 268 ($\mathrm{M}^{+}, 70$), 236 (81), 151 (49), 149 (91), 130 (38), 115 (100), 59 (57). Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClO}_{4}$ (268.69): C, 58.11; H, 4.88. Found: C, 58.10; H, 4.94.

E-Methyl 4-(4-Chlorophenyl)-3-methoxycarbonyl-but-3-enoate (E-6c) [8]. Yield: 15\%; oil. IR (neat): $\nu=3000,2950,1740,1720,1640,1590,1490,1440$, 1330, 1280, 1200, 1170, 1090, $1010 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=7.84(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), 7.27 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.82 (s, 3 H), 3.73 (s , $3 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}: m / z(\%)=270\left(\mathrm{M}^{+}+2,35\right)$, 268 (M^{+}, 97), 237 (62), 236 (91), 208 (62), 151 (46), 149 (95), 130 (37), 115 (100), 59 (46).

Z-Methyl 4-(Phenyl)-3-methoxycarbonylbut-3-enoate (Z-6d) [9]. Yield: 62\%; oil. IR (neat): $\nu=3030$, 2950, 1740, 1720, 1440, 1245, 1210, 1170, 1130, 700 cm^{-1}. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=7.25-7.50(\mathrm{~m}, 5 \mathrm{H})$, 6.87 (s, 1H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H})$. MS: $m / z(\%)=234\left(\mathrm{M}^{+}, 76\right), 203$ (63), 202 (64), 174 (24), 116 (39), 115 (100), 91 (19).

E-Methyl 4-(Phenyl)-3-methoxycarbonylbut-3-enoate (E-6d) [8]. Yield: 18\%; oil. IR (neat): $\nu=3060$, 2950, 1740, 1710, 1640, 1490, 1450, 1440, 1330, 1270, 1220, 1200, 1170, $1100 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=7.91(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 5 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.74$ $(\mathrm{s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}: m / z(\%)=234\left(\mathrm{M}^{+}, 49\right), 203$ (41), 202 (57), 174 (28), 116 (39), 115 (100), 91 (19), 59 (15).

Z-Methyl 3-Methoxycarbonylhepta-3,5-dienoate (Z-6e). Yield: 67\%; oil. IR (neat): $\nu=2950,1740$, 1720, 1640, 1440, 1230, 1200, 1180, $980 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$

NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): ~ \delta=7.14$ (ddq, $J=14.9,11.1$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.42$ (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-6.10(\mathrm{~m}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 1.82$ (dd, $J=6.9,1.5 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}: m / z(\%)=199\left(\mathrm{M}^{+}+1\right.$, 19), 198 ($\mathrm{M}^{+}, 55$), 183 (23), 167 (100), 139 (18), 79 (15). Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$ (198.21): $\mathrm{C}, 60.59 ; \mathrm{H}$, 7.12. Found: C, 60.44; H, 7.17.

E-Methyl 3-Methoxycarbonylhepta-3,5-dienoate (E-6e). Yield: 26\%; oil. IR (neat): $\nu=2960,1740$, 1710, 1650, 1440, 1300, 1250, 1200, 1170, 1090, 780 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=7.30(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10-7.35$ (m, 2H), 3.73 (s, 3H), 3.67 (s, 3H), 3.41 (s, 2H), 1.86 (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$. MS: m / z $(\%)=199\left(\mathrm{M}^{+}+1,24\right), 198\left(\mathrm{M}^{+}, 46\right), 183(21), 167$ (100), 139 (16). Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$ (198.21): C, 60.59; H, 7.12. Found: C, 60.29; H, 7.26.

Z-Methyl 5-Phenyl-3-methoxycarbonylhexa-3,5dienoate (Z-6f). Yield: 58\%; oil. IR (neat): $\nu=3020$, 1740, 1700, 1630, 1440, 1290, 1210, 980, 800, 750, $690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): ~ \delta=7.97$ (dd, $J=15.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.45$ $(\mathrm{m}, 3 \mathrm{H}), 6.78(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), 3.69 (s, 3 H), 3.37 ($\mathrm{s}, 2 \mathrm{H}$). MS: $m / z(\%)=260\left(\mathrm{M}^{+}, 30\right), 200(36), 187$ (10), 169 (30), 155 (14), 141 (100), 115 (26). Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$ (260.28): C, 69.22; H, 6.20. Found: C, 69.26; H, 5.97.

E-Methyl 5-Phenyl-3-methoxycarbonylhexa-3,5dienoate (E-6f). Yield: 28\%; oil. IR (neat): $\nu=2950$, 1740, 1710, 1630, 1440, 1290, 1240, 1200, 1170, 1080, 980, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=$ $7.45-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.45(\mathrm{~m}, 3 \mathrm{H}), 6.90-7.00(\mathrm{~m}$, $2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ $(\%)=260\left(\mathrm{M}^{+}, 31\right), 200(39), 169(30), 141(100), 115$ (26). Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$ (260.28): C, 69.22; H, 6.20: Found: C, 69.41; H, 6.26.

Z-Methyl4-(2,4-Dichlorophenyl)-3-methoxycarbo-nylbut-3-enoate (Z-6g). Yield: 37\%; oil. IR (neat): $\nu=2950,1740,1720,1590,1470,1440,1220,1180$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta=7.38(\mathrm{~s}, 1 \mathrm{H}), 7.10-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H})$, 3.49 (s, 2H). MS: $m / z(\%)=302\left(\mathrm{M}^{+}, 3\right), 269(36), 267$ (100), 149 (12). Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4}$ (303.14): C, 51.50; H, 3.99. Found: C, 51.48; H, 3.61.

E-Methyl 4-(2,4-Dichlorophenyl)-3-methoxycarbo-nylbut-3-enoate (E-6g) [10]. Yield: 25\%; oil. IR (neat): $\nu=3090,2960,1740,1720,1590,1470,1440$, 1290, 1210, 1180, $1100 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=7.83(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.25$
(m, 2H), 3.80 (s, 3H), 3.69 (s, 3H), 3.35 (s, 2H). MS: $m / z(\%)=302\left(\mathrm{M}^{+}, 1\right), 269(35), 267(100), 149(24)$.

REFERENCES

[1] (a) Maryanoff, B. E.; Reitz, A. B. Chem Rev 1989, 89, 863; (b) Thompson, S. K.; Heathcock, C. H. J Org Chem 1990, 55, 3386; (c) Williams, J. M. J. (Ed.). The Wittig Reaction and Related Method; Oxford University Press: Oxford, UK, 1996; (d) Burton, D. J.; Yang, Z.; Qiu, W. Chem Rev 1996, 96, 1641; (e) Motoyoshiya, J. Trends Org Chem 1998, 7, 63; (e) Iorga, B.; Eymery, F.; Mouries, V.; Savignac, P. Tetrahedron 1998, 54, 14637.
[2] (a) Paterson, I.; Yeung, K.-S.; Smaill, J. B. Synlett 1993, 774; (b) Paterson, I.; McLeod, M. D. Tetrahedron Lett 1997, 38, 4183; (c) Hulme, A. N.; Howells, G. E. Tetrahedron Lett 1997, 38, 8245; (d) Mulzer, J.; Berger, M. Tetrahedron Lett 1998, 39, 803; (e) Paterson, I.; Yeung, K.-S.; Watson, C.; Ward, R. A.; Wallace, P. A. Tetrahedron 1998, 54, 11935; (f) Burke, S. D.; Hong, J.; Mongin, A. P. J Org Chem 1998, 63, 6952; (g) Mermet-Mouttet, M.-P.; Gabriel, K.; Heissler, D. Tetrahedron Lett 1999, 40, 843; (h) Hanazawa, T.; Inamori, H.; Masuda, T.; Okjamoto, S.; Sato, F. Org Lett 2001, 3, 2205; (i) Pedersen, T. M.; Hansen, E. L.; Kane, J.; Rein, T.; Helquist, P.; Norrby,
P.-O.; Tanner, D. J Am Chem Soc 2001, 123, 9738; (j) Hillier, M. C.; Price, A. T.; Meyers, A. I. J Org Chem 2001, 66, 6037; (k) Vicario, J. L.; Job, A.; Wolberg, M.; Mueller, M.; Enders, D. Org Lett 2002, 4, 1023.
[3] (a) Still, W. C.; Gennari, C. Tetrahedron Lett 1983, 24, 4405; (b) Ando, K. Tetrahedron Lett 1995, 36, 4105; (c) Ando, K. J Org Chem 1997, 62, 1934 and the references cited therein; (d) Ando, K. J Org Chem 1998, 63, 8411; (e) Ando, K. J Org Chem 1999, 63, 8406; (f) Ando, K.; Oishi, T.; Hirama, M.; Ohno, H.; Ibuka, T. J Org Chem 2000, 65, 4745.
[4] (a) Gordaliza, M.; del Corral, J. M. M.; Castro, M. A.; Salinero, M. A.; San Feliciano, A.; Dorado, J. M.; Valle, F. Synlett 1996, 1202 and references cited therein; (b) Perron, F.; Abizafi, K. F. Chem Rev 1989, 89, 1617.
[5] (a) Shen, Y.; Ni, J. J Org Chem 1997, 62, 7260; (b) Shen, Y.; Li, P.; Ni, J.; Sun, J. J Org Chem 1998, 63, 9396; (c) Shen, Y.; Zhang, Z. J Chem Res (s) 1998, 642; (d) Shen, Y.; Jiang, G.-F. Synthesis 2000, 502; (e) Shen, Y.; Wang, G.; Sun, J. J Chem Soc, Perkin Trans 1 2001, 519.
[6] McCombie, S. W.; Luchaco, C. A. Tetrahedron Lett 1997, 38, 5775.
[7] Gibbs, D. E.; Larsen, C. Synthesis 1984, 410.
[8] Linke, S.; Kurz, J.; Lipinski, D.; Gau, W. Leibigs Ann Chem 1980, 542.
[9] El-Assal, C. S.; Shehab, A. H. J Chem Soc 1963, 2983.
[10] Bartmann, E. Ger Offen DE 3010968, Oct. 1, 1981; CA 1982, 96,35864u.

[^0]: Correspondence to: Yanchang Shen; e-mail: shenyc@pub.sioc. ac.cn.
 Contract grant sponsor: National Natural Science Foundation of China.
 Contract grant sponsor: Chinese Academy of Sciences. © 2003 Wiley Periodicals, Inc.

[^1]: ${ }^{\text {a }}$ Isolated yields.
 ${ }^{b}$ Isolated ratios.

