Diselenide- and Disulfide-Mediated Synthesis of Isocoumarins

Sohail A. Shahzad, ${ }^{[a]}$ Claire Venin, ${ }^{[a]}$ and Thomas Wirth* ${ }^{[a]}$

Keywords: Homogeneous catalysis / Cyclization / Diselenides / Isocoumarins

Cyclizations of stilbenecarboxylic acids to the corresponding isocoumarin derivatives using diselenide or disulfide reagents have been developed. By employing bis(triflouroacetoxy)iodobenzene as oxidant for the 6-endo-trig cyclizations

Abstract

a variety of dihydroisocoumarins have been prepared in good yields. This method is capable of forming isocoumarins and dihydroisocoumarin derivatives by a cyclization-elimination route.

Introduction

Selenium-based reagents have established themselves as powerful tools for the functionalizations of alkenes allowing a high degree of selectivity under extremely mild experimental reaction conditions. ${ }^{[1]}$ Organoselenium compounds are utilized as convenient reagents in a variety of organic transformations, promoting a wide range of reactivities including cationic, anionic, radical, oxidative, as well as elimination and rearrangement pathways. ${ }^{[2]}$ Numerous selenium-catalyzed reactions have been developed in organic synthesis, ${ }^{[3]}$ but the use of catalytic selenocyclizations in the synthesis of heterocycles are rare. ${ }^{[4]}$ Perhaps the most important contribution is represented by butenolide synthesis from β, γ-unsaturated acids by using selenium catalysis. ${ }^{[5]}$ More recently, the reaction of β, γ-unsaturated acids to butenolides with hypervalent iodine reagents in the presence of catalytic amounts of diphenyl diselenide has been described by us. ${ }^{[6]}$ Inspired by the reactivity and the subsequent functionalization of selenium electrophiles in cyclization reactions, we focused on the synthesis of isocoumarins. ${ }^{[7]}$ Isocoumarins are natural products exhibiting a broad spectrum of pharmacological activities, such as antifungal, ${ }^{[8]}$ antiallergic, ${ }^{[9]}$ antimicrobial, ${ }^{[10]}$ phytotoxic,,${ }^{[11]}$ Anti-inflammatory, ${ }^{[12]}$ immunomodulatory, ${ }^{[13]}$ cytotoxic, ${ }^{[14]}$ and antiangiogenic effects. ${ }^{[15]}$ The broad range of activities has led to a continued interest in the synthesis of this class of lactones, especially isocoumarins substituted in the 3-position. Considerable efforts have been directed toward the synthesis of isocoumarins via either traditional, ${ }^{[16]}$ electrophilic ${ }^{[17]}$ or transition-metal-catalyzed reactions. ${ }^{[18]}$ Selenium also shares many chemical properties with its neighboring homologue sulfur. Therefore, we also decided to use diphenyl disulfide in the selective synthesis of dihydroisocou-

[^0]marins. Several other routes to dihydroisocoumarins have already been reported together with some biologic activities. ${ }^{[19]}$

Results and Discussion

During the development of a new approach towards the synthesis of isocoumarins and dihydroisocoumarins, stilbenecarboxylic acids were synthesized by coupling of styrenes with methyl 2-iodobenzoate $\mathbf{1}$ using a MizorokiHeck reaction providing stilbene esters $\mathbf{2}$ in good yields. ${ }^{[1 \mathrm{c}, 20]}$ The subsequent hydrolysis with lithium hydroxide in the presence of aqueous methanol provided the corresponding carboxylic acids $\mathbf{3}$ in high yields (Scheme 1).

Scheme 1. Simple sequence for the preparation of carboxylic acids 3.

We have already reported the use of hypervalent iodine compounds as oxidants for a facile in-situ formation of selenium electrophiles from diselenides, ${ }^{[6]}$ but this protocol has not yet been applied to the synthesis of isocoumarins. The key difference in the previous and present examples is the elimination step because elimination was facilitated due to presence of acidic proton in β, γ-butenoic acids. In sharp contrast, there is no active methylene group in stilbenes 3 bearing a carboxylic acid functionality. Clive et al. reported that the reaction of 2-styrylbenzoic acid $\mathbf{3 a}(\mathrm{Ar}=\mathrm{Ph})$ with phenylselenenyl chloride afforded a mixture of dihydroisocoumarin $\mathbf{4 a}$ and a five-membered lactone resulting from a 5-exo cyclization onto the stilbene double bond (Scheme 2). ${ }^{[21]}$

Scheme 2. Cyclization of stilbenecarboxylic acid 3a.

The cyclization of 3a using an excess (2.4 equiv.) of N phenylselenosuccinimide (N-PSS) as a different selenium electrophile was reported to give a mixture of $\mathbf{4 a}$ and 5a, compound $\mathbf{4 a}$ was converted into $\mathbf{5 a}$ by oxidative elimination using m CPBA. ${ }^{[22]}$ Because of the overstoichiometric amounts of N-PPS as an expensive reagent, we developed a rapid catalytic method for the synthesis of isocoumarins from precursors 3. Employing the reaction conditions developed previously, 2-styrylbenzoic acid 3a was cyclized using $5 \mathrm{~mol}-\%$ of diphenyl diselenide and 1.2 equiv. of [bis(triflouroacetoxy)iodo]benzene as oxidant leading to lactones 5a along with traces of $\mathbf{4 a}$ but the rate of the reaction was low (Table 1, entry 1). If the reaction is stopped after 5 min, small amounts of dihydroisocoumarin 4a can be identified with isocoumarin 5a being the main product as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. In order to improve the yield of cyclized products, the amount of the catalyst was examined. An increase to $10 \mathrm{~mol}-\%$ is sufficient to obtain the reaction product in 92% yield (Table 1, entry 3) while larger amounts could not increase the yields further. No reaction was observed in the absence of diphenyl diselenide (Table 1, entry 5).

Table 1. Optimization of reaction conditions.

Entry	PhSeSePh	PhI $\left(\mathrm{OCOCF}_{3}\right)_{2}$ [equiv.]	Time [h]	5a Yield [\%]
1	$5 \mathrm{~mol}-\%$	1.2	1	30
2	$5 \mathrm{~mol}-\%$	2.1	1	30
3	$10 \mathrm{~mol}-\%$	1.2	1	92
4	$15 \mathrm{~mol}-\%$	1.2	1	92
5	-	2.1	10	0

Using the optimized conditions, the protocol was extended to other stilbene derivatives 3 as shown in Table 2. The reaction of stilbenecarboxylic acids bearing naphthyl 3b/3c, tolyl 3d/3e, 4-methoxyphenyl 3f and biphenyl 3g substituents gave the corresponding isocoumarins 5 in high yields. In some cases the dihydroisocoumarin derivatives 4 are obtained as minor side products.

Even with electron-rich substrates such as $\mathbf{3 f}$ rapid conversion took place at room temperature and the corresponding isocoumarin 5 f as single product using only $10 \mathrm{~mol}-\%$ diphenyl diselenide and the hypervalent iodine reagent (Table 2 , entry 5).

Under the same reaction conditions conversion of initially formed dihydroisocoumarins $\mathbf{4 b}, \mathbf{4 c}$, and $\mathbf{4 e}$ into isocoumarins $\mathbf{5 b}, \mathbf{5 c}$, and $\mathbf{5 e}$ took place when the reaction time was extended up to 16 hours (Table 2, entries $1-2,4-6$). It was found that quite long reaction times were required to

Table 2. Different substrates $\mathbf{3}$ for isocoumarin synthesis.
Entry
[a] 4\% dihydroisocoumarin 4c was also isolated. [b] Reaction time 1 h .
accomplish the synthesis of isocomarins. The corresponding dihydroisocoumarins can also be isolated by preparative TLC if the reaction is stopped after a short period (520 min). The dihydroisocoumarins $\mathbf{4 a}$ and $\mathbf{4 d}$ have an anti relation of the substituents due to the anti addition to the E-configured double bond. ${ }^{[21]}$

A selective reaction to dihydroisocoumarins can be performed by selecting different electrophiles while maintaining the hypervalent iodine reagent as oxidant. When the reaction was carried out using dimethyl diselenide instead of diphenyl diselenide the dihydroisocoumarin derivative $\mathbf{6 a}$ (Scheme 3) is obtained as single product in almost quantitative yield under very mild reaction condition within five minutes (Table 3, entry 1). This indicates that the substituent on the selenium atom is strongly influencing the subsequent reactivity of the selenide. However, dimethoxymethyl diselenide and diphenyl ditelluride failed completely in this

Scheme 3. Selective synthesis of dihydroisocoumarins 6.
reaction. The use of hypervalent iodine reagents as the only electrophile to activate the double bond was also unsuccessful and resulted in decomposition.

Table 3. Selective synthesis of dihydroisocoumarins $\mathbf{6}$.

Entry	Reagent (1.2 equiv.)	Time [min]	3	X	Product yield [\%]
1	MeSeSeMe	5	$3 \mathrm{e} \mathrm{R}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$	SeMe	6a 97
2	PhSSPh	60	3a $\mathrm{R}=\mathrm{Ph}$	SPh	6b 75
3	PhSSPh	60	3a $\mathrm{R}=\mathrm{Ph}$	SPh	6b $5^{[a]}$
4	PhSSPh	60	3b R = 1-naphthyl	SPh	6c 66
5	PhSSPh	60	$3 \mathrm{R}=4-\mathrm{Ph}-\mathrm{C}_{6} \mathrm{H}_{4}$	SPh	6d 57

[a] $\mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}$ (2.0 equiv.).
In order to extend the scope of this method and the structural variety of the dihydroisocoumarin derivatives $\mathbf{6}$, we also investigated diphenyl disulfide and hypervalent iodine compounds as reagent combination to perform such cyclizations. Also the sulfur electrophiles led to a selective 6 -endo-trig cyclization and formation of dihydroisocoumarins. The reaction of three stilbenecarboxylic acids 3a, 3b and 3 g was examined using diphenyl disulfide and [bis(trifluoroacetoxy)iodo]benzene and good yields of new dihydroisocoumarin derivatives 6 were obtained (Table 3, entries 2, 4, 5). Furthermore, the results in Table 3, entry 3 also suggest that an excess of hypervalent iodine is detrimental for the cyclization as the disulfide is further irreversibly oxidized, whereas an excess of hypervalent iodine reagent is tolerated using diphenyl diselenide as catalyst (Table 1, entries 1 and 2).

The catalytic cycle is initiated by the oxidation of diphenyl diselenide with the hypervalent iodine reagent to form phenylselenenyl trifluoroacetate 7 (Scheme 4). Electrophile 7 then reacts with the stilbenecarboxylic acid $\mathbf{3 a}$ in a cyclization reaction to yield compound $\mathbf{4 a}$. The selenide in lactone $\mathbf{4 a}$ is then activated by [bis(trifluoroacetoxy)iodo]benzene and intermediate $\mathbf{8}$ eliminates by forming isocoumarin 5a.

Scheme 4. Proposed catalytic cycle.

Conclusions

In conclusion, a simple and inexpensive catalytic method has been developed to effect the conversion of stilbenecarboxylic acids to the corresponding isocoumarins, seleno- as well as thio-dihydroisocoumarins. The use of hypervalent iodine compounds as oxidants to form selenium electrophiles has shown unique reactivity in the synthesis of isocoumarins. The cyclization is accomplished by mixing a solution of the substrate with diphenyl diselenide and [bis(trifluoroacetoxy)iodo]benzene. Several dihydroisocoumarin derivatives have also been synthesized. The methodology is straightforward, the reaction conditions are mild and the products are formed in good yields.

Experimental Section

1-Vinylnaphthalene: A mixture of $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{Br}(12.9 \mathrm{mmol}, 4.61 \mathrm{~g})$ and $\mathrm{KO} t \mathrm{Bu}(14 \mathrm{mmol}, 1.57 \mathrm{~g})$ in dry toluene $(30 \mathrm{~mL})$ stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temp. for 4 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ followed by addition of 1 -naphthaldehyde ($11.8 \mathrm{mmol}, 1.84 \mathrm{~g}$). The reaction mixture was stirred overnight at room temp. The solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography using hexane as eluent to yield ($11.8 \mathrm{mmol}, 1.81 \mathrm{~g}$, quantitative) 1 -vinylnaphthalene as colorless oil. The spectroscopic data are in agreement with literature data. ${ }^{[23]}$
GP1: General Procedure for the Synthesis of 2-Substituted Benzoates 2: $:^{[1 \mathrm{c}, 20]}$ A mixture of methyl 2-iodo benzoate ($15 \mathrm{mmol}, 4.0 \mathrm{~g}$), styrene ($18 \mathrm{mmol}, 2.1 \mathrm{~mL}$), triethylamine ($32 \mathrm{mmol}, 4.4 \mathrm{~mL}$), palladium acetate $(0.48 \mathrm{mmol}, 323 \mathrm{mg})$ and triphenylphosphane $(0.96 \mathrm{mmol}, 251 \mathrm{mg})$ were heated under reflux at $100^{\circ} \mathrm{C}$ for 5 h . Solid products were isolated by diluting the reaction mixtures with 10% hydrochloric acid (200 mL) with stirring to dissolve the salts and excess amine. Finally, the residue was purified by column chromatography (EtOAc/hexane, 1:12) to give products in good yields.
Methyl 2-[(E)-2-Phenylethenyl]benzoate (2a): According to GP1 compound 2a was obtained as yellow oil in 87% yield (13.07 mmol , 3.11 g) after purification. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.04$ (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, C H=\mathrm{CH}-\mathrm{Ph}), 7.98(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H), $7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), 7.55 (dt, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2$ $\mathrm{H}, \operatorname{Ar}-H), 7.36(\mathrm{dt}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H), 7.33-7.32(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{Ar}-H), 7.06(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{Ph}), 3.97(\mathrm{~s}, 3 \mathrm{H}$, COOCH_{3}) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.9,139.3$, $137.5,132.2,131.5,130.7,128.7(2 \times$ C), 128.6, 127.9, 127.5, 127.2, 127.0, $126.9(2 \times \mathrm{C}), 52.2 \mathrm{ppm}$. IR (KBr): $\tilde{v}=3061,3024,2949$, $2839,1718,1598,1584,1565,1495,1480,1447,1433,1293,1271$, 1250, 1189, 1131, 1077, 1016, 964, 761, 743, 705, $691 \mathrm{~cm}^{-1}$. HRMS (ES): $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}: 256.1332$; found 256.1331. The spectroscopic data are in agreement with literature data. ${ }^{[24]}$
Methyl 2-[(E)-2-(1-Naphthyl)ethenyl]benzoate (2b): According to GP1 compound 2b was obtained as light yellow viscous oil in 93% yield ($14 \mathrm{mmol}, 4.03 \mathrm{~g}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.15(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.91(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, C H=\mathrm{CH}), 7.88$ (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.79-7.71(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.68$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=C H$), $7.49-7.40(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.28(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.9$ (C=O), 139.6 (C), 135.0 (C), 133.8
(C), $132.3(\mathrm{CH}), 131.5(\mathrm{C}), 130.7(\mathrm{CH}), 130.6(\mathrm{CH}), 128.8(\mathrm{C})$, $128.7(\mathrm{CH}), 128.5(2 \times \mathrm{CH}), 128.3(\mathrm{CH}), 127.4(\mathrm{CH}), 127.3(\mathrm{CH})$, $126.1(\mathrm{CH}), 125.8(\mathrm{CH}), 124.2(\mathrm{CH}), 123.8(\mathrm{CH}), 52.2\left(\mathrm{OCH}_{3}\right)$ ppm. IR (KBr): $\tilde{v}=3061,2947,1718,1596,1568,1480,1432,1282$, 1259, 1246, 1130, 1076, 963, 795, $775 \mathrm{~cm}^{-1}$. HRMS (ES): m / z [M $\left.+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}: 306.1489$; found 306.1491.
Methyl 2-I(E)-2-(2-Naphthyl)ethenyl|benzoate (2c): According to GP1 compound $\mathbf{2 c}$ was obtained as colourless crystals in 87% yield ($13.06 \mathrm{mmol}, 3.76 \mathrm{~g}$); m.p. $77^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=8.06$ (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-n a p h), 7.89$ (dd, $J=7.9$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.82$ (s, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.78-7.71$ (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.48(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $7.41-7.38$ (m, 2 H, Ar-H), 7.28 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.12(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-$ naph), $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.9,139.3,135.0,133.7,133.2,132.2,131.6,130.8,128.6$, 128.4, 128.1, $127.7(2 \times \mathrm{C}), 127.21,127.05,127.0,126.3,126.0$, 123.9, $52.2\left(\mathrm{OCH}_{3}\right) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3055,2949,1717,1627$, 1596, 1566, 1482, 1432, 1266, 1242, 1130, 1077, $961,814,741 \mathrm{~cm}^{-1}$. HRMS (ES): $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}: 306.1489$; found 306.1493.
Methyl 2-I(\boldsymbol{E})-2-(3-Methylphenyl)ethenyl|benzoate (2d): According to GP1 compound $\mathbf{2 d}$ was obtained as light yellow viscous oil in 79% yield ($11.9 \mathrm{mmol}, 3.0 \mathrm{~g}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.90(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, C H=\mathrm{CH}-\mathrm{Ar}), 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $A r-H), 7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.43(\mathrm{dt}, J=7.9,1.0 \mathrm{~Hz}, 1$ H, Ar-H), 7.29-7.22 (m, 3 H, Ar-H), $7.17(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-$ H), $7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 6.91(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, A r$ H), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH} \mathrm{C}_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.9(\mathrm{C}=\mathrm{O})$, $139.4(\mathrm{C}), 138.2(\mathrm{C}), 137.4$ (C), $132.2(\mathrm{CH}), 131.7(\mathrm{CH}), 130.7(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{C} \&$ $\mathrm{CH}), 127.5(\mathrm{CH}), 127.2(\mathrm{CH}), 127.1(\mathrm{CH}), 127.0(\mathrm{CH}), 124.2(\mathrm{CH})$, 52.2, 21.5 ppm . IR (KBr): $\tilde{v}=3061,3021,2948,1718,1601,1487$, 1433, 1294, 1274, 1252, 1130, 1077, 962, $779 \mathrm{~cm}^{-1}$. HRMS (AP): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}$: 253.1229; found 253.1236.
Methyl 2-I(\boldsymbol{E})-2-(4-Methylphenyl)ethenylbbenzoate (2e): According to GP1 compound 2 e was obtained as colourless crystals in 82% yield ($12.3 \mathrm{mmol}, 3.1 \mathrm{~g}$) after purification; m.p. $79-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.85(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, C H=\mathrm{CH}-\mathrm{Ar})$, $7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, A r-H)$, $7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, A r-H)$, 7.18 (t, $J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, A r-$ H), $6.88(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{CH}=C H-\mathrm{Ar}), 3.80(\mathrm{~s}, 3 \mathrm{H}$, COOCH_{3}), 2.25 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=168.0(\mathrm{C}=\mathrm{O}), 139.5(\mathrm{C}), 137.8(\mathrm{C}), 134.8(\mathrm{C}), 132.2$ $(\mathrm{CH}), 131.5(\mathrm{CH}), 130.7(\mathrm{CH}), 129.5(2 \times \mathrm{CH}), 128.5(\mathrm{C}), 127.0$ $(\mathrm{CH}), 126.9(3 \times \mathrm{CH}), 126.4(\mathrm{CH}), 52.1\left(\mathrm{OCH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3077,2957,2915,2843,1713,1598,1512,1466,1436$, 1271, 1249, 1192, 1128, 1080, 964, 806, 797, 749, $710 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}$: 253.1223; found 253.1224.

Methyl 2-[(E)-2-(4-Methoxyphenyl)ethenyl]benzoate (2f): According to GP1 compound $\mathbf{2 f}$ was obtained as colourless crystal in 85% yield ($12.8 \mathrm{mmol}, 3.43 \mathrm{~g}$); m.p. $80-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.90(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.54-7.50(\mathrm{~m}, 3$ H, $A r-H), 7.32$ (t, $J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.01(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$), $6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 3.95(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}-$ $\left.\mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.0(\mathrm{C}=\mathrm{O}), 159.6(\mathrm{C}), 139.5(\mathrm{C}), 132.1(\mathrm{CH}), 131.0(\mathrm{CH})$, $130.7(\mathrm{CH}), 130.3(\mathrm{C}), 128.4(\mathrm{C}), 128.2(2 \times \mathrm{CH}), 126.7(2 \times \mathrm{CH})$, $125.3(\mathrm{CH}), 114.2(2 \times \mathrm{CH}), 55.4(\mathrm{OMe}), 52.1(\mathrm{OMe}) \mathrm{ppm} . \mathrm{IR}$ $(\mathrm{KBr}): \tilde{v}=3065,3000,2950,2905,2833,1717,1603,1592,1512$,

1432, 1301, 1277, 1250, 1176, 1129, 1078, 1030, 971, 767, 755, 721 cm^{-1}. HRMS (ESI): $m / z[M+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}: 269.1172$; found 269.1175 .
Methyl 2-[(\boldsymbol{E})-2-Biphenylethenyl|benzoate (2 g): According to GP1 compound $\mathbf{2 g}$ was obtained as colourless crystal in 84% yield ($12.6 \mathrm{mmol}, 3.96 \mathrm{~g}$); m.p. $138^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=8.10(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, C H=\mathrm{CH}-\mathrm{Ar}-\mathrm{Ar}), 7.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, A r-H), 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.68-7.66(\mathrm{~m}, 6 \mathrm{H}$, $A r-H), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $A r-H), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}, A r-H), 7.10(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=$ CH-Ar-Ar), 3.99 (s, $3 \mathrm{H}, \mathrm{COOMe}$) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.9(\mathrm{C}=\mathrm{O}), 140.7$ (C), 140.6 (C), 139.3 (C), $136.6(\mathrm{C}), 132.2(\mathrm{CH}), 131.0(\mathrm{CH}), 130.8(\mathrm{CH}), 128.9(2 \times$ $\mathrm{CH}), 128.6(\mathrm{C}), 127.5(\mathrm{CH}), 127.4(5 \times \mathrm{CH}), 127.2(\mathrm{CH}), 127.0$ $(3 \times \mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3071,3032,2947,1719$, 1566, 1487, 1432, 1266, 1248, 1129, 1077, 971, 832, 765, 721, 700 cm^{-1}. HRMS (ESP): $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}$: 332.1645; found 332.1647 .

GP2: General Procedure for the Synthesis of Stilbene Carboxylic Acids 3: To a mixture of $\mathbf{2 a}(2.0 \mathrm{~g}, 8.4 \mathrm{mmol})$ in 60 mL of THF/ $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (4:1:1) $\mathrm{LiOH}(600 \mathrm{mg}, 25.2 \mathrm{mmol})$ was added at room temperature. The reaction mixture was then heated at $70^{\circ} \mathrm{C}$ for 12 h . After the reaction mixture was allowed to cool to room temperature, reaction mixture was neutralised $(\mathrm{pH}=6)$ using 1 m HCl . The product was extracted with ethyl acetate, washed with water and brine. The extract was dried with anhydrous MgSO_{4}, evaporated under reduced pressure and then recrystallized from ethanol to give the corresponding stilbenecarboxylic acids in very good yields.
2-I(E)-2-Phenylethenyl]carboxylic Acid (3a): ${ }^{[25]}$ According to GP2 compound 3a was obtained as colourless solid in 87% yield ($7.2 \mathrm{mmol}, 1.64 \mathrm{~g}$); m.p. ${ }^{154-155}{ }^{\circ} \mathrm{C}$ (ref. ${ }^{[22]}$ m.p. ${ }^{159-161}{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.04-7.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{Ar} \&$ $A r-H), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, A r-\mathrm{H}), 7.49-7.47(\mathrm{~m}, 3 \mathrm{H}, A r-H)$, 7.31-7.27 (m, $3 \mathrm{H}, A r-H), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}, A r-H), 6.95(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{CH}=\mathrm{CH}-\mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=173.3(\mathrm{C}=\mathrm{O}), 140.3(\mathrm{C}), 137.4(\mathrm{C}), 133.2(\mathrm{C}), 131.9(\mathrm{CH}), 131.7$ $(\mathrm{CH}), 128.8(3 \times \mathrm{CH}), 128.0(\mathrm{CH}), 127.6(\mathrm{CH}), 127.4(\mathrm{CH}), 127.3$ $(\mathrm{CH}), 127.0(2 \times \mathrm{CH}) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3330-2745,3061,1685$, 1601, 1565, 1495, 1447, 1406, 1301, 1275, 1253, 1078, 963, 913, $759,744 \mathrm{~cm}^{-1}$. HRMS (ESP): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{H}_{1}$: 225.0910; found 225.0912. The spectroscopic data are in agreement with literature data. ${ }^{[25]}$

2-I(E)-2-(1-Naphthyl)ethenyl]carboxylic Acid (3b): According to GP2 compound 3b was obtained as colourless crystals in 98% yield ($8.2 \mathrm{mmol}, 2.25 \mathrm{~g}$); m.p. $160-162^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 8.06(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $A r-H), 8.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, C H=\mathrm{CH}), 7.80-7.78$ (m, $2 \mathrm{H}, A r-$ $H), 7.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=C H), 7.55(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.48-7.39(\mathrm{~m}, 3$ $\mathrm{H}, A r-H), 7.33(\mathrm{td}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}, A r-H) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.6$ (C=O), 140.6 (C), 134.9 (C), 133.8 (C), $133.2(\mathrm{CH}), 131.7(\mathrm{CH}), 131.4(\mathrm{C}), 130.7(\mathrm{CH}), 128.9(\mathrm{CH})$, $128.7(\mathrm{CH}), 128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 127.5(\mathrm{CH}), 127.4(\mathrm{C}), 126.2$ $(\mathrm{CH}), 125.84(\mathrm{CH}), 125.80(\mathrm{CH}), 124.4(\mathrm{CH}), 123.8(\mathrm{CH}) \mathrm{ppm} . \mathrm{IR}$ $(\mathrm{KBr}): \tilde{v}=3223-2513,1675,1598,1564,1482,1402,1403,1266$, 1171, 1145, 1086, 964, 925, 794, 745, $664 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}$: 292.1332; found 292.1335.
2-[(E)-2-(2-Naphthyl)ethenyl]carboxylic Acid (3c): According to GP2 compound 3c was obtained as colourless crystals in 95% yield ($7.9 \mathrm{mmol}, 2.16 \mathrm{~g}$); m.p. $219-220^{\circ} \mathrm{C}$ (ref. ${ }^{[26]}$ m.p. ${ }^{211-212}{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=8.30(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$,
$C H=\mathrm{CH}), 8.06-8.04(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 8.02(\mathrm{~s}, 1 \mathrm{H}$, $A r-H), 7.96-7.90(\mathrm{~m}, 4 \mathrm{H}, A r-H), 7.87-7.85(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1$ $\mathrm{H}, A r-H), 7.64(\mathrm{dt}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}$, $A r-H), 7.44(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.38(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=168.8$, $140.0,136.2,134.8,134.2,133.1,131.9,131.7,130.0,129.2,128.9$, $128.8,128.6,128.2,127.8,127.7,127.3,126.9,124.6 \mathrm{ppm}$. IR $(\mathrm{KBr}): \tilde{\mathrm{v}}=3103-2517,1675,1627,1598,1565,1485,1410,1305$, 1249, 1165, 1141, 1080, 964, 930, 903, 845, 822, 800, 742, 702, 663 cm^{-1}. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2}: 275.1067$; found 275.1071.
2-[(E)-2-(3-Methylphenyl)ethenyl]carboxylic Acid (3d): According to GP2 compound 3d was obtained as colourless crystals in 81% yield ($6.8 \mathrm{mmol}, 1.62 \mathrm{~g}$); m.p. $163-164^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.02(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.97(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}, C H=\mathrm{CH}-\mathrm{Ar}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.50$ ($\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.30-7.27$ (m, $3 \mathrm{H}, A r-H), 7.20-7.17$ $(\mathrm{m}, 1 \mathrm{H}, A r-H), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 6.93(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{Ar}), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.6(\mathrm{C}=\mathrm{O}), 140.3(\mathrm{C}), 138.3(\mathrm{C}), 137.3$ (C), $133.1(\mathrm{CH}), 132.1(\mathrm{CH}), 131.7(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH})$, $127.7(\mathrm{CH}), 127.4(\mathrm{CH}), 127.3(\mathrm{CH}), 127.2(\mathrm{C} \& \mathrm{CH}), 124.1(\mathrm{CH})$, $21.5\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3069-2511,1689,1595,1581,1566$, 1484, 1415, 1303, 1278, 1261, 1166, 1143, 1077, 957, 934, 777, 754, 733, $702 \mathrm{~cm}^{-1}$. HRMS (ES): $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}$: 256.1332 ; found 256.1334 .
2-I(E)-2-(4-Methylphenyl)ethenyl|carboxylic Acid (3e): According to GP2 compound 3 e was obtained as colourless crystals in 88% yield $(0.0074 \mathrm{~mol}, 1.76 \mathrm{~g}) ;$ m.p. ${ }^{159-160^{\circ} \mathrm{C} .}{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.14(\mathrm{dd}, J=5.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 8.07(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}, C H=\mathrm{CH}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.60(\mathrm{dt}$, $J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, tolyl-H), 7.39 (dt, $J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, tolyl-H), $7.06(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=C H), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.2$ (C=O), 140.4 (C), 137.9 (C), $134.6(\mathrm{C}), 133.1(\mathrm{CH}), 131.8(\mathrm{CH}), 131.7(\mathrm{CH}), 129.5(2 \times \mathrm{CH})$, $127.3(\mathrm{CH}), 127.2(\mathrm{C}), 127.1(\mathrm{CH}), 126.9(2 \times \mathrm{CH}), 126.5(\mathrm{CH})$, $21.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3064-2647,1682,1594,1570,1511$, 1481, 1412, 1306, 1277, 1253, 1079, 957, 934, 853, 802, $748 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}: 239.1067$; found 239.1069.

2-I(E)-2-(4-Methoxyphenyl)ethenyl]carboxylic Acid (3f): According to GP2 compound $\mathbf{3 f}$ was obtained as colourless crystals in 97% yield ($8.4 \mathrm{mmol}, 2.14 \mathrm{~g}$); m.p. $192{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\right.$ DMSO): $\delta=7.85-7.82(\mathrm{~m}, 2 \mathrm{H}, A r-H), 7.79(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=C H-\mathrm{Ar}), 7.56(\mathrm{t}, J=7.3, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.50(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.13(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{Ar}), 3.79\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.7,159.2,138.1,131.8,130.3,130.2$, $129.8,129.5,127.9,126.9,126.3,124.7,114.3,55.2 \mathrm{ppm}$. IR (KBr): $\tilde{v}=3100-2517,1688,1604,1562,1508,1405,1298,1076,1026$, 966, 901, $749 \mathrm{~cm}^{-1}$. HRMS (ES): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3}$: 255.1016; found 255.1018.
2-I(E)-2-(Biphenyl)ethenyl|carboxylic Acid (3g): According to GP2 compound 3 g was obtained as colourless crystals in 92% yield ($7.7 \mathrm{mmol}, 2.31 \mathrm{~g}$); m.p. ${ }^{180-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \text { NMR (} 500 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-1 . . . ~}$ DMSO): $\delta=7.99$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, C H=\mathrm{CH}-\mathrm{Ar}-\mathrm{Ar}), 7.88$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, A r-H), 7.66(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.60(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.49(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}, A r-H), 7.24(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}-\mathrm{Ar}-\mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} \&$ DEPT 135, $\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=168.6$ (C=O), 139.6 (C), 139.5 (C), 137.8 (C),
$136.4(\mathrm{C}), 131.9(\mathrm{CH}), 130.3(\mathrm{CH}), 130.1(\mathrm{CH}), 129.8(\mathrm{C}), 129.0$ $(2 \times \mathrm{CH}), 127.5(\mathrm{CH}), 127.4(\mathrm{CH}), 127.20(2 \times \mathrm{CH}), 127.15(\mathrm{CH})$, $127.0(2 \times \mathrm{CH}), 126.6(\mathrm{CH}), 126.5(2 \times \mathrm{CH}) \mathrm{ppm}$. IR $(\mathrm{KBr}): \tilde{v}=$ 3100-2540, 1683, 1627, 1602, 1565, 1485, 1452, 1409, 1305, 1272, 1247, 1139 1073, 965, 917, 823, 764, 744, 718, 697, $558 \mathrm{~cm}^{-1}$. HRMS (ES): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{2}: 301.1223$; found 301.1225.

General Procedure GP3 for the Catalytic Reaction: Stilbenecarboxylic acid $\mathbf{3}(0.22 \mathrm{mmol})$ was added to a solution of diphenyl diselenide ($0.022 \mathrm{mmol}, 6.9 \mathrm{mg}, 10 \mathrm{~mol}-\%$) in acetonitrile $(5 \mathrm{~mL})$ followed by [bis(trifluoroacetoxy)iodo]benzene ($112 \mathrm{mg}, 0.26 \mathrm{mmol}$) and the mixture was stirred under argon at room temperature until TLC showed no remaining starting material. The solvent was evaporated under reduced pressure and the residue purified immediately by flash chromatography eluting with ethyl acetate:hexane (1:4) to yield the cyclization products (first elution with hexane gave diphenyl diselenide, second elution with ethyl aetate/hexane gave cyclized product, and the seleno-substituted products 4 could be isolated on preparative TLC if the reaction was stopped after 520 min).
3,4-Dihydro-3-phenyl-4-(phenylseleno)isocoumarin (4a): According to GP3 compound $\mathbf{4 a}$ was obtained as colourless crystals in 47% yield $(0.1 \mathrm{mmol}, 39 \mathrm{mg})$; m.p. $123-125^{\circ} \mathrm{C}$ (ref. ${ }^{[21,22]} \mathrm{m} . \mathrm{p} .{ }^{124-}$ $125^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1$ H, $A r-H), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}, A r-H), 7.37(\mathrm{dt}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $A r-H), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}, A r-H), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, A r-H)$, 7.14-7.11 (m, 4 H, $A r-H), 7.02-7.00(\mathrm{~m}, 2 \mathrm{H}, A r-H), 5.76(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}-\mathrm{O}), 4.78(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}-\mathrm{O}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.5$ (C=O), 138.3 (C), 138.0 (C), $136.6(2 \times \mathrm{CH}), 133.9(\mathrm{CH}), 130.1(\mathrm{CH}), 129.4(2 \times \mathrm{CH}), 129.1$ $(\mathrm{CH}), 128.6(2 \times \mathrm{CH}), 128.4(\mathrm{CH}), 128.2(2 \times \mathrm{CH}), 127.7(\mathrm{C}), 125.9$ $(2 \times \mathrm{CH}), 124.9(\mathrm{C}), 82.3(\mathrm{CH}-\mathrm{O}), 43.8(\mathrm{CH}) \mathrm{ppm}$. IR (KBr): $\tilde{v}=$ 3058, 2927, 1732, 1598, 1474, 1437, 1234, 1065, 767, 737, $689 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Se}^{80}: 381.0394$; found 381.0402 . The spectroscopic data are in agreement with literature data. ${ }^{[21,22]}$
3,4-Dihydro-3-(2'-naphthyl)-4-(phenylseleno)isocoumarin (4c): According to GP3 compound $\mathbf{4 c}$ was obtained as white solid in 4% yield ($9.3 \mu \mathrm{~mol}, 4 \mathrm{mg}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98(\mathrm{dd}$, $J=7.8, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H}, A r-H), 7.63$ (br. d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.48-7.46(\mathrm{~m}, 3 \mathrm{H}, A r-H), 7.37-7.35$ (m, $3 \mathrm{H}, A r-H), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}, A r-H), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2$ $\mathrm{H}, A r-H), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}, A r-H), 5.92(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$, CH-CH-O), $4.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}-\mathrm{O}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.6(\mathrm{C}=\mathrm{O}), 138.0(\mathrm{C}), 136.6(2 \times \mathrm{CH})$, $135.5(\mathrm{C}), 133.9(\mathrm{CH}), 132.88$ (C), $132.85(\mathrm{C}), 130.1(\mathrm{CH}), 129.4$ $(2 \times \mathrm{CH}), 129.1(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 127.6(\mathrm{C}), 127.5(\mathrm{CH}), 126.5(2 \times \mathrm{CH}), 125.3(\mathrm{CH}), 124.9$ (C), 123.3 (CH), 82.4 (CH-CH-O), 43.8 ($\mathrm{CH}-\mathrm{CH}-\mathrm{O}) \mathrm{ppm} . \mathrm{HRMS}$ (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Se}$: 431.0545; found 431.0546.

3,4-Dihydro-3-(3'-methylphenyl)-4-(phenylseleno)isocoumarin (4d): According to GP3 compound 4d was obtained as orange-yellow solid; m.p. $192-193{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}, A r-H), 7.38(\mathrm{dt}, J=$ $7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}, A r-H), 7.21(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.02(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 6.83(\mathrm{~s}, 1 \mathrm{H}$, $A r-H), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 5.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, CH-CH-O), 4.79 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}-\mathrm{O}), 2.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.6(\mathrm{C}=\mathrm{O}), 138.4$ (C), 138.2 (C), 138.1 (C), $136.6(2 \times \mathrm{CH}), 133.9(\mathrm{C} \& \mathrm{CH}), 130.1$
$(\mathrm{CH}), 129.3(2 \times \mathrm{CH}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4$ $(\mathrm{CH}), 128.2(\mathrm{CH}), 126.6(\mathrm{CH}), 124.9(\mathrm{C}), 122.9(\mathrm{CH}), 82.3(\mathrm{CH}-$ $\mathrm{CH}-\mathrm{O}$), 43.8 ($\mathrm{CH}-\mathrm{CH}-\mathrm{O}$), $21.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (EI): m/z [M] ${ }^{+}$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Se}: 392.0480$; found 392.0493 .

3-(Phenyl)isocoumarin (5a): According to GP3 compound 5a was obtained as colourless soild in 92% yield ($0.20 \mathrm{mmol}, 45.1 \mathrm{mg}$); m.p. $90-92^{\circ} \mathrm{C}$ (ref. ${ }^{[27]}$ m.p. $90-91^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.84-7.81(\mathrm{~m}, 2 \mathrm{H}$, $A r-H), 7.66(\mathrm{dt}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.46-7.36(\mathrm{~m}, 5 \mathrm{H}$, Ar-H), $6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}-\mathrm{O}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.3(\mathrm{C}=\mathrm{O}), 153.7(\mathrm{C}), 137.6(\mathrm{C}), 134.9(\mathrm{CH}), 132.0(\mathrm{C}), 130.0$ $(\mathrm{CH}), 129.7(\mathrm{CH}), 128.9(2 \times \mathrm{CH}), 128.2(\mathrm{CH}), 126.0(\mathrm{CH}), 125.3$ $(2 \times \mathrm{CH}), 120.6(\mathrm{C}), 101.8(\mathrm{CH}) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3062,3030$, 2962, 2922, 1732, 1635, 1483, 1234, 1066, $766 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}$: 223.0754; found 223.0753. The spectroscopic data are in agreement with literature data. ${ }^{[27]}$

3-(1-Naphthyl)isocoumarin (5b): According to GP3 compound 5b was obtained as colourless crystals in 99% yield (0.22 mmol , 59 mg); m.p. $147^{\circ} \mathrm{C}$ (ref. ${ }^{[28]}$ m.p. $120-122^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): $\delta=8.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 8.16-8.14(\mathrm{~m}, 1 \mathrm{H}$, $A r-H), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.83-7.81(\mathrm{~m}, 1 \mathrm{H}, A r-H)$, 7.68-7.65 (m, $2 \mathrm{H}, A r-H), 7.48-7.41(\mathrm{~m}, 5 \mathrm{H}, A r-H), 6.71(\mathrm{~s}, 1 \mathrm{H}$, CH of lactone ring) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.6$ (C=O), 154.8 (C), 137.5 (C), $134.9(\mathrm{CH}), 133.8$ (C), $130.84(\mathrm{C})$, $130.77(\mathrm{C}), 130.6(\mathrm{CH}), 129.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 126.3(\mathrm{CH}), 125.9(\mathrm{CH}), 125.2(\mathrm{CH}), 125.1$ $(\mathrm{CH}), 120.6(\mathrm{CH}), 107.1(\mathrm{CH}) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3091,3042$, $1717,1640,1606,1566,1509,1487,1453,1397,1352,1310,1241$, $1200,1179,1154,1117,1066,1053,1026,993,956,922,882,847$, 790, 770, 748, $690 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{O}_{2}: 273.0910$; found 273.0907. The spectroscopic data are in agreement with literature data. ${ }^{[28]}$

3-(Naphthalen-2-yl)isocoumarin (5c): According to GP3 a mixture of stilbenecarboxylic acid $\mathbf{3 c}(60 \mathrm{mg}, 0.22 \mathrm{mmol})$ and PhSeSePh $(6.9 \mathrm{mg}, 0.022 \mathrm{mmol})$ was treated with [bis(trifluoroacetoxy)iodo]benzene ($113 \mathrm{mg}, 0.26 \mathrm{mmol}$). Product $\mathbf{5 c}$ was obtained as colourless crystals in 94% yield ($0.21 \mathrm{mmol}, 57 \mathrm{mg}$); m.p. $157^{\circ} \mathrm{C}$ (ref. ${ }^{[29]}$ m.p. $161-163^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.40(\mathrm{~s}, 1 \mathrm{H}$, Naph-H), 8.28 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.89-7.78$ (m, $4 \mathrm{H}, A r$ H), 7.68 (dt, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.48-7.45(\mathrm{~m}, 4 \mathrm{H}, A r-$ H), 7.03 (s, 1 H , lactone- CH) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.4(\mathrm{C}=\mathrm{O}), 153.6(\mathrm{C}), 137.6(\mathrm{C}), 134.9(\mathrm{CH}), 133.9(\mathrm{C}), 133.2$ (C), $129.8(\mathrm{CH}), 129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.6(\mathrm{CH}), 128.2(\mathrm{CH})$, $127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 126.9(\mathrm{CH}), 126.1(\mathrm{CH}), 125.4(\mathrm{CH}), 122.0$ $(\mathrm{CH}), 120.7(\mathrm{C}), 102.3(\mathrm{CH}) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3108,3058,1717$, $1635,1608,1562,1367,1331,1221,1191,1074,851,818,746,682$ cm^{-1}. HRMS (AP): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{O}_{2}: 273.0916$; found 273.0909 The spectroscopic data are in agreement with literature data. ${ }^{[29]}$

3-(3'-Methylphenyl)isocoumarin (5d): According to GP3 mixture of stilbenecarboxylic acid $3 \mathbf{d}(5 \mathrm{mg}, 0.021 \mathrm{mmol})$ and PhSeSePh $(0.7 \mathrm{mg}, 0.0021 \mathrm{mmol})$ was treated with [bis(trifluoroacetoxy)iodo]benzene ($10.8 \mathrm{mg}, 0.0252 \mathrm{mmol}$). Product $5 \mathbf{d}$ was obtained as colourless crystals in 81% yield ($0.017 \mathrm{mmol}, 4 \mathrm{mg}$); m.p. $90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, A r-H)$, 7.68-7.64 (m, 2 H, Ar-H), $7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.45-$ $7.42(\mathrm{~m}, 2 \mathrm{H}, A r-H), 7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.19(\mathrm{~s}, 1 \mathrm{H}$, $A r-H), 6.89\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ of lactone ring), $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.4(\mathrm{C}=\mathrm{O}), 153.9(\mathrm{C}), 138.6$ (C), $137.7(\mathrm{C}), 134.9(\mathrm{CH}), 132.0(\mathrm{C}), 130.8(\mathrm{CH}), 129.7(\mathrm{CH})$, $128.7(\mathrm{CH}), 128.1(\mathrm{CH}), 125.9(2 \times \mathrm{CH}), 122.4(\mathrm{CH}), 120.6(\mathrm{C})$,
$101.7(\mathrm{CH}), 21.5\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (AP): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2}$: 237.0916; found 237.0917.

3-(4'-Methylphenyl)isocoumarin (5e): According to GP3 compound 5e was obtained as colourless crystals in 95% yield (0.21 mmol , 49 mg); m.p. $114-115^{\circ} \mathrm{C}$ (ref. ${ }^{[28]}$ m.p. $108-110^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.70(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, tolyl-H), $7.63(\mathrm{dt}, J=8.2, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, A r-H)$, $7.41-7.38(\mathrm{~m}, 2 \mathrm{H}, A r-H), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, tolyl-H), 6.83 (s, $1 \mathrm{H}, \mathrm{CH}$ of lactone ring), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.4(\mathrm{C}=\mathrm{O}), 153.9(\mathrm{C}), 140.3(\mathrm{C}), 137.8$ (C), $134.8(\mathrm{CH}), 129.7(\mathrm{CH}), 129.6(2 \times \mathrm{CH}), 129.2(\mathrm{C}), 127.9$ $(\mathrm{CH}), 125.9(\mathrm{CH}), 125.2(2 \times \mathrm{CH}), 120.5(\mathrm{C}), 101.1(\mathrm{CH}), 21.4$ $\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3032,2921,1731,1630,1604,1559$, 1512, 1477, 1458, 1343, 1308, 1235, 1107, 1067, 1008, 847, 817, 751, 711, $688 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2}: 237.0910$; found 237.0911. The spectroscopic data are in agreement with literature data. ${ }^{[28]}$
3-(4'-Methoxyphenyl)isocoumarin (5f): According to GP3 compound $\mathbf{5 f}$ was obtained as colourless crystals in 96% yield ($0.21 \mathrm{mmol}, 53 \mathrm{mg}$); m.p. $112-113{ }^{\circ} \mathrm{C}$ (ref. ${ }^{[28]}$ m.p. $111-113^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.22(\mathrm{~d}, J=8.34 \mathrm{~Hz}, 1 \mathrm{H}, A r-H)$, $7.76(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.63(\mathrm{dt}, J=7.6, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}$, $A r-H$), $7.40-7.38$ (m, $2 \mathrm{H}, A r-H), 6.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, A r-H)$, $6.76\left(\mathrm{~s}, 1 \mathrm{H}\right.$, latone- H), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \&$ DEPT 90, $135 \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.5$ (C=O), 161.1 (C), 153.8 (C), $137.9(\mathrm{C}), 134.8(\mathrm{CH}), 129.7(\mathrm{CH}), 127.7(\mathrm{CH}), 126.9(2 \times$ $\mathrm{CH}), 125.7(\mathrm{CH}), 124.6(\mathrm{C}), 120.2(\mathrm{C}), 114.3(2 \times \mathrm{CH}), 100.3(\mathrm{CH})$, $55.4\left(\mathrm{OCH}_{3}\right) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3036,2999,2958,2844,1738$, 1632, 1562, 1514, 1480, 1457, 1344, 1309, 1290, 1264, 1237, 1200, 1177, 1114, 1064, 1022, 925, 880, 837, 820, 790, 752, 687, $668 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3}: 253.0859$; found 253.0858. The spectroscopic data are in agreement with literature data. ${ }^{[28]}$

3-(Biphenyl)isocoumarin (5g): According to GP3 mixture of stilbenecarboxylic acid $\mathbf{3 g}(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ and PhSeSePh ($10.3 \mathrm{mg}, 0.033 \mathrm{mmol}$) was treated with [bis(trifluoroacetoxy)iodo]benzene ($170 \mathrm{mg}, 0.4 \mathrm{mmol}$). Product 5 g was obtained as colourless crystals in 99% yield ($0.325 \mathrm{mmol}, 97 \mathrm{mg}$); m.p. $173{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.88(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.65-7.61(\mathrm{~m}, 3 \mathrm{H}, A r-H), 7.57(\mathrm{~m}, 2 \mathrm{H}, A r-$ H), $7.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, A r-$ H), $7.33-7.29(\mathrm{~m}, 1 \mathrm{H}, A r-H), 6.92\left(\mathrm{~s}, 1 \mathrm{H}\right.$, lactone-CH) ppm. ${ }^{13} \mathrm{C} \&$ DEPT 90, 135 NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.3(\mathrm{C}=\mathrm{O}), 153.5$ (C), 142.7 (C), 140.1 (C), 137.6 (C), 134.9 (CH), 130.8 (C), 129.7 $(\mathrm{CH}), 128.9(2 \times \mathrm{CH}), 128.2(\mathrm{CH}), 127.9(\mathrm{CH}), 127.5(2 \times \mathrm{CH})$, $127.1(2 \times \mathrm{CH}), 126.0(\mathrm{CH}), 125.7(2 \times \mathrm{CH}), 120.6(\mathrm{C}), 101.8(\mathrm{CH})$ ppm. IR (KBr): $\tilde{v}=3098,3061,3032,1719,1639,1602,1486,1408$, 1239, 1071, 836, 764, $687 \mathrm{~cm}^{-1}$. HRMS (ESP): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{2}$: 299.1067; found 299.1070.

3,4-Dihydro-3-(4'-methylphenyl)-4-(methylseleno)isocoumarin (6a): Stilbenecarboxylic acid $3 \mathrm{e}(59.5 \mathrm{mg}, 0.25 \mathrm{mmol})$, was added to a solution of dimethyl diselenide ($2.65 \mathrm{~mL}, 5.2 \mathrm{mg}, 0.028 \mathrm{mmol}$) in acetonitrile (5 mL), followed by [bis(trifluoroacetoxy)iodo]benzene $(112 \mathrm{mg}, 0.26 \mathrm{mmol})$ and the mixture stirred under argon at room temperature for 5 min . The solvent was then evaporated under reduced pressure and the residue was purified immediately by flash column chromatography eluting with ethyl acetate:light petroleum (1:4) to yield 6 in 97% yield ($80 \mathrm{mg}, 0.22 \mathrm{mmol}$) as light yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.05$ (dd, $J=7.6$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.47(\mathrm{dt}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.36(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.31(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.09$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, tolyl-H), $7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, tolyl- H),
$5.73(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}-\mathrm{O}), 4.46(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}-\mathrm{CH}-\mathrm{O}), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SeCH} 3) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.0(\mathrm{C}=\mathrm{O}), 139.0(\mathrm{C}), 138.4(\mathrm{C})$, $135.3(\mathrm{C}), 134.2(\mathrm{CH}), 130.2(\mathrm{CH}), 129.3(2 \times \mathrm{CH}), 128.3(\mathrm{CH})$, $128.2(\mathrm{CH}), 126.3(2 \times \mathrm{CH}), 125.0(\mathrm{C}), 83.8(\mathrm{CH}), 39.6(\mathrm{CH}), 21.1$ $\left(\mathrm{CH}_{3}\right)$ and $4.8\left(\mathrm{SeCH}_{3}\right) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3030,2924,1726,1634$, $1601,1515,1455,1371,1282,1259,1234,1109,1088,1047,913$, 817, 783, 760, $700 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Se}: 333.0405$; found 333.0394 .

GP 4 for Preparation of Thio-Substituted Dihydroisocoumarins 6bd: To a stirred solution of $3(0.45 \mathrm{mmol}), \operatorname{PhSSPh}(0.45 \mathrm{mmol}$, 98 mg) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ bis(trifluoroacetoxy)iodobenzene ($0.44 \mathrm{mmol}, 189 \mathrm{mg}$) was added at room temperature. The mixture was stirred at room temperature for 1 h . The solvent was then evaporated under reduced pressure and the residue was purified immediately by flash column chromatography eluting with ethyl acetate:hexane (1:4) to yield the cyclization products $\mathbf{7 , 8} \mathbf{8}$ and 9 (first elution with hexane gave diphenyl disulfide, second elution with ethyl acetate:hexane gave the cyclized product).
3-Phenyl-4-(phenylthio)isochroman-1-one (6b): According to GP4 compound 6b was obtained as colourless solid in 75% yield ($0.34 \mathrm{mmol}, 112.5 \mathrm{mg}$); m.p. $218{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-$ H), 7.45-7.41 (m, 3 H, Ar-H), 7.36-7.32 (m, $4 \mathrm{H}, \mathrm{Ar}-H), 7.25-7.24$ (m, 3 H, Ar-H), 7.14-7.13 (m, 2 H, Ar-H), $5.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1$ H, CH-CH-O), 4.72 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}-\mathrm{O}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR \& DEPT $135\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.6(\mathrm{C}=\mathrm{O}), 137.7$ (C), $137.2(\mathrm{C}), 134.5(2 \times \mathrm{CH}), 134.0(\mathrm{CH}), 132.4(\mathrm{C}), 130.2(\mathrm{CH})$, $129.3(2 \times \mathrm{CH}), 128.9(2 \times \mathrm{CH}), 128.6(2 \times \mathrm{CH}), 128.5(\mathrm{CH}), 128.4$ $(\mathrm{CH}), 126.1(2 \times \mathrm{CH}), 125.1(\mathrm{C}), 81.7(\mathrm{CH}-\mathrm{CH}-\mathrm{O}), 50.8(\mathrm{CH}-\mathrm{CH}-$ O) ppm. IR (KBr): $\tilde{v}=3059,3027,2988,1708,1601,1461,1439$, 1377, 1331, 1302, 1241, 1113, 1098, 1077, 1029, 748, 742, 728, 715, $692 \mathrm{~cm}^{-1}$. HRMS (ESP): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~S}$: 333.0944; found 333.0935 .

3-(1-Naphthyl)-4-(phenylthio)isochroman-1-one (6c): According to GP4 compound $\mathbf{6 c}$ was obtained as colourless crystals in 66% yield ($0.30 \mathrm{mmol}, 114 \mathrm{mg}$); m.p. $179{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=8.08(\mathrm{dd}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, $A r-H), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}, A r-H)$, 7.39-7.35 (m, 4 H, Ar-H), 7.32-7.29 (m, $4 \mathrm{H}, A r-H), 7.14(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.07-7.04(\mathrm{~m}, 1 \mathrm{H}, A r-H), 7.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}, A r-H), 6.51(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-C H-\mathrm{O}), 4.69(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$-CH-O) ppm. ${ }^{13} \mathrm{C}$ NMR \& DEPT 135 (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=163.9(\mathrm{C}=\mathrm{O}), 137.0(\mathrm{C}), 136.0(2 \times \mathrm{CH}), 134.1(\mathrm{CH})$, $133.8(\mathrm{C}), 132.5(\mathrm{C}), 131.9(\mathrm{C}), 130.1(\mathrm{CH}), 129.8(\mathrm{C}), 129.5(\mathrm{CH})$, $129.4(2 \times \mathrm{CH}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.7(\mathrm{CH})$, $126.8(\mathrm{CH}), 125.9(\mathrm{CH}), 124.9(\mathrm{CH}), 124.8(\mathrm{C}), 124.1(\mathrm{CH}), 122.2$ $(\mathrm{CH}), 79.4(\mathrm{CH}-\mathrm{CH}-\mathrm{O}), 50.2(\mathrm{CH}-\mathrm{CH}-\mathrm{O}) \mathrm{ppm}$. IR (KBr): $\tilde{\mathrm{v}}=$ 3065, 2970, 1714, 1598, 1460, 1439, 1389, 1329, 1290, 1243, 1120, 1092, 1023, 787, 774, 754, 748, 714, $693 \mathrm{~cm}^{-1}$. HRMS (ESP): m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}: 383.1100$; found 383.1102 .
3-Bisphenyl-4-(phenylthio)isochroman-1-one (6d): According to GP4 compound 6d was obtained as colourless crystals in 57% yield $(0.26 \mathrm{mmol}, 106 \mathrm{mg}) ;$ m.p. $132-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.46(\mathrm{dt}, J=7.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, A r-H), 7.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, A r-H), 7.37-7.30(\mathrm{~m}$, $8 \mathrm{H}, A r-H), 7.27-7.22(\mathrm{~m}, 4 \mathrm{H}, A r-H), 7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, $A r-H), 5.72(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-C H-\mathrm{O}), 4.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}-\mathrm{O})$ ppm. ${ }^{13} \mathrm{C}$ NMR \& DEPT 135 (125 MHz, CDCl_{3}): $\delta=163.6(\mathrm{C}=\mathrm{O}), 141.3(\mathrm{C}), 140.2(\mathrm{C}), 137.3(\mathrm{C}), 136.6(\mathrm{C}), 134.4$ $(2 \times \mathrm{CH}), 134.1(\mathrm{CH}), 132.4(\mathrm{C}), 130.3(\mathrm{CH}), 129.3(2 \times \mathrm{CH}), 128.8$ $(4 \times \mathrm{CH}), 128.5(\mathrm{CH}), 127.6(\mathrm{CH}), 127.3(2 \times \mathrm{CH}), 127.0(3 \times \mathrm{CH})$,
$126.7(\mathrm{CH}), 125.2(\mathrm{C}), 81.7(\mathrm{CH}-\mathrm{CH}-\mathrm{O}), 50.8(\mathrm{CH}-\mathrm{CH}-\mathrm{O}) \mathrm{ppm}$. IR (KBr): $\tilde{v}=3057,3030,2955,2918,1712,1601,1583,1487,1457$, $1439,1409,1369,1333,1302,1237,1113,1088,1047,1028,757$, 747, 742, 708, $687 \mathrm{~cm}^{-1}$. HRMS (ESP): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~S}: 409.1257$; found 409.1256.

Supporting Information (see also the footnote on the first page of this article): ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{2 - 6}$.

Acknowledgments

We are grateful to Higher Education Commission of Pakistan (to S. A. S.) for financial support, the Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques (ENSIACET), France (to C. V.) for support and the EPSRC National Mass Spectrometry Service Centre, Swansea, for mass spectrometric data.
$[1]$ a) M. Tiecco, Top. Curr. Chem. 2000, 208, 7-54; b) D. M. Freudendahl, S. A. Shahzad, T. Wirth, Eur. J. Org. Chem. 2009, 1649-1664; c) S. A. Shahzad, T. Wirth, Angew. Chem. Int. Ed. 2009, 48, 2588-2591.
[2] Organoselenium Chemistry: Modern Developments in Organic Synthesis (Ed.: T. Wirth), Top. Curr. Chem., Springer: Berlin, Vol. 208, 2000.
[3] a) D. M. Freudendahl, S. Santoro, S. A. Shahzad, C. Santi, T. Wirth, Angew. Chem. Int. Ed. 2009, 48, 8409-8411; b) Y. Nishibayashi, S. Uemura, Top. Curr. Chem. 2000, 208, 235-255; c) T. Wirth, S. Häuptli, M. Leuenberger, Tetrahedron: Asymmetry 1998, 9, 547-550; d) S. Torii, K. Uneyama, M. Ono, T. Bannou, J. Am. Chem. Soc. 1981, 103, 4606-4608.
[4] X. Wu, Z. Yu, Tetrahedron Lett. 2010, 51, 1500-1503.
[5] a) M. Tiecco, L. Testaferri, C. Santi, Eur. J. Org. Chem. 1999, 797-803; b) M. Tiecco, L. Testaferri, M. Tingoli, L. Bagnoli, C. Santi, Synlett 1993, 798-800.
[6] D. M. Browne, O. Niyomura, T. Wirth, Org. Lett. 2007, 9, 3169-3171.
[7] a) R. S. Mali, K. N. Babu, J. Org. Chem. 1998, 63, 2488-2492 and references cited therein; b) R. D. Barry, Chem. Rev. 1964, 64, 229-260.
[8] a) K. Nozawa, M. Yamada, Y. Tsuda, K. Kawai, S. Nakajima, Chem. Pharm. Bull. 1981, 29, 2491-2495; b) K. Nozawa, M. Yamada, Y. Tsuda, K. Kawai, S. Nakajima, Chem. Pharm. Bull. 1981, 29, 26892691.
[9] H. Matsuda, H. Shimoda, M. Yoshikawa, Bioorg. Med. Chem. 1999, 7, 1445-1450.
[10] M. Yoshikawa, E. Harada, Y. Naitoh, K. Inoue, H. Matsuda, H. Shimoda, J. Yamahara, N. Murakami, Chem. Pharm. Bull. 1994, 42, 2225-2230.
[11] H. Sato, K. Konoma, S. Sakamura, Agric. Biol. Chem. 1981, 45, 1675-1679.
[12] T. Furuta, Y. Fukuyama, Y. Asakawa, Phytochemistry 1986, 25, 517-520.
[13] H. Matsuda, H. Shimoda, J. Yamahara, M. Yoshikawa, Bioorg. Med. Chem. Lett. 1998, 8, 215-220.
[14] A. C. Whyte, J. B. Gloer, J. A. Scott, D. Mallock, J. Nat. Prod. 1996, 59, 765-769.
[15] J. H. Lee, Y. J. Park, H. S. Kim, Y. S. Hong, K.-W. Kim, J. J. Lee, J. Antibiot. 2001, 54, 463-466.
[16] a) D. E. Korte, L. S. Hegedus, R. K. Wirth, J. Org. Chem. 1977, 42, 1329-1336; b) G. Batu, R. Stevenson, J. Org. Chem. 1980, 45, 1532-1534; c) R. C. Larock, S. Varaprath, H. H. Lau, C. A. Fellows, J. Am. Chem. Soc. 1984, 106, 5274-5284; d) T. Izumi, Y. Nishimoto, K. Kohei, A. Kasahara, J. Heterocycl. Chem. 1990, 27, 1419-1424; e) D. Villemin, D. Goussu, Heterocycles 1989, 29, 1255-1261; f) H. Sashida, A. Kawamukai, Synthesis 1999, 1145-1148; g) T. Izumi, N. Morishita, J. Heterocycl. Chem. 1994, 31, 145-152; h) E. Napolitano, Org. Prep. Proced. Int. 1997, 29, 631; i) R. Rossi, F. Bellina, M. Biagetti, A. Cat-
anese, L. Mannina, Tetrahedron Lett. 2000, 41, 5281-5286; j) J. D. Tovar, T. M. Swager, J. Org. Chem. 1999, 64, 6499-6504; k) R. C. Larock, M. J. Doty, X. Han, J. Org. Chem. 1999, 64, $8770-8779 ;$ 1) N. Sakai, K. Annaka, A. Fujita, A. Sato, T. Konakahara, J. Org. Chem. 2008, 73, 4160-4165; m) M. Uchiyama, H. Ozawa, K. Takuma, Y. Matsumoto, M. Yonehara, K. Hiroya, T. Sakamoto, Org. Lett. 2006, 8, 5517-5520; n) M. Hellal, J.-J. Bourguignon, F. J.-J. Bihel, Tetrahedron Lett. 2008, 49, 62-65; o) K. M. Khan, S. Ahmed, Z. A. Khan, M. Rani, S. Perveen, C. Shahnaz, M. I. Choudhary, Atta-ur-Rahman, Lett. Org. Chem. 2005, 2, 532-534.
[17] a) T. Yao, R. C. Larock, J. Org. Chem. 2003, 68, 5936-5942; b) M. A. Oliver, R. D. Gandour, J. Org. Chem. 1984, 49, 558559; c) M. Biagetti, F. Bellina, A. Carpita, P. Stabile, R. Rossi, Tetrahedron 2002, 58, 5023-5038; d) R. Rossi, A. Carpita, F. Bellina, P. Stabile, L. Mannina, Tetrahedron 2003, 59, 20672081; e) A.-Y. Peng, Y.-X. Ding, Org. Lett. 2004, 6, 1119-1121.
[18] a) F. Bellina, D. Ciucci, P. Vergamini, R. Rossi, Tetrahedron 2000, 56, 2533-2545; b) Y. Ogawa, M. Maruno, T. Wakamatsu, Synlett 1995, 871-872; c) Y. Ogawa, M. Maruno, T. Wakamatsu, Heterocycles 1995, 41, 2587-2599; d) T. Sakamoto, M. An-naka, Y. Kondo, H. Yamanaka, Chem. Pharm. Bull. 1986, 34, 2754-2759; e) A.-Y. Peng, Y.-X. Ding, J. Am. Chem. Soc. 2003, 125, 15006-15007; f) N. Menashe, Y. Shvo, Heterocycles 1993, 35, 611-613; g) H.-Y. Liao, C.-H. Cheng, J. Org. Chem. 1995, 60, 3711-3716; h) V. Subramanian, V. R. Batchu, D. Barange, M. Pal, J. Org. Chem. 2005, 70, 4778-4783; i) Z. Novak, A. Szabo, J. Repasi, A. Kotschy, J. Org. Chem. 2003, 68, 33273329; j) Y. Mori, M. Seki, J. Org. Chem. 2003, 68, 1571-1574; k) R. G. Heidenreich, K. Köhler, J. G. E. Krauter, J. Pietsch, Synlett 2002, 1118-1122; 1) F.-X. Felpin, G. Vo-Thanh, J. Villiéras, J. Lebreton, Tetrahedron: Asymmetry 2001, 12, 11211124; m) R. W. Bates, J. Boonsombat, J. Chem. Soc. Perkin Trans. 1 2001, 654-657; n) L. S. Bleicher, N. D. P. Cosford, A. Herbaut, J. S. McCallum, I. A. McDonald, J. Org. Chem. 1998, 63, 1109-1118; o) L. Bleicher, N. D. P. Cosford, Synlett 1995, 1115-1116; p) K. T. Potts, C. P. Horwitz, A. Fessak, K. M. Keshavarz, K. E. Nash, P. J. Toscano, J. Am. Chem. Soc. 1993, 115, 10444-10445; q) K. Ueura, T. Satoh, M. Miura, J. Org. Chem. 2007, 72, 5362-5367.
[19] a) R. S. Mali, K. N. Babu, P. G. Jagtap, J. Chem. Soc. Perkin Trans. 1 2001, 3017-3019; b) G. C. A. Bellinger, W. E. Campbell, R. G. F. Giles, J. D. Tobias, J. Chem. Soc. Perkin Trans. 1 1982, 2819-2825; c) T. Kawasaki, S. Saito, Y. Yamamoto, J. Org. Chem. 2002, 67, 2653-2658; d) T. Suzuki, T. Yamada, K. Watanabe, T. Katoh, Bioorg. Med. Chem. Lett. 2005, 15, 2583-2585; e) Y. Hamada, O. Hara, A. Kawai, Y. Kohno, T. Shioiri, Tetrahedron 1991, 47, 8635-8652; f) I. Ullah, M. Sher, R. A. Khera, A. Ali, M. F. Ibad, A. Villinger, C. Fischer, P. Langer, Tetrahedron 2010, 66, 1874-1884; g) N. Tahara, T. Fukuda, M. Iwao, Tetrahedron Lett. 2004, 45, 5117-5120; h) K. Uchida, T. Fukuda, M. Iwao, Tetrahedron 2007, 63, 7178 7186; i) S. K. Mandal, S. C. Roy, Tetrahedron 2008, 64, 1105011057; j) M. D. Obushak, V. S. Matiychuk, V. V. Turytsya, Tetrahedron Lett. 2009, 50, 6112-6115; k) N. Yu, R. Poulaiab, A. Tartara, J.-C. Gesquierea, Tetrahedron 1999, 55, 13735-13740; 1) V. S. Matiychuk, V. V. Turytsya, N. D. Obushak, Chem. Heterocycl. Compd. 2007, 43, 1589-1590.
[20] H. A. Dieck, R. F. Heck, J. Am. Chem. Soc. 1974, 96, 11331136.
[21] D. L. J. Clive, C. G. Russell, Tetrahedron 1980, 36, 1399-1408.
[22] T. Izumi, N. Morishita, J. Heterocycl. Chem. 1994, 31, 145152.
[23] S. E. Denmark, C. R. Butler, Org. Lett. 2006, 8, 63-66.
[24] M. C. Pampín, J. C. Estévez, M. Maestro, L. Castedo, Tetrahedron 2003, 59, 7231-7243.
[25] V. D. Filimonov, M. Trusova, P. Postnikov, E. A. Krasnokutskaya, Y. M. Lee, H. Y. Hwang, H. Kim, K.-W. Chi, Org. Lett. 2008, 10, 3961-3964.
[26] W. Lubisch, E. Beckenbach, S. Bopp, H.-P. Hofmann, A. Kartal, C. Kästel, T. Lindner, M. Metz-Garrecht, J. Reeb, F. Regner, M. Vierling, A. Möller, J. Med. Chem. 2003, 46, 2404 2412.
[27] R. D. Stephens, C. E. Castro, J. Org. Chem. 1963, 28, 33133315.
[28] G. L. Bras, A. Hamze, S. Messaoudi, O. Provot, P.-B. L. Calvez, J.-D. Brion, M. Alami, Synthesis 2008, 1607-1611.
[29] J. Langer, M. Gärtner, H. Görls, D. Walther, Synthesis 2006, 2697-2706.

Received: March 5, 2010
Published Online: May 6, 2010

[^0]: [a] School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, U.K. Fax: +44-29-20876968 E-mail: wirth@cf.ac.ukSupporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc. 201000308.

