Substituted 2-(2-Arylethenyl)quinazolines. Synthesis and Structure

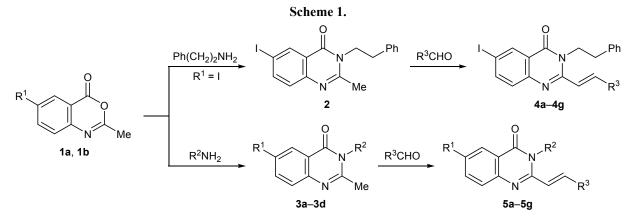
A. A. Harutyunyan^{a, b},* G. T. Gukasyan^a, H. A. Panosyan^b, R. A. Tamazyan^b, A. G. Ayvazyan^b, and G. G. Danagulyan^{a, b}

^a Russian–Armenian (Slavic) University, Yerevan, Armenia

^b Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Armenia, Yerevan, Armenia *e-mail: harutyunyan.arthur@yahoo.com

Received March 29, 2019; revised May 18, 2019; accepted May 30, 2019

Abstract—The reaction of 2-methyl-4*H*-3,1-benzoxazin-4-one and its 6-iodo derivatives with a number of amines in polyphosphoric acid afforded 3- and 3,6-substituted 2-methylquinazolin-4(3*H*)-ones. The latter reacted with aromatic and heterocyclic aldehydes under solvent-free conditions to give 2-[(E)-2-arylethenyl]-quinazolin-4(3*H*)-ones. The structure of the synthesized compounds was confirmed by two-dimensional ¹H–¹H NOESY data and X-ray analysis.


Keywords: 2-methyl-4*H*-3,1-benzoxazin-4-one, pharmacophoric amines, 3- and 6-substituted (unsubstituted) 2-methylquinazolin-4(3*H*)-ones, aryl(hetaryl)carbaldehydes, 2-[(*E*)-2-arylethenyl]quinazolin-4(3*H*)-ones.

DOI: 10.1134/S107042801909015X

Taking into account high biological activity of quinazoline derivatives [1], the goal of the present work was to synthesize a series of new quinazolines containing substituents in both aromatic and dihydropyrimidine fragments. Initial compounds were synthesized by a classical method for the construction of quinazoline ring system, which is based on the reaction of 2-methyl-4H-3,1-benzoxazin-4-one derivatives with amines [2]. Broad synthetic potential of this method makes it possible to obtain large series of quinazolines by using 2-methyl-4H-3,1-benzoxazin-4-ones both substituted and unsubstituted in the aromatic ring, as well as various amines which give rise to a substituent group in the 3-position of the resulting quinazoline molecule. Furthermore, the methyl group on C^2 is activated due to effect of π -deficient pyrimidine ring and is capable of reacting with aromatic and heterocyclic aldehydes to produce 2-[(E)-2-arylvinyl]quinazolin-4(3H)-ones; this further extends the series of quinazoline derivatives necessary for applied studies [3].

We used as starting compounds both unsubstituted 2-methyl-4H-3,1-benzoxazin-4-one (1a) and its 6-iodosubstituted analog 1b [3]. Introduction of a iodine atom into the 6-position of the quinazoline system seemed to be reasonable from the viewpoints of both potential biological activity of target compounds and possibility of further functionalization via transition metal-catalyzed cross-couplings. The set of amines determining the substituent in the 3-position was chosen with account taken of the recent concept of hybrid molecules, i.e., compounds with a combination of two and more pharmacoporic fragments in a single molecule. In particular, the amine series included 2-phenylethan-1-amine, N,N-dimethylbenzene-1,4-diamine, 3-methyl-1-phenyl-1H-pyrazol-5-amine, and 4-aminobenzenesulfonamide. These amines or their parent structures are structural units of biologically active compounds. In addition, it was interesting to couple 2-styrylquinazolines with compounds possessing pronounced antibacterial properties, such as 4-aminobenzenesulfonamide (sulfanilamide) and 5-nitrofurfural, with the goal of obtaining more active compounds with a broad spectrum of antibacterial effect [4, 5].

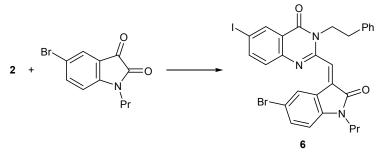
3-Alkyl(aryl)quinazolines 2 and 3a–3d were synthesized in good yields by heating 2-methyl-4*H*-3,1benzoxazin-4-ones 1a and 1b with the corresponding amines at 160–170°C under solvent-free conditions (Scheme 1). The reactions with 3-methyl-1-phenyl-1*H*pyrazol-5-amine were carried out in polyphosphoric

1, $R^1 = H$ (a), I (b); 3, $R^1 = H$, $R^2 = 4-Me_2NC_6H_4$ (a), $4-H_2NSO_2C_6H_4$ (b), 3-methyl-1-phenyl-1*H*-pyrazol-5-yl (c); $R^1 = I$, $R^2 = 4-ClC_6H_4$ (d); 4, $R^3 = Ph$ (a), $4-ClC_6H_4$ (b), $2,4-Cl_2C_6H_3$ (c), $4-Me_2NC_6H_4$ (d), $4-O_2NC_6H_4$ (e), 4-i-PrC₆H₄ (f), 1-methyl-1*H*-indol-3-yl (g); 5, $R^1 = H$, $R^2 = 4-Me_2NC_6H_4$, $R^3 = 4-ClC_6H_4$ (a), $2,4-Cl_2C_6H_3$ (b); $R^2 = 3$ -methyl-1-phenyl-1*H*-pyrazol-5-yl, $R^3 = 4-ClC_6H_4$ (c), $2,4-Cl_2C_6H_3$ (d); $R^2 = 4-H_2NSO_2C_6H_4$, $R^3 = 3-O_2NC_6H_4$ (e); $R^1 = I$, $R^2 = 4-ClC_6H_4$, $R^3 = 5$ -nitrofuran-2-yl (f), PhCH=CH (g).

acid. Compounds 2 and 3a–3c reacted with a number of aromatic and heterocyclic aldehydes on heating in the absence of a catalyst to afford 2-[2-aryl(hetaryl)ethenyl] derivatives 4a–4g, 5a–5e, and 5g. The condensation of quinazoline 3d with 5-nitrofuran-2-carbaldehyde to obtain compound 5f was carried out by heating the reactants in acetic anhydride at 100°C.

The structures of quinazolines 3c and 4a were studied by X-ray analysis (Figs. 1, 2). According to the X-ray diffraction data, the exocyclic double bond in molecule 4a has E configuration (Fig. 2). All cyclic fragments in molecules 3c and 4a are planar (the maximum deviations of atoms from the corresponding mean-square planes do not exceed 0.02 Å). Threedimensional crystal packings of 3c and 4a are determined mainly by van der Waals interactions.

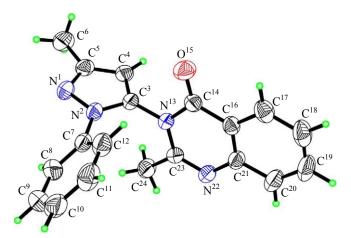
The condensation of 3-(2-phenylethyl)quinazoline **2** with 5-bromo-1-propylindole-2,3(1*H*)-dione gave only one of the possible isomeric products (compound **6**; Scheme 2) whose structure was proved by ${}^{1}H{-}^{1}H$ NOESY data. The exocyclic double bond in **6** was assigned *E* configuration taking into account the


absence of NOE between the =CH proton and proton in the 4-position of the indole ring and the presence of NOE between the latter and 8-H of the quinazoline ring. The reverse pattern should be expected for alternative Z isomer.

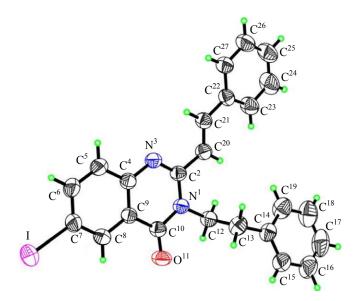
EXPERIMENTAL

The IR spectra were recorded on a Nicolet Avatar 330 spectrometer from samples dispersed in mineral oil. The ¹H and ¹³C NMR spectra were measured on a Varian Mercury-300 VX spectrometer at 300.8 and 75.46 MHz, respectively, using DMSO- d_6 -CCl₄ (1:3) as solvent and tetramethylsilane as internal standard. Analytical thin-layer chromatography was performed on Silufol UV-254 plates using acetone–hexane (1:3) as eluent; spots were visualized by treatment with iodine vapor.

The X-ray diffraction data for single crystals of **3c** and **4a** were obtained at room temperature on an Enraf–Nonius CAD-4 automated diffractometer (Mo K_{α} radiation, graphite monochromator, $\theta/2\theta$ scan-



ning). The structures were solved by the direct method. The positions of hydrogen atoms in structure 3c were determined from the difference Fourier maps and were refined independently. The hydrogen atoms in structure 4a were placed in geometrically calculated positions which were refined according to the riding model with the following constraints: C-H bond length 0.93-0.97 Å, $U_{iso}(H) = 1.2 U_{eq}(C)$. A correction for absorption by the crystal of 4a was applied by the psi-scan method. The structures were refined by the full-matrix least-squares method in anisotropic approximation for non-hydrogen atoms and isotropic approximation for hydrogen atoms. All calculations were performed using SHELXTL package [6]. The crystallographic data were deposited to the Cambridge Crystallographic Data Centre (Table 1).


Quinazolines 2 and 3a-3d (general procedure). A mixture of 0.01 mol of 2-methyl-4H-3,1-benzoxazin-4-one 1a or 1b and 0.01 mol of the corresponding amine was heated for 4 h at 160–170°C on a metal bath. When the reaction was complete, the product was cooled and dissolved on heating in 30 mL of ethanol. After cooling, the precipitate was filtered off and dried. In the synthesis of quinazoline 3c, a mixture 0.01 mol of 1b and 0.01 mol of 3-methyl-1-phenyl-1*H*-pyrazol-5-amine in 5 g of polyphosphoric acid was heated for 4 h at 160–170°C. After cooling, the mixture was neutralized with dilute aqueous ammonia (until weakly alkaline reaction), and the precipitate was filtered off, dried, and recrystallized from ethanol.

6-Iodo-2-methyl-3-(2-phenylethyl)quinazolin-4(3*H***)-one (2) was synthesized by reaction of 2-methyl-4***H***-3,1-benzoxazin-4-one (1b) with 2-phenylethanamine. Yield 48.3%, mp 122–123°C, R_f 0.5. IR spectrum, v, sm⁻¹: 1655 (C=O), 1595 (C=C-C=N). ¹H NMR spectrum, \delta, ppm (***J***, Hz): 2.45 s (3H, CH₃), 2.94–3.00 m (2H, CH₂), 4.19–4.25 m (2H, NCH₂), 7.21–7.34 m (5H, C₆H₅), 7.37 d (1H,** *J* **= 8.6), 8.06 d.d (1H,** *J* **= 8.6, 2.1), and 8.39 d (1H,** *J* **= 2.1) (5-H, 7-H, 8-H). ¹³C NMR spectrum, \delta_C, ppm: 22.7 (CH₃), 33.3 (CH₂), 45.7 (CH₂), 90.8, 121.7, 128.5 (2C, CH), 128.7 (3C, CH), 134.3, 138.1, 142.5, 146.3, 155.7, 159.7. Found, %: C 52.23; H 3.74; N 7.12. C₁₇H₁₅IN₂O. Calculated, %: C 52.33; H 3.87; N 7.18.**

3-(4-Dimethylaminophenyl)-2-methylquinazolin-4(3*H***)-one (3a). Yield 60.5%, mp 228–230°C, R_f 0.47. IR spectrum, v, cm⁻¹: 1683 (C= O), 1610 (C=C-C=N). ¹H NMR spectrum, \delta, ppm (***J***, Hz): 2.15 s (3H, CH₃), 2.97 s (6H, NMe₂), 6.79–6.84 m (2H, C₆H₄NMe₂), 7.14–7.19 m (2H, C₆H₄NMe₂); 7.49 d.d.d (1H,** *J* **= 8.0,**

Fig. 1. Structure of the molecule of 2-methyl-3-(3-methyl-1-phenyl-1*H*-pyrazol-5-yl)quinazolin-4(3H)-one (**3c**) with arbitrary atom numbering according to the X-ray diffraction data. Non-hydrogen atoms are shown as thermal vibration ellipsoids with a probability of 50%.

Fig. 2. Structure of the molecule of 6-iodo-2-phenyl-2-[(E)-2-phenylethenyl]-3-(phenylethyl)quinazolin-4(3H)-one (**4a**) with arbitrary atom numbering according to the X-ray diffraction data. Non-hydrogen atoms are shown as thermal vibration ellipsoids with a probability of 50%.

7.1, 1.0), 7.63 br.d (1H, J = 8.1), and 7.81 d.d.d (1H, J = 8.0, 7.1, 1.3) (6-H, 7-H, 8-H); 8.08 d.d (1H, J = 8.1, 1.6, 5-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 24.0 (CH₃), 40.0 (NMe₂), 112.3 (2C, CH), 120.5, 126.0, 126.1 (CH), 126.2 (CH), 126.5 (CH), 128.5 (2C, CH), 134.3 (CH), 147.2, 150.1, 155.4, 161.6. Found, %: C 71.98; H 4.98; N 17.68. C₁₇H₁₇N₃O. Calculated, %: C 72.13; H 5.10; N 17.71.

4-(2-Methyl-4-oxo-3,4-dihydroquinazolin-3-yl)benzenesulfonamide (3b). Yield 45.8%, mp 264–

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 55 No. 9 2019

Table 1. Principal crystallographic data and parameters	eters of X-ray diffraction e	xperiments for compounds 3c and 4a
---	------------------------------	------------------------------------

Parameter	3c	4 a
CCDC entry no.	1904995	1882015
Formula	$C_{19}H_{16}N_4O$	$C_{24}H_{19}N_2OI$
Molecular weight	316.36	478.31
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> , Å	10.525(2)	13.873(3)
b, Å	16.149(3)	9.5118(19)
<i>c</i> , Å	9.822(2)	15.799(3)
β, deg	103.80(3)	91.03(3)
<i>V</i> , Å ³	1621.2(6)	2084.5(7)
Ζ	4	4
$d_{\text{calc}}, \text{g/cm}^3$	1.296	1.524
$\mu(MoK_{\alpha}), mm^{-1},$	0.084	1.552
T _{min}	_	0.22659
T _{max}	_	0.26966
F(000)	664	952
Crystal dimensions, mm	$0.38 \times 0.26 \times 0.22$	$0.30 \times 0.32 \times 0.42$
Temperature, K	293	293
Radiation wavelength, Å	0.71073	0.71073
$\theta_{\min}, \theta_{\max}, deg$	2.0, 30.0	1.5, 30.0
Scan range (<i>hkl</i>)	$-14 \le h \le 14$	$0 \le h \le 19$
	$-22 \le k \le 0$	$0 \le k \le 13$
	$0 \le l \le 13$	$-22 \le l \le 22$
Total number of reflections	4981	6290
Number of reflections with $I > 2.0 \sigma(I)$	3199	3767
Number of independent reflections	4729	6064
Number of variables	281	253
R, wR_2	0.0461, 0.1376	0.0398, 0.1089
Goodness of fit S	1.03	1.02

266°C, R_f 0.50. IR spectrum, v, cm⁻¹: 3279 (NH₂), 1668 (C=O), 1654 (C=C–C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.20 s (3H, CH₃), 7.30 br.s (2H, NH₂), 7.45 d.d.d (1H, H_{arom}, *J* = 7.9, 7.2, 1.0), 7.50–7.55 m (2H, C₆H₄SO₂), 7.61 br.d (1H, H_{arom}, *J* = 8.2), 7.76 d.d.d (1H, H_{arom}, *J* = 8.2, 7.2, 1.5), 8.03–8.08 m (2H, C₆H₄SO₂), 8.12 br.d (1H, H_{arom}, *J* = 7.9). ¹³C NMR spectrum, δ_C , ppm: 23.7 (CH₃), 120.3, 125.7, 126.1, 126.4, 127.1 (2C, CH), 128.5 (2C, CH), 133.7, 140.1, 144.7, 147.1, 152.9, 160.8. Found, %: C 57.01; H 4.08; N 13.28. C₁₅H₁₃N₃O₃S. Calculated, %: C 57.13; H 4.16; N 13.33.

2-Methyl-3-(3-methyl-1-phenyl-1*H*-pyrazol-5yl)quinazolin-4(3*H*)-one (3c). Yield 55.3%, mp 158– 160°C, R_f 0.48. IR spectrum, v, cm⁻¹: 1691 (C=O), 1610 (C=C-C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.23 s (3H, 2-CH₃), 2.50 d (3H, 3'-CH₃, *J* = 0.4), 6.45 q (1H, 4'-H, *J* = 0.4), 7.35–7.48 m (5H, Ph); 7.58 d.d.d (1H, *J* = 7.9, 7.2, 1.2), 7.65 d.d.d (1H, *J* = 8.2, 1.2, 0.6), 7.87 d.d.d (1H, *J* = 8.2, 7.2, 1.6), and 8.25 d.d.d (1H, *J* = 7.9, 1.6, 0.6) (5-H, 6-H, 7-H, 8-H). ¹³C NMR spectrum, δ_C , ppm: 13.6, 22.3, 105.6, 119.4, 122.4, 126.3, 126.4, 126.6, 127.3, 128.7, 134.2, 134.3, 137.6, 146.7, 148.4, 152.6, 160.6. Found, %: C 72.01; H 4.98; N 1.68. C₁₉H₁₆N₄O. Calculated, %: C 72.13; H 5.10; N 17.71.

3-(4-Chlorophenyl)-6-iodo-2-methylquinazolin-4(3H)-one (3d). Yield 60.3%, mp 158–160°C, *R*_f 0.59. IR spectrum, v, cm⁻¹: 1681 (C=O), 1601 (C=C–C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.17 s (3H, CH₃), 7.33–7.38 m (2H, C₆H₄), 7.38 d.d (1H, 8-H, *J* = 8.6, 0.4), 7.53–7.58 m (2H, C₆H₄), 8.01 d.d (1H, 7-H, *J* = 8.6, 2.1), 8.40 d.d (1H, 5-H, *J* = 2.1, 0.4). ¹³C NMR spectrum, δ_{C} , ppm: 23.7 (CH₃), 89.9, 122.1, 128.5 (CH), 129.3 (2C, CH), 129.6 (2C, CH), 134.1, 134.7 (CH), 135.8, 142.2 (CH), 146.4, 154.1, 159.4. Found, %: C 45.38; H 2.46; N 6.98. C₁₅H₁₀ClIN₂O. Calculated, %: C 45.43; H 2.54; N 7.06.

General procedure for the synthesis of 2-(2-arylethynyl)quinazolin-4(3H)-ones 4a-4g, 5a-5f, and 6. A mixture of 0.01 mol of quinazoline 2 or 3a-3d and 0.01 mol of the corresponding aldehyde was heated for 1 h at 170–180°C on a metal bath. After cooling, the mixture was triturated with ethanol, and the precipitate was filtered off, dried, and recrystallized from DMF.

6-Iodo-2-phenyl-2-[(E)-2-phenylethenyl]-3-(2-phenylethyl)quinazolin-4(3H)-one (4a) was synthesized from guinazoline 2 and benzaldehyde. Yield 58.3%, mp 160–162°C, R_f 0.55. IR spectrum, v, cm⁻¹: 1661 (C=O), 1630 (C=C-C=N). ¹H NMR spectrum, δ , ppm (J, Hz): 3.03 br.t (2H, CH₂, J = 7.5), 4.48 br.t (2H, NCH₂, J = 7.5), 7.08 d (1H, CH=CH, J = 15.2), 7.13– 7.28 m (5H, C₆H₅), 7.39 d (1H, H_{arom}, J = 8.6), 7.58 m $(2H, C_6H_5)$, 7.82 d (1H, CH=CH, J = 15.2), 7.97 d.d (1H, H_{arom} , J = 8.6, 2.1), 8.46 d (1H, H_{arom} , J = 2.1). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 34.4, 44.2, 89.6, 118.6, 121.7, 126.1, 127.5 (2C), 128.0 (2C), 128.2 (2C), 128.4 (2C), 128.7, 129.0, 134.8, 134.9, 137.5, 140.5, 141.9, 146.3, 152.1, 159.3. Found, %: C 60.16; H 3.88; N 5.78. C₂₄H₁₉IN₂O. Calculated, %: C 60.26; H 4.00; N 5.86.

2-[(E)-2-(4-Chlorophenyl)ethenyl]-6-iodo-3-(2-phenvlethvl)quinazolin-4(3H)-one (4b) was synthesized from quinazoline 2 and 4-chlorobenzaldehyde. Yield 55.2%, mp 202–203°C, Rf 0.59. IR spectrum, v, cm^{-1} : 1669 (C=O), 1560 (C=C-C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.96–3.02 m (2H, CH₂), 4.47–4.53 m (2H, NCH₂), 7.10 d (1H, =CH, J = 15.2), 7.12–7.27 m (5H, C₆H₅), 7.38 d (1H, H_{arom}, J =8.6), 7.36–7.41 m (2H, C₆H₄), 7.59–7.64 m (2H, C_6H_4), 7.76 d (1H, =CH, J = 15.2), 7.97 d.d (1H, H_{arom}, J = 8.6, 2.1), 8.46 d (1H, H_{arom}, J = 2.1). ¹³C NMR spectrum, δ_C, ppm: 34.3 (CH₂), 44.1 (CH₂), 90.1, 119.6 (CH), 121.6, 126.1 (CH), 128.0 (2C, CH), 128.4 (2C, CH), 128.6 (2C, CH), 128.8 (CH), 129.2 (2C, CH), 133.7, 134.2, 134.7 (CH), 137.6, 138.9 (CH), 142.1 (CH), 146.2, 152.1, 159.4. Found, %: C 56.13; H 3.44; N 5.32. C₂₄H₁₈ClIN₂O. Calculated, %: C 56.22; H 3.54; N 5.46.

2-[(E)-2-(2,4-Dichlorophenyl)ethenyl]-6-iodo-3-(2-phenylethyl)quinazolin-4(3H)-one (4c) was synthesized from guinazoline 2 and 2,4-dichlorobenzaldehyde. Yield 53.8%, mp 168–170°C, Rf 0.52. IR spectrum, v, cm^{-1} : 1687 (C=O), 1626 (C=C-C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.98–3.94 m (2H, CH₂), 4.47–5.53 m (2H, NCH₂), 7.14 d (1H, =CH, J = 15.2), 7.12-7.23 m (5H, C₆H₅), 7.37 d.d.d (1H, $C_6H_3Cl_2$, J = 8.5, 2.2, 0.5), 7.44 d.d (1H, H_{arom} , J = 8.6, 0.4), 7.47 d (1H, $C_6H_3Cl_2$, J = 2.2), 7.86 d (1H, $C_6H_3Cl_2$, J = 8.5), 7.99 d.d (1H, H_{arom}, J = 8.6, 2.1), 8.04 br.d (1H, =CH, J = 15.2), 8.48 d.d (1H, H_{arom}, J = 2.1, 0.4). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 34.3 (2C, CH₂), 44.2, 90.0, 121.8, 122.0, 126.1, 127.0, 127.9 (2C), 128.5 (2C), 128.8, 128.9, 131.8, 134.3, 134.4, 134.5, 134.8, 137.5, 141.9, 146.1, 151.7, 159.2. Found, %: C 52.58; H 3.04; N 5.02. C₂₄H₁₇Cl₂IN₂O. Calculated, %: C 52.68; H 3.13; N 5.12.

2-[(*E***)-2-(4-Dimethylaminophenyl)ethenyl]-6-iodo-3-(2-phenylethyl)quinazolin-4(3***H***)-one (4d) was synthesized by reaction of quinazoline 2** with 4-dimethylaminobenzaldehyde. Yield 46.5%, mp 214– 215°C, R_f 0.49. IR spectrum, v, cm⁻¹: 1670 (C=O), 1624 (C=C-C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 3.00–3.05 m (2H, CH₂), 3.07 s (6H, NMe₂), 4.41– 4.47 m (2H, NCH₂), 6.66–6.72 m (2H, C₆H₄), 6.80 d (1H, =CH, *J* = 15.0), 7.16–7.30 m (5H, C₆H₄), 7.85 d (1H, H_{arom}, *J* = 8.6), 7.43–7.48 m (2H, C₆H₄), 7.85 d (1H, =CH, *J* = 15.0), 7.93 d.d (1H, H_{arom}, *J* = 8.6, 2.2), 8.42 d (1H, H_{arom}, *J* = 2.2). Found, %: C 59.83; H 4.54; N 7.92. C₂₆H₂₄IN₃O. Calculated, %: C 59.89; H 4.64; N 8.06.

6-Iodo-2-[(*E*)-2-(4-nitrophenyl)ethenyl]-**3-(2-phenylethenyl)quinazolin-4(3***H***)-one (4e)** was synthesized by reaction of quinazoline **2** with 4-nitrobenzaldehyde. Yield 56.1%, mp 238–240°C, R_f 0.55. IR spectrum, v, cm⁻¹: 1671 (C=O), 1592 (C=C-C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 3.02 t (2H, C**H**₂C₆H₅, *J* = 7.3), 4.54 t (2H, NCH₂, *J* = 7.3), 7.09– 7.15 m (1H) and 7.18–7.25 m (4H) (C₆H₅), 7.33 d (1H, CH=CH, *J* = 15.2), 7.41 d (1H, H_{arom}, *J* = 8.6), 7.81 d (1H, CH=CH, *J* = 15.2), 7.86–7.91 m (2H, C₆H₄), 8.00 d.d (1H, H_{arom}, *J* = 8.6, 2.1), 8.23–8.28 m (2H, C₆H₄), 8.49 (1H, H_{arom}, *J* = 2.1). Found, %: C 54.96; H 3.38; N 7.88. C₂₄H₁₈IN₃O₃. Calculated, %: C 55.08; H 3.47; N 8.03.

6-Iodo-3-(2-phenylethyl)-2-{(E)-2-[4-(propan-2-yl)phenyl]ethenyl}quinazolin-4(3H)-one (4f) was synthesized by reaction of quinazoline **2** with 4-(propan-2-yl)benzaldehyde. Yield 45.3%, mp 158–

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 55 No. 9 2019

160°C, R_f 0.62. IR spectrum, v, cm⁻¹: 1672 (C=O), 1631 (C=C-C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.30 d (6H, CH₃, *J* = 6.9), 2.95 sept (1H, CH, *J* = 6.9), 2.99–3.06 m (2H, CH₂C₆H₅), 4.43–4.50 m (2H, NCH₂), 7.02 d (1H, =CH, *J* = 15.2), 7.15–7.29 m (7H, H_{arom}), 7.39 d.d (1H, =CH, *J* = 8.6, 0.3), 7.50–7.54 m (2H, C₆H₄), 7.83 d (1H, =CH, *J* = 15.2), 7.97 d.d (1H, =CH, *J* = 8.6, 2.1), 8.45 d.d (1H, =CH, *J* = 2.1, 0.6). Found, %: C 62.23; H 4.64; N 5.22. C₂₇H₂₅IN₂O. Calculated, %: C 62.31; H 4.84; N 5.38.

6-Iodo-2-[*(E)*-**2-**(**1-methyl-1***H***-indol-3-yl**)**ethenyl**]-**3-**(**2-phenylethyl**)**quinazolin-4**(*3H*)-**one** (**4g**) was synthesized by reaction of quinazoline **2** with 1-methyl-1*H*-indole-3-carbaldehyde. Yield 50.2%, mp 198–200°C, R_f 0.48. IR spectrum, v, cm⁻¹: 1665 (C=O), 1621 (C=C-C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 3.06–3.11 m (2H, CH₂), 3.91 s (3H, CH₃), 4.45–4.50 m (2H, NCH₂), 7.01 d (1H, =CH, *J* = 15.0), 7.17–7.44 m (9H, H_{arom}), 7.75 s (1H, =CHN), 7.85– 7.88 m (1H, H_{arom}), 7.93 d.d (1H, H_{arom}, *J* = 8.6, 2.2), 8.20 d (1H, =CH, *J* = 15.0), 8.43 d (1H, H_{arom}, *J* = 2.2). Found, %: C 60.96; H 4.08; N 7.82. C₂₇H₂₂IN₃O. Calculated, %: C 61.03; H 4.17; N 7.91.

2-[(E)-2-(4-Chlorophenyl)ethenyl]-3-[4-(dimethylamino)phenyl]quinazolin-4(3H)-one (5a) was synthesized by reaction of quinazoline 3a with 4-chlorobenzaldehyde. Yield 52.4%, mp 210-212°C, $R_{\rm f}$ 0.51. IR spectrum, v, cm⁻¹: 1678 (C=O), 1633 (C=C-C=N). ¹H NMR spectrum, δ , ppm (J, Hz): 3.09 s (6H, NCH₃), 6.44 d (1H, =CH, J = 15.5), 6.80– 6.85 m (2H, $C_6H_4NMe_2$), 7.05–7.10 m (2H, C₆H₄NMe₂), 7.29-7.36 m (4H, C₆H₄Cl), 7.43 d.d.d $(1H, H_{arom}, J = 7.9, 7.0, 1.3), 7.68$ br.d $(1H, H_{arom}, J =$ 8.2), 7.76 d.d.d (1H, H_{arom} , J = 8.2, 7.0, 1.5), 7.87 d $(1H, =CH, J = 15.5), 8.14 \text{ d.d} (1H, H_{arom}, J = 7.9, 1.5).$ ¹³C NMR spectrum, δ_{C} , ppm: 39.8 (2C, NMe₂), 111.9, 120.5, 120.6, 124.5, 125.5, 126.3, 126.7, 128.4 (2C, CH), 128.4 (2C, CH), 128.6 (2C, CH), 133.5, 133.6, 134.2, 137.1, 147.2, 149.8, 151.4, 161.0. Found, %: C 71.68; H 4.98; N 10.38. C₂₄H₂₀ClN₃O. Calculated, %: C 71.73; H 5.02; N 10.46.

2-[(*E***)-2-(2,4-Dichlorophenyl)ethenyl]-3-[(4-dimethylamino)phenyl]quinazolin-4(3***H***)-one (5b) was synthesized by reaction of quinazoline 3a** with 2,4-dichlorobenzaldehyde. Yield 51.8%, mp 242–244°C, R_f 0.53. IR spectrum, v, cm⁻¹: 1682 (C=O), 1630 (C=C-C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 3.08 s (6H, NCH₃), 6.49 d (1H, =CH, *J* = 15.5), 6.79– 6.84 m (2H, C₆H₄NMe₂), 7.06–7.11 m (2H, C₆H₄NMe₂), 7.24 d.d (1H, C₆H₃Cl₂, *J* = 8.5, 2.0), 7.29 d (1H, C₆H₃Cl₂, *J* = 8.5), 7.44 d (1H, C₆H₃Cl₂, *J* = 2.0), 7.45 d.d. (1H, H_{arom} , J = 8.0, 6.7, 1.6), 7.71– 7.80 m (2H, H_{arom}), 8.12 d (1H, =CH, J = 15.5), 8.15 d.d (1H, H_{arom} , J = 8.0, 1.2). ¹³C NMR spectrum, δ_{C} , ppm: 39.8 (2C, NMe₂), 111.9, 120.7, 123.4, 124.4, 125.8, 126.3, 127.0, 127.1, 127.9, 128.6, 129.0, 132.0, 132.8, 133.5, 134.2, 134.4, 147.0, 149.8, 151.0, 161.0. Found %: C 65.98; H 4.28; N 9.58. $C_{24}H_{19}Cl_2N_3O$. Calculated, %: C 66.06; H 4.39; N 9.63.

2-[(E)-2-(4-Chlorophenyl)ethenyl]-3-(3-methyl-1-phenyl-1*H*-pyrazol-5-yl)quinazolin-4(3*H*)-one (5c) was synthesized by reaction of guinazoline 3c with 4-chlorobenzaldehyde. Yield 50.5%, mp 216–218°C, $R_{\rm f}$ 0.51. IR spectrum, v, cm⁻¹: 1682 (C=O), 1636 (C=C-C=N). ¹H NMR spectrum, δ , ppm (J, Hz): 2.46 s (3H, CH₃), 6.35 d (1H, =CH, J = 15.4), 6.39 br.s (1H, 4'-H), 7.22–7.30 m (5H, C₆H₅), 7.34–7.43 m (4H, C_6H_4Cl), 7.48 d.d.d (1H, H_{arom} , J = 7.9, 7.2, 1.1), 7.66 br.d (1H, H_{arom} , J = 8.1), 7.80 d.d.d (1H, H_{arom} , J =8.1, 7.2, 1.5), 7.81 d (1H. =CH, J = 15.4), 8.14 d.d (1H, H_{arom}, J = 7.9, 1.5). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 13.7, 106.3, 118.1, 119.5, 122.7, 126.4, 126.6, 127.1, 127.3, 128.6, 128.6, 128.7, 133.1, 133.4, 134.5, 134.7, 137.5, 139.0, 146.8, 148.5, 150.0, 160.3. Found, %: C 71.04; H 4.28; N 12.68. C₂₆H₁₉ClN₄O. Calculated, %: C 71.15; H 4.36; N 12.77.

2-[(E)-2-(2,4-Dichlorophenvl)ethenvl]-3-(3-methyl-1-phenyl-1H-pyrazol-5-yl)quinazolin-4(3H)-one (5d) was synthesized by reaction of quinazoline 3c with 2,4-dichlorobenzaldehyde. Yield 49.7%, mp 206–208°C, $R_{\rm f}$ 0.43. IR spectrum, v, cm⁻¹: 1694 (C=O), 1631 (C=C–C=N). ¹H NMR spectrum, δ, ppm (J, Hz): 2.44 s (3H, CH₃), 6.40 s (1H, 4'-H), 6.43 d (1H, =CH, J = 15.4), 7.22–7.34 m (6H, H_{arom}), 7.44–7.53 m (3H, H_{arom}), 7.70 br.d (1H, H_{arom} , J = 8.1), 7.81 br.d.d.d (1H, H_{arom} , J = 8.1, 7.1, 1.4), 8.06 d $(1H, =CH, J = 15.4), 8.15 \text{ br.d} (1H, H_{arom}, J = 7.9).$ ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 13.7, 106.3, 119.6, 121.0, 122.8, 126.7, 127.3, 127.4, 128.5, 129.1, 131.4, 133.2, 134.3, 134.4, 134.6, 134.9, 137.5, 146.6, 148.5, 149.6, 160.2. Found, %: C 65.91; H 3.78; N 11.78. C₂₆H₁₈Cl₂N₄O. Calculated, %: C 65.97; H 3.83; N 11.84.

4-{2-[(*E***)-2-(3-Nitrophenyl)ethenyl]-4-oxo-3,4-dihydroquinazolin-3-yl}benzenesulfonamide (5e)** was synthesized by reaction of quinazoline **3b** with 3-nitrobenzaldehyde. Yield 45.5%, mp 310–312°C, R_f 0.45. IR spectrum, v, cm⁻¹: 3310 (NH₂), 1655 (C=O), 1604 (C=C-C=N). ¹H NMR spectrum, δ , ppm (*J*, Hz): 6.52 d (1H, CH=CH, *J* = 15.5), 7.33 br.s (2H, NH₂), 7.50 d.d.d (1H, C₆H₄, *J* = 8.1, 7.1, 1.2), 7.52–7.57 m (2H, C₆H₄SO₂), 7.61 t (1H, 5'-H, *J* = 7.9), 7.72–7.78 m (2H, H_{arom}), 7.83 d.d.d (1H, H_{arom}, J = 8.1, 7.1, 1.5), 8.00 d (1H, CH=CH, J = 15.3), 8.08–8.13 m (2H, C₆H₄SO₂), 8.12–8.19 m (2H, H_{arom}), 8.23 t (1H, 2'-H, J = 1.8). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 120.5, 122.2, 122.4, 123.3, 126.2, 126.3, 127.0, 127.1 (2C, CH), 129.0 (2C, CH), 129.9, 132.3, 134.0, 136.4, 136.8, 138.9, 144.9, 147.0, 148.1, 149.9, 160.6. Found, %: C 58.81; H 3.55; N 12.38. C₂₂H₁₆N₄O₅S. Calculated, %: C 58.92; H 3.60; N 12.49.

3-(4-Chlorophenyl)-6-iodo-2-[(E)-2-(5-nitrofuran-2-yl)ethenyl]quinazolin-4(3H)-one (5f) was synthesized by reaction of quinazoline 3d with 5-nitrofuran-2-carbaldehyde. Yield 70.5%, mp 268-270°C, $R_{\rm f}$ 0.52. IR spectrum, v, cm⁻¹: 1682 (C=O), 1631 (C=C-C=N). ¹H NMR spectrum, δ , ppm (J, Hz): 6.47 d.d (1H, CH=CH, J = 15.3, 0.4), 7.04 d.t (1H, 4'-H, J = 3.9, 0.4), 7.36–7.41 m (2H, C₆H₄), 7.49 d.d $(1H, H_{arom}, J = 8.5, 0.4), 7.49 d (1H, 3'-H, J = 3.9),$ 7.61–7.66 m (2H, C_6H_4), 7.79 d (1H, CH=CH, J = 15.3), 8.07 91 d.d (1H, H_{arom} , J = 8.5, 2.1), 8.46 d.d (1H, H_{arom}, J = 2.1, 0.4). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 90.9, 113.4, 115.5, 122.3, 122.6, 124.7, 129.0, 129.5, 130.1, 134.5, 135.0, 142.6, 146.1, 150.1, 152.5, 159.1. Found, %: C 46.18; H 2.01; N 7.98. C₂₀H₁₁ClN₃O₄. Calculated, %: C 46.22; H 2.13; N 8.09.

3-(4-Chlorophenyl)-6-iodo-2-[(1E,3E)-4-phenylbuta-1,3-dien-1-yl]quinazolin-4(3H)-one (5g) was synthesized by reaction of quinazoline 3d with (*E*)-3-phenylprop-2-enal. Yield 67.3%, mp 261–263°C, $R_{\rm f}$ 0.57. IR spectrum, v, cm⁻¹: 1697 (C=O), 1621 (C=C-C=N). ¹H NMR spectrum, δ , ppm (J, Hz): 5.89 br.d (1H, 1'-H, J = 14.6), 6.85 d.d.d (1H, 3'-H, J =15.5, 10.6, 0.5), 6.95 d (1H, 4'-H, J = 15.5), 7.21– 7.32 m (3H, *m*-H, *p*-H), 7.30–7.35 m (2H, C₆H₄Cl), 7.42–7.46 m (2H, o-H), 7.44 d (1H, 8-H, J = 8.6), 7.57–7.62 m (2H, C₆H₄Cl), 7.78 d.d (1H, 2'-H, J =14.6, 10.6), 8.03 d.d (1H, 7-H, J = 8.6, 2.1), 8.42 d (1H, 5-H, J = 2.1). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 89.7, 122.0, 126.6 (2C, CH), 126.9 (CH), 128.1 (2C, CH), 128.2 (CH), 128.8 (CH), 129.4 (2C, CH), 130.0 (2C, CH), 134.2, 134.9, 135.0, 135.7 (CH), 139.0 (CH), 140.7 (CH), 142.4 (CH), 146.6, 151.3, 159.3. Found, %: C 56.67; H 2.95; N 5.67. C₂₄H₁₆ClN₂O. Calculated, %: C 56.44; H 3.6; N 5.48.

2-(*E***)-(5-Bromo-2-oxo-1-propyl-2,3-dihydro-1***H***indol-3-ylidenemethyl)-6-iodo-3-(2-phenylethyl)quinazolin-4(***3H***)-one (6). Yield 49.2%, mp 248– 250°C, R_f 0.46. IR spectrum, v, cm⁻¹: 1707 (C=O), 1664 (C=C-C=N). ¹H NMR spectrum, \delta, ppm (***J***, Hz): 1.02 t (3H, CH₃,** *J* **= 7.4), 1.66–1.79 m (2H, CH₂CH₃), 3.00–3.07 m (2H, CH₂C₆H₅), 3.71 t (2H, NCH₂), 4.42 m (2H, NCH₂), 6.89 d (1H, =CH,** *J* **= 8.4), 6.96– 7.03 m (1H, H_{arom}), 7.11–7.21 m (4H, H_{arom}), 7.36 s (1H, =CH), 7.44 d.d (1H, =CH,** *J* **= 8.4, 2.1), 7.45 d (1H, =CH,** *J* **= 8.5), 8.11 d.d (1H, =CH,** *J* **= 8.5, 2.1), 8.43 d (1H, =CH,** *J* **= 2.1), 8.58 d (1H, =CH,** *J* **= 2.1). Found, %: C 52.26; H 3.84; N 6.42. C₂₇H₂₅IN₂O. Calculated, %: C 52.36; H 3.92; N 6.54.**

FUNDING

This study was performed at the Russian–Armenian University under financial support by the Ministry of Science and Higher Education of the Russian Federation.

CONFLICT OF INTERESTS

The authors declare the absence of conflict of interests.

REFERENCES

- Ajani, O.O., Audu, O.Y., Aderohunmu, D.V., Owolabi, E.O., and Olomieja, A.O., *Am. J. Drug Discovery Dev.*, 2017, vol. 7, p. 1. doi 10.3923/ ajdd.2017.1.24
- Anschütz, R., Schmidt, O., and Greiffenberg, A., Ber., 1902, vol. 35, p. 3482.
- Agbo, E.N., Makhafola, T.J., Choong, Y.S., Mphahlele, M.J., and Ramasami, P.R., *Molecules*, 2016, vol. 21, p. 28. doi 10.3390/molecules21010028
- Harutyunyan, A.A., Ghukasyan, G.T., and Danagulyan, G.G., Org. Med. Chem. Int. J., 2018, vol. 7, p. 1. doi 10.19080/OMCIJ.2018.07.555718
- Arutyunyan, A.A., Gukasyan, G.T., Panosyan, G.A., and Danagulyan, G.G., *Khim. Zh. Arm.*, 2018, vol. 71, p. 249.
- 6. Sheldrick, G.M., Acta Crystallogr., Sect. C, 2015, vol. 71, p. 3.