

Estimation and Structural Effect on Physicochemical Properties of Alkylimidazolium-Based Ionic Liquids with Different Anions

Qingguo Zhang,*^{,†} Yalin Lan,[‡] Hongwei Liu,[§] Xinyuan Zhang,[‡] Xuelei Zhang,[‡] and Ying Wei[‡]

[†]College of New Energy, and [‡]College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, Liaoning Province, China

[§]Bureau of Environmental Supervision, Xishi District, Yingkou 115000, Liaoning Province, China

S Supporting Information

ABSTRACT: Ten kinds of alkylimidazolium-based aprotic ionic liquids (AILs) with hydrogen carbonate, dihydrogen phosphate, and hydrogen sulfate anions were prepared, and methods of elemental analysis, infrared spectroscopy, and proton nuclear magnetic resonance were employed to characterize the ILs, respectively. Properties such as electrical conductivity, density, dynamic viscosity, surface tension, were measured and correlated with thermodynamic and empirical equations over various temperature ranges under ambient conditions. Some significant thermodynamic parameters of the ILs were estimated. The trends of changing with temperature for the dynamic viscosity and the electrical conductivity were described by the Vogel-Fulcher-Tamman equation.

The activation energies of dynamic viscosity and electrical conductivity were also calculated. Further, the structures and the energetics of the ILs ions were obtained through combining density functional theory calculations and the COSMO-RS methodology. The structural effects of ion variation on the properties of the ILs were studied.

1. INTRODUCTION

As the unique physicochemical properties of ionic liquids (ILs),^{1–8} more intensive investigations have been carried on in various fields, for example, the "green" solvents for specific organic reactions and extraction processes,9-12 excellent electrolyte in various electrochemical applications,¹³ the media of homogeneous catalysis,¹⁴ and so on.

A subgroup of ILs, aprotic ionic liquids (AILs), has been widely investigated.^{15–19} The cations most commonly used in AILs are alkylimidazolium with aromatic rings, in which the substitutions in positions 1 and 3 were alkyl groups, while the substitutions in positions 2, 4, and 5 were either hydrogen atoms or alkyl groups.²⁰ It is well-known that ILs could be tailored for particular purposes via specific cation-anion combinations. The AILs composed of alkylimidazolium cations and anions like hydrogen carbonate, dihydrogen phosphate, and hydrogen sulfate lack investigation by far, and these ILs may have potentials in certain industrial applications. For example, Zhang et al. used $[C_4 mim][HSO_4]$ ionic liquid as a catalyst in oxidative desulfurization of dibenzothiophene, and in model oil, the IL catalyst was recyclable and showed high activity through the whole process of oxidative desulfurization of DBT.¹⁴ Choib et al. reported that the IL $[C_4 mim][HCO_3]$ had a comparable activity to NaOCH₃ and showed good potential to be a substitute for common alkali metal alkoxide and precious metal complexes.²¹ The comprehensive evaluation of the physicochemical properties of these AILs will allow structure-property trends to be discussed, and for the development of industrial processes, the basic physicochemical

data of ILs should be studied both experimentally and computationally to characterize the molecular structure and thermodynamic characteristics. In this context, the study of physicochemical properties, intermolecular interactions, structure characteristics, and the estimation of thermodynamic properties of these ILs become necessary in any of their applications.

Herein, we prepared three series of aprotic ionic liquids from alkylimidazolium cations and three anions, 1-alkyl-3-metylimidazolium hydrogen carbonate ([C₃₋₅mim][HCO₃]), 1-alkyl-3metylimidazolium dihydrogen phosphate ([C₃₋₅mim]-[H₂PO₄]), and 1-alkyl-2,3-dimetylimidazolium hydrogen sulfate $([C_{2-5}mmim][HSO_4])$ (see Table 1). A two-step method was employed and the prepared ILs were characterized by methods of IR, ¹HNMR, and EA. The physicochemical properties such as density, dynamic viscosity, surface tension, and conductivity were measured. The significant thermodynamic parameters of the ILs such as thermal expansion coefficient, lattice energy, standard molar entropy, and interstice parameters were estimated according to semiempirical/empirical methods. Subsequently, the temperature dependence of electrical conductivity and viscosity were described by the Vogel-Fulcher-Tamman (VFT) equation. Further, the structural effects on the properties of ILs, which resulted from the cation/ anion size and position change of the alkyl chain of cations or

Received: October 11, 2015 Accepted: April 27, 2016

Table 1. Structure Formula of Synthetic Ionic Liquids

Ionic liquid	Abbreviations	Cation	Anion
1-propyl-3-methylimidazolium hydrogen carbonate	[C3mim][HCO3]		
1–butyl–3–methylimidazolium hydrogen carbonate	[C4mim][HCO3]		HCO ₃ ⁻
1-pentyl-3-methylimidazolium hydrogen carbonate	[C₅mim][HCO₃]		
1-propyl-3-methylimidazolium dihydrogen phosphate	[C ₃ mim][H ₂ PO ₄]		
1-butyl-3-methylimidazolium dihydrogen phosphate	[C ₄ mim][H ₂ PO ₄]		$\mathrm{H_2PO_4}^-$
1-pentyl-3-methylimidazolium dihydrogen phosphate	[C5mim][H2PO4]		
1–ethyl–2,3–dimetylimidazolium hydrogen sulfate	[C ₂ mmim][HSO ₄]		
1–propyl–2,3–dimetylimidazolium hydrogen sulfate	[C3mmim][HSO4]		$\mathrm{HSO_4}^-$
1–butyl–2,3–dimetylimidazolium hydrogen sulfate	[C ₄ mmim][HSO ₄]		
1–pentyl–2,3–dimetylimidazolium hydrogen sulfate	[C₅mmim][HSO4]		

different anions, were calculated and studied by DFT calculations and COSMO-RS methodology. The optimized energy models of the ILs were obtained by the calculation.

2. EXPERIMENTAL SECTION

2.1. Materials. Bromoethane, bromopropane, bromobutane, and bromopentane were purchased from Sinopharm Co., China, followed by distillation before use. Sodium hydrogen carbonate, sodium dihydrogen phosphate, sodium hydrogen sulfate were purified by recrystallization from water. The *N*methyl imidazole and 1,2-dimethylimidazolium purchased from Zhejiang doubleport Co. Ltd., China, were distilled at reduced pressure before use. The materials' purities and sources were summarized in Table 2.

2.2. Preparation and Characterization of ILs $[C_{3-5}mim][HCO_3]$, $[C_{3-5}mim][H_2PO_4]$, $[C_{2-5}mmim][HSO_4]$. The ILs $[C_{3-5}mim][HCO_3]$, $[C_{3-5}mim][H_2PO_4]$, and $[C_{2-5}mmim][HSO_4]$ were prepared by a two-step method (see Scheme 1) according to previous work,^{22,23} and then the viscous and transparent ionic liquids were obtained. All synthetic processes were conducted under dry argon atmosphere. These ILs were dried under high vacuum for 24 h at 353.15 K before use.

The ILs products were characterized by IR, ¹HNMR, and EA (see Supporting Information). A Karl Fischer moisture titrator

Table 2. Information of Sample and the Synthesized Ionic Liquids

		initial mole fraction		final mole fraction	
chemical name	source	purity	purification method	purity	analysis method
bromoethane	Sinopharm (China)	> 0.990	distillation	0.997	GC ^a
bromopropane	Sinopharm (China)	> 0.990	distillation	0.998	GC
bromobutane	Sinopharm (China)	> 0.990	distillation	0.996	GC
bromopentane	Sinopharm (China)	> 0.990	distillation	0.998	GC
sodium hydrogen carbonate	Sinopharm (China)	0.995	precipitation	> 0.995	
sodium dihydrogen phosphate	Sinopharm (China)	0.995	precipitation	> 0.995	
sodium hydrogen sulfate	Sinopharm (China)	0.995	precipitation	> 0.995	
N-methyl imidazole	Zhejiang doubleport (China)	> 0.990	distilled at reduced pressure	> 0.998	¹ HNMR
1, 2-dimethylimidazolium	Zhejiang doubleport (China)	> 0.990	distilled at reduced pressure	> 0.998	¹ HNMR
[C ₃ mim][HCO ₃]	synthesized		vacuum desiccation	> 0.990	¹ HNMR, EA,KF ^b
$[C_4 mim][HCO_3]$	synthesized		vacuum desiccation	> 0.990	¹ HNMR, EA, KF
[C ₅ mim][HCO ₃]	synthesized		vacuum desiccation	> 0.990	¹ HNMR, EA, KF
$[C_3 mim][H_2 PO_4]$	synthesized		vacuum desiccation	> 0.990	¹ HNMR, EA, KF
$[C_4 mim][H_2 PO_4]$	synthesized		vacuum desiccation	> 0.990	¹ HNMR, EA, KF
$[C_5 mim][H_2 PO_4]$	synthesized		vacuum desiccation	> 0.990	¹ HNMR, EA, KF
$[C_2 mmim][HSO_4]$	synthesized		vacuum desiccation	> 0.990	¹ HNMR, EA, KF
[C ₃ mmim][HSO ₄]	synthesized		vacuum desiccation	> 0.990	¹ HNMR, EA, KF
$[C_4 mmim][HSO_4]$	synthesized		vacuum desiccation	> 0.990	¹ HNMR, EA, KF
[C ₅ mmim][HSO ₄]	synthesized		vacuum desiccation	> 0.990	¹ HNMR, EA, KF
^a Gas-liquid chromatograph	w ^b Karl Fischer titration				

Scheme 1. Synthesis Route of ILs

n=2, 3, 4, 5; R₁=CH₃ or H; X=HCO₃, H₂PO₄, HSO₄

(ET08, Mettler EasyPlus) was used to determine the water contents at atmospheric pressure. The water content of the ILs are listed in Table S8 (see Supporting Information). The contents of the residual Br^- were tested by AgNO₃/HNO₃ solution, and an approximately 50 ppm detection limit was found. It was estimated that the ILs' final purity was greater than 99% (mass percent). All determinations were performed under dry argon atmosphere in a glovebox. And the information on the synthesized ionic liquids were also listed in Table 2.

2.3. Measurements. *Density.* Mettler Toledo DM 45 density meter was used to measure ILs density (Mettler Toledo's vibrating U-tube technology under atmospheric pressure). Before performing the measurements, the density meter was calibrated with ultrapure dry air and water, and its reproducibility is 10^{-5} g·cm⁻³.

Surface Tensions. A tensiometer (DPAW, Sang Li Electronic Co.) was used to measure the surface tensions by the forced bubble method. First, the surface tensions of ultrapure water (boiling and cooling) were measured in the temperature range 288.15–343.15 K and was in good agreement with the literature²⁴ within the experimental error of $\pm 0.1 \text{ mN} \cdot \text{m}^{-1}$. Then, the surface tension of the ILs were measured in the same condition. The temperature accuracy is 0.02 K.

Viscosity. The ILs' viscosity were measured at temperatures from (288.15 to 343.15) K using an Anton Paar SVM3000 viscometer which is based on a tube filled with the sample in a

floats hollow measuring rotor. Calibration was performed using ultrapure water or viscosity standard oils (No. H117, Anton Paar Co.). The reproducibility of the viscosity measurements is 0.35%, the temperature accuracy is 0.02 K.

Electrical Conductivities. A Mettler Toledo SG3 conductivity meter, which operates with InLab738 conductivity probe (nominal 0.57 cm⁻¹ \pm 20% cell constant), was used to measure the electrical conductivities. The measurement frequency and voltage of the conduction were 50 Hz and 6 V, respectively. It was calibrated with the aqueous KCl solution under atmosphere pressure in the temperature range 288.15–343.15 K. The uncertainty in the measurements was \pm 5%. All values were listed in Table 3.

2.4. Calculations. Each 3D structure and energy of investigated ionic liquid complexes were calculated by Turbomole²⁵ through the COSMO-RS methodology²⁶ based on the DFT calculation. The function B3LYP and the TZVP basis set from the Turbomole library were both used.²⁷ All interaction energies were obtained under the supermolecular ansatz. The structural characteristics and the H-bond interactions were optimized and evaluated.

3. RESULTS AND DISCUSSION

The determination and comprehension of basic physicochemical and transport properties of ILs, such as density, viscosity, and conductivity are of great importance for equipment options and process design. The fundamental data about ILs may provide a better understanding of these ILs.²⁸

Table 3. Density, Surface Tension, Dynamics Viscosity, Electrical Conductivity, and Molar Conductivity of ILs at T = 288.15 - 343.15 K and 101 kPa^c

T/K	288.15	293.15	298.15	303.15	308.15	313.15	318.15	323.15	328.15	333.15	338.15	343.15
	$ ho/{ m g\cdot cm^{-3}}$											
$\begin{bmatrix} C_3 \text{mim} \end{bmatrix}$ $\begin{bmatrix} \text{HCO}_3 \end{bmatrix}$	1.17251	1.16904	1.16553	1.16201	1.1585	1.15499	1.15147	1.14795	1.14442	1.14087	1.13733	1.13377
[C ₄ mim] [HCO ₃]	1.16410	1.16050	1.15708	1.15364	1.15000	1.14651	1.14295	1.13945	1.13610	1.13253	1.12892	1.12552
[C ₅ mim] [HCO ₃]	1.14891	1.14521	1.14179	1.13828	1.13477	1.13133	1.12775	1.12428	1.12073	1.11727	1.11375	1.11030
$\begin{bmatrix} C_3 mim \end{bmatrix} \\ \begin{bmatrix} H_2 PO_4 \end{bmatrix}$	1.20241	1.19896	1.19545	1.19195	1.18845	1.18495	1.18143	1.17789	1.17436	1.1708	1.16724	1.16366
$\begin{bmatrix} C_4 mim \\ H_2 PO_4 \end{bmatrix}$	1.18324	1.17991	1.17654	1.17318	1.16969	1.1663	1.1628	1.15953	1.15613	1.15267	1.14936	1.14603
$\begin{bmatrix} C_5 mim \end{bmatrix} \\ \begin{bmatrix} H_2 PO_4 \end{bmatrix}$	1.14862	1.14542	1.14229	1.13909	1.13581	1.13255	1.12943	1.12627	1.12294	1.11993	1.11663	1.11349
$\begin{bmatrix} C_2 mmim \\ [HSO_4] \end{bmatrix}$	1.26194	1.25809	1.25443	1.25077	1.24708	1.2433	1.23959	1.2358	1.2322	1.22852	1.22482	1.22118
[C ₃ mmim] [HSO ₄]	1.23979	1.23623	1.23282	1.22924	1.22573	1.22213	1.21882	1.21529	1.21174	1.20835	1.20481	1.20146
[C ₄ mmim] [HSO ₄]	1.21709	1.21374	1.21061	1.20735	1.20389	1.20063	1.19749	1.19403	1.1908	1.18757	1.18429	1.18099
[C ₅ mmim] [HSO ₄]	1.19647	1.19323	1.19007	1.18689	1.18389	1.18069	1.17769	1.17461	1.17129	1.16833	1.16521	1.16218
	$\gamma/mN \cdot m^{-1}$											
[C ₃ mim] [HCO ₃]	38.1	37.7	37.3	36.8	36.4	36.0	35.6	35.2	34.8	34.4	34.0	33.6
[C ₄ mim] [HCO ₃]	34.9	34.4	34.0	33.5	33.1	32.6	32.2	31.7	31.2	30.8	30.4	29.9
[C ₅ mim] [HCO ₃]	31.9	31.4	30.9	30.4	29.9	29.4	29.0	28.5	28.0	27.5	26.9	26.5
$\begin{bmatrix} C_3 mim \end{bmatrix} \\ \begin{bmatrix} H_2 PO_4 \end{bmatrix}$	46.4	46.1	45.8	45.5	45.2	44.9	44.6	44.3	44	43.7	43.4	43.1
$\begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} H_2 PO_4 \end{bmatrix}$	44.2	43.9	43.6	43.2	42.9	42.6	42.3	42	41.7	41.4	41.1	40.8
$\begin{bmatrix} C_5 \text{mim} \\ [H_2 PO_4] \end{bmatrix}$	41.8	41.5	41.2	40.9	40.6	40.3	40	39.7	39.3	39	38.7	38.4
[C ₂ mmim] [HSO ₄]	50.4	50.1	49.8	49.5	49.3	49.0	48.7	48.4	48.1	47.8	47.5	47.2
[C ₃ mmim] [HSO ₄]	47.7	47.4	47.2	46.9	46.6	46.3	46.1	45.8	45.5	45.2	44.9	44.7
$\begin{bmatrix} C_4 mmim \\ [HSO_4] \end{bmatrix}$	45.3	45.0	44.8	44.5	44.2	43.9	43.7	43.4	43.1	42.8	42.6	42.3
[C ₅ mmim] [HSO ₄]	42.5	42.2	42.0	41.7	41.5	41.2	40.9	40.7	40.4	40.1	39.9	39.6
	$\eta/\mathrm{mPa}\cdot\mathrm{s}$											
[C ₃ mim] [HCO ₃]	73.67	55.63	42.67	33.24	25.87	20.51	16.65	13.18	11.00	9.059	7.412	6.286
[C ₄ mim] [HCO ₃]	122.9	94.80	73.73	57.64	45.33	35.86	28.85	22.93	18.54	14.81	11.88	10.04
[C ₅ mim] [HCO ₃]	179.6	138.9	108.6	85.09	66.77	53.12	42.53	33.29	26.92	21.42	17.65	14.71
$\begin{bmatrix} C_3 \text{mim} \\ [H_2 PO_4] \end{bmatrix}$	99.38	78.41	61.92	49.58	39.30	32.16	25.81	21.02	17.17	13.85	11.43	10.04
$\begin{bmatrix} C_4 \text{mim} \\ [H_2 PO_4] \end{bmatrix}$	198.7	159.0	125.6	101.1	80.78	65.21	53.62	43.67	36.75	29.77	25.21	20.96
$\begin{bmatrix} C_5 \text{mim} \\ [H_2 PO_4] \end{bmatrix}$	327.8	259.1	205.0	162.6	130.0	103.3	84.04	68.45	56.55	46.91	38.55	31.43
$\begin{bmatrix} C_2 mmim \\ [HSO_4] \end{bmatrix}$	375.0	263.6	186.0	134.9	98.41	72.94	53.72	40.12	30.20	22.37	17.96	12.57
[C ₃ mmim] [HSO ₄]	500.4	362.3	263.7	194.2	142.2	107.0	81.27	62.04	47.83	35.71	27.47	21.17
[C ₄ mmim] [HSO ₄]	628.5	469.7	355.2	271.3	206.3	157.2	121.8	95.86	74.49	60.70	46.52	38.13
[C ₅ mmim] [HSO ₄]	772.4	597.0	462.8	358.7	281.1	224.2	176.0	140.1	113.0	90.00	73.77	57.54
	$\sigma/\text{mS}\cdot\text{cm}^{-1}$											
[C ₃ mim] [HCO ₃]	4.87	5.47	6.06	6.62	7.25	7.85	8.46	9.08	9.68	10.26	10.83	11.42
$\begin{bmatrix} C_4 mim \\ [HCO_3] \end{bmatrix}$	2.74	3.22	3.76	4.39	4.96	5.57	6.22	6.89	7.55	8.23	8.93	9.63

Article

Table 3. continued

T/K	288.15	293.15	298.15	303.15	308.15	313.15	318.15	323.15	328.15	333.15	338.15	343.15
	σ/mS·cm	-1										
[C ₅ mim] [HCO ₃]	1.43	1.93	2.48	3.05	3.67	4.28	4.89	5.53	6.12	6.71	7.33	7.94
$\begin{matrix} [C_3 mim] \\ [H_2 PO_4] \end{matrix}$	4.69	5.36	6.13	6.93	7.85	8.79	9.77	10.82	11.86	13.02	14.12	15.46
$\begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} H_2 PO_4 \end{bmatrix}$	3.03	3.59	4.19	4.83	5.55	6.28	7.07	7.88	8.68	9.65	10.59	11.59
$\begin{matrix} [C_5 mim] \\ [H_2 PO_4] \end{matrix}$	1.64	2.01	2.43	2.9	3.41	3.98	4.57	5.23	5.88	6.65	7.44	8.25
[C ₂ mmim] [HSO ₄]			1.50	1.93	2.44	3.08	3.77	4.58	5.54	6.65	7.87	9.25
[C ₃ mmim] [HSO ₄]			1.23	1.62	2.11	2.67	3.33	4.09	4.96	6.00	7.11	8.32
[C ₄ mmim] [HSO ₄]			1.00	1.35	1.79	2.31	2.92	3.60	4.41	5.31	6.31	7.39
[C ₅ mmim] [HSO ₄]			0.75	1.05	1.45	1.97	2.57	3.24	3.99	4.85	5.73	6.75
	$\Lambda/S \cdot cm^2 \cdot$	mol ⁻¹										
[C ₃ mim] [HCO ₃]	0.7734	0.87124	0.96814	1.0608	1.1653	1.2655	1.3680	1.4728	1.5750	1.6745	1.7731	1.8755
[C ₄ mim] [HCO ₃]	0.4713	0.5556	0.6507	0.7619	0.8636	0.9725	1.0894	1.2104	1.3303	1.4547	1.5830	1.7123
[C ₅ mim] [HCO ₃]	0.2666	0.3608	0.4650	0.5736	0.6923	0.8096	0.9278	1.0525	1.1683	1.2847	1.4075	1.5291
$\begin{bmatrix} C_3 mim \end{bmatrix} \\ \begin{bmatrix} H_2 PO_4 \end{bmatrix}$	0.8624	0.9885	1.1338	1.2855	1.4605	1.6402	1.8285	2.0311	2.2330	2.4588	2.6747	2.9375
$\begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} H_2 PO_4 \end{bmatrix}$	0.6021	0.7154	0.8373	0.9680	1.1156	1.2660	1.4296	1.5978	1.7652	1.9684	2.166	2.3778
$\begin{bmatrix} C_{5} mim \end{bmatrix} \\ \begin{bmatrix} H_{2}PO_{4} \end{bmatrix}$	0.3557	0.4372	0.5230	0.6343	0.7480	0.8755	1.0081	1.1569	1.3045	1.4793	1.6599	1.8458
$\begin{bmatrix} C_2 mmim \end{bmatrix}$ $\begin{bmatrix} HSO_4 \end{bmatrix}$			0.2658	0.3429	0.4348	0.5506	0.6759	0.8237	0.9992	1.2030	1.4281	1.6835
$\begin{bmatrix} C_3 mmim \end{bmatrix}$ $\begin{bmatrix} HSO_4 \end{bmatrix}$			0.2357	0.3114	0.4067	0.5162	0.6456	0.7952	0.9672	1.1732	1.3944	1.6362
$\begin{bmatrix} C_4 mmim \end{bmatrix}$ $\begin{bmatrix} HSO_4 \end{bmatrix}$			0.2068	0.2799	0.3722	0.4816	0.6104	0.7547	0.9270	1.1192	1.3337	1.5663
[C ₅ mmim] [HSO ₄]			0.1666	0.2338	0.3237	0.4410	0.5768	0.7291	0.9004	1.0973	1.2998	1.5352

^cStandard uncertainties are u(T) = 0.05 K, u(P) = 1 kPa. The relative standard uncertainty is $u_r(\rho) = 0.002$; $u_r(\gamma) = 0.05$; $u_r(\eta) = 0.03$; $u_r(\sigma) = 0.05$.

Figure 1. Linear fitting figure of $\ln \rho$ against T of ILs; (a) $[C_{3-5}mim][HCO_3]$; (b) $[C_{3-5}mim][H_2PO_4]$; (c) $[C_{2-5}mim][HSO_4]$.

3.1. Estimation of Volumetric Properties. Density is one of the important properties for the ILs. The density fluctuation can be reflected in the thermal properties of the ILs.²⁹ The temperature and alkyl spacer length of IL cation both have strong influences on density. It is found that when temperature increased, the density of all 10 kinds of ILs decreased, the density also decreased when the cation alkyl chain length increased, shown in Figure 1. These results are inconsistent with the results of imidazolium-based ILs with other anions;³⁰ the insufficient close packing of the cations may be responsible for these results. For the three series, the values of density are in the order $[C_2mmim][HSO_4] > [C_3mmim][HSO_4] > [C_4mmim][HSO_4] > [C_3mmim][H2P0_4]$

> $[C_4 mim][H_2PO_4] > [C_5 mim][H_2PO_4]; [C_3 mim][HCO_3] > [C_4 mim][HCO_3] > [C_5 mim][HCO_3].$ The density of $[C_4 mim][HSO_4]$ is 1.21374 g·cm⁻³, which is close to $[C_4 mim][MeSO_4](1.2179g·cm^{-3})$ with similar structure at 293.15 K.³¹

According to the least-squares method, the plots of $\ln \rho$ (density) vs *T* (temperature) were fitted by an empirical eq 1, and then straight lines can be obtained (Figure 1):

$$\ln \rho = a - bT \tag{1}$$

where *a* is an empirical constant, and thermal expansion coefficient is the negative value of the slope, $\alpha = -(\partial \ln \rho / \partial T)_p$. The values are listed in Table 4 and were found to be similar to

Table 4. Estimated Values of Volumetric Properties of $[C_{3-5}mim][HCO_3]$, $[C_{3-5}mim][H_2PO_4]$ and $[C_{2.5}mmim][HSO_4]$ ILs at 298.15 K

	$\alpha \times 10^{-4}$	$V_{\rm m}$	S°	$U_{\rm POT}$
ILs	K ⁻¹	nm ³	$J \cdot K^{-1} \cdot mol^{-1}$	kJ·mol ^{−1}
[C ₃ mim][HCO ₃]	6.1	0.2658	360.3	468.9
$[C_4 mim][HCO_3]$	6.0	0.2875	387.8	459.3
[C ₅ mim] [HCO ₃]	5.9	0.3114	417.7	445.0
$[C_3 mim][H_2 PO_4]$	6.0	0.3072	412.5	451.5
$[C_4 mim][H_2 PO_4]$	5.8	0.3320	443.3	442.5
$[C_5 mim][H_2 PO_4]$	5.7	0.3623	481.1	432.9
[C ₂ mmim][HSO ₄]	6.0	0.2943	396.4	456.6
[C ₃ mmim][HSO ₄]	5.7	0.3184	426.4	447.4
$[C_4 mmim][HSO_4]$	5.5	0.3435	457.6	438.9
[C ₅ mmim][HSO ₄]	5.3	0.3690	489.4	430.9

those of common ILs.³² That implies that the volume changes of the ILs with increasing temperature are greater than that of water and close to that of glycerinum.³³

The molecular volume V_m of ILs at 298.15 K can be calculated from the experimental densities by the following equation and were listed in Table 4:

$$V_{\rm m} = M \cdot (N \cdot \rho)^{-1} \tag{2}$$

where M is the molar mass and N is the Avogadro number. By Glasser's theory,³⁴ standard entropy S° can be estimated

from a function of $V_{\rm m}$ at 298.15 K as follows:

$$S^{\circ} = 1246.5V_{\rm m} + 29.5$$
 (3)

The standard entropy values calculated using eq 3 for ILs were listed in Table 4.

The lattice energy U_{POT} was also estimated by the Glasser theory³⁴ using the following equation at 298.15 K:

$$U_{\rm POT} = 1981.2(\rho/M)^{1/3} + 103.8 \tag{4}$$

The calculated lattice energies of the ILs were listed in Table 4. The lattice energies were found in the range 430.94–468.93 kJ·mol⁻¹, which were close to those of a series of ILs $[C_{2-6}mim][BF_4]$.³⁵ All these results show that the lattice energies of the studied ILs are much lower than those of fused salts, for example, in all alkali halides, the fused CsI has the lowest lattice energy for 613 kJ·mol⁻¹.³⁶ The low liquid state temperature of the ILs may result from the low lattice energy.

3.2. Estimation of Surface Properties. The surface tension values of the ILs were recorded and are shown in Table 3. From Figure 2, when the cation alkyl spacer length increased, the surface tension decreased, and it reflects the magnitude of the entropy increase associated with the surface

assembling. The surface tension values of the ILs follow the order $[C_2mmim][HSO_4] > [C_3mmim][HSO_4] > [C_4mmim][HSO_4] > [C_5mmim][HSO_4]; [C_3mim][H_2PO_4] > [C_4mim][H_2PO_4] > [C_5mim][H_2PO_4]; [C_3mim][HCO_3] > [C_4mim][HCO_3] > [C_5mim][HCO_3].$ The value of surface tension of $[C_5mmim][HSO_4]$ is 42.0 mN·m⁻¹ at 298.15 K, close to the $[Smim][HSO_4]$ (37.5 mN·m⁻¹, 298.15 K).³⁷

The surface tensions of the studied ILs can be plotted by eq 5, and the values of surface tensions agree well with the values of refs 38 and 39.

$$\gamma/(\mathrm{mN}\cdot\mathrm{m}^{-1}) = a - bT \tag{5}$$

where the adjusted parameters *a* and *b* are obtained by the linear fitting, all the fitting linear correlation coefficients were >0.998. The surface excess entropy and surface excess energies were estimated from the surface tension using eq 6 (the slopes of eqs 5) and eq 7 at 298.15 K.

$$S_{\rm a} = -b = -(\partial \gamma / \partial T)_{\rm p} \tag{6}$$

$$E_{\rm a} = \gamma - T(\partial \gamma / \partial T)_{\rm p} \tag{7}$$

The estimated surface excess entropies and surface excess energies for the ILs were listed in Table 5.

Table 5. Surface Excess Entropy S_a , Surface Excess Energy E_a , and Enthalpy of Vaporization $\Delta_1{}^gH^0_m$ of ILs with Different Anions at 298.15 K

	S _a	$E_{\rm a}$	$\Delta_l^g H_m^0$
ILs	mJ·m ⁻²	mJ·m ⁻²	kJ·mol ^{−1}
[C ₃ mim][HCO ₃]	0.0819	61.7	106.2
$[C_4 mim][HCO_3]$	0.0906	61.3	103.3
[C ₅ mim][HCO ₃]	0.0981	60.7	98.3
$[C_3 mim][H_2 PO_4]$	0.0600	63.7	143.1
$[C_4 mim][H_2 PO_4]$	0.0619	62.1	143.5
$[C_5 mim][H_2 PO_4]$	0.0622	59.8	143.7
$[C_2 mmim][HSO_4]$	0.0578	67.0	149.2
[C ₃ mmim][HSO ₄]	0.0553	63.7	148.9
$[C_4 mmim][HSO_4]$	0.0547	61.1	146.9
[C ₅ mmim][HSO ₄]	0.0525	57.7	145.6

The enthalpy of vaporization $\Delta_1^{g}H_m^0$ (298.15 K) can be estimated from an empirical equation by Kabo et al.⁴⁰

$$\Delta_{l}^{g} H_{m}^{0} = A(\gamma V^{2/3} N^{1/3}) + B$$
(8)

where *A* and *B* are empirical parameters with values A = 0.01121 and B = 2.4 kJ·mol⁻¹. The molar enthalpy of vaporization for the ILs was calculated from eq 8, and the results are presented in Table 5.

Figure 2. Surface tension as a function of temperature for ILs: (a) $[C_{3-s}mim][HCO_{3}]$; (b) $[C_{3-s}mim][H_2PO_4]$; (c) $[C_{2-s}mim][HSO_4]$.

Figure 3. Dynamic viscosity as a function of temperature for ILs: (a) $[C_{3-5}mim][HCO_3]$; (b) $[C_{3-5}mim][H_2PO_4]$; (c) $[C_{2-5}mmim][HSO_4]$.

3.3. Dynamic Viscosity and Electrical Conductivity Characteristics. For ILs, viscosity and conductivity are important indications to the movement of electric charges and the transport capability. Further, information about the interactions between cations and anions are related to viscosity and electrical conductivity.²⁸

The viscosity versus temperature data were tabulated in Table 3 and Figure 3; the viscosity of ILs were strongly impacted by the alkyl spacer length, and their viscosities are in the order $[C_2mmim][HSO_4] < [C_3mmim][HSO_4] < [C_4mmim][HSO_4] < [C_5mmim][HSO_4]; [C_3mim][HCO_3] < [C_4mim][HCO_3] < [C_5mim][HCO_3]. The viscosities of the ILs were increased with an alkyl spacer length increase, the potential reasons were increased vdW interaction between the alkyl groups. The viscosity value of <math>[C_4mmim][HSO_4]$ is 469.7 mPa·s (293.15 K), which is higher than the $[C_4mim][MeSO_4]$ -(273.81 mPa·s, 293.15 K).³¹

The ionic liquids are usually called "fragile" liquids because their glassy structures can provoke a collapse with the thermal energy variations.⁴¹ For our series of ILs, this energy change of fluidity can be properly expressed from viscosity by the VFT equation.

$$D = D_0 \exp(-E_{\rm D}/(T - T_0))$$
(9)

Figure 3 shows that the viscosity decreases with an increase in temperature by the VFT equation^{42,43} (eq 9), the relationship between the temperature and viscosity of the ILs can be expressed as

$$\eta = \eta_0 \exp(-B/(T - T_0))$$
⁽¹⁰⁾

where η_0 , *B*, and T_0 are the adjustable constants. The fitted VFT parameters of ILs are listed in Table 6. The fitting correlation coefficients were all >0.9999, indicating that the VFT equation should be proper for describing the effect of temperature on the viscosities of the ILs.

The temperature dependence on conductivities of three series of ILs were shown as Figure 4. And the conductivities increase with an increase in temperature. The electric conductivity values are in the order $[C_2mmim][HSO_4] > [C_3mmim][HSO_4] > [C_4mmim][HSO_4] > [C_5mmim][HSO_4]; [C_3mim][H_2PO_4] > [C_4mim][H_2PO_4] > [C_5mim][H_2PO_4]; [C_3mim][HCO_3] > [C_4mim][HCO_3] > [C_5mim][HCO_3].$ The highest electric conductivity observed for $[C_3mim][HCO_3]$, 6.06 mS·cm⁻¹ (298.15 K), is close to that of the common IL $[C_4mim][SCN](4.56 \text{ mS·cm}^{-1}, 298.15 \text{ K}).^{23}$

Further, the molar conductivity, Λ , was calculated on the basis of electric conductivity value based on the following equation:

Tal	ble 6	. Fitted	Parame	ter Values	of VFT	Equation	of
Dy	nami	c Visco	sity and	Electrical	Conduc	tivity	

ILs	D_0	$E_{\rm D}$	T_0	$E\sigma/10^3 eV$	R^2
		$\sigma/\mathrm{mS}\cdot\mathrm{cm}^{-1}$			
[C ₂ mim][HCO ₂	56.4	252.4	185.1	21.7	0.99995
[C₄mim][HCO ₃	86.2	330.1	192.6	28.4	0.99995
[C _c mim][HCO ₂	36.2	157.9	239.3	13.6	0.99996
[C ₃ mim][H ₂ PO	4] 501.8	749.8	127.9	64.5	0.99990
[C ₄ mim][H ₂ PO	296.5	612.0	154.5	52.6	0.99992
[C _c mim][H ₂ PO	314.9	652.7	164.0	56.1	0.99996
[C ₂ mmim][HSC	D_4 6463.1	1357.5	135.9	116.7	0.99997
[C ₃ mmim][HSC	D_{4}] 1703.4	904.8	173.1	77.8	0.99996
[C₄mmim][HSC	D ₄] 715.9	675.5	195.4	58.1	0.99999
[C _s mmim][HSC	D_{4}] 237.6	416.6	226.2	35.8	0.99993
- 5 - 1-	4.1	A/S·cm ² ·mol [−]	-1		
[C ₃ mim][HCO ₃	10.8	285.7	179.6	24.6	0.99996
[C₄mim][HCO ₃] 17.6	358.7	189.1	30.8	0.99995
[C _s mim][HCO ₃	7.5	168.5	237.7	14.5	0.99995
[C ₃ mim][H ₂ PO	4] 119.7	821.0	121.9	70.6	0.99991
$[C_4 \text{mim}][H_2PO]$] 73.1	661.4	150.2	56.9	0.99992
[C _s mim][H ₂ PO]	4] 83.2	694.9	160.7	59.8	0.99996
[C ₂ mmim][HSC	D_4] 1459.3	1421.9	133.0	122.3	0.99997
[C ₃ mmim][HSC	D ₄] 392.6	943.0	171.0	81.1	0.99996
[C ₄ mmim][HSC	D ₄] 173.1	702.9	193.7	60.5	0.99999
[.][TTO					
C ₅ mmim HSC	$D_4 = 59.2$	431.4	225.1	37.1	0.99993
[C ₅ mmim][HSC	0 ₄] 59.2	431.4 η/mPa·s	225.1	37.1	0.99993
[C ₅ mmim][HSC	η_0	431.4 η/mPa·s Β	225.1	37.1 <i>Εη</i> /10 ³ eV	0.99993
[C ₃ mmim][HSC	η_0 η_0 $\eta_2 \times 10^{-4}$	$\frac{431.4}{\eta/\text{mPa}\cdot\text{s}}$ B 2.2×10^{3}	225.1 T_0 -91.5	37.1 <i>Εη</i> /10 ³ eV 190.9	0.99993 R ² 0.99997
[C ₃ mim][HSC [C ₃ mim] [HCO ₃]	η_0 9.2 × 10 ⁻⁴	$\frac{431.4}{\eta/\text{mPa}\cdot\text{s}}$ $\frac{B}{2.2 \times 10^3}$	225.1 <i>T</i> ₀ -91.5	37.1 <i>Εη</i> /10 ³ eV 190.9	0.99993 <i>R</i> ² 0.99997
[C ₃ mmm][HSC [C ₃ mim] [HCO ₃] [C ₄ mim] [HCO ₃]	$\frac{\eta_0}{9.2 \times 10^{-4}}$ 3.2 × 10 ⁻⁶	$\frac{431.4}{\eta/mPa \cdot s}$ B 2.2 × 10 ³ 5.8 × 10 ³	225.1 T_0 -91.5 41.3	37.1 <i>Eη</i> /10 ³ eV 190.9 495.4	0.99993 <i>R</i> ² 0.99997 0.99997
$[C_{3}mim][HSC \\ [C_{3}mim] \\ [HCO_{3}] \\ [C_{4}mim] \\ [HCO_{3}] \\ [C_{3}mim] \\ [HCO_{3}] \\ [HCO_{3}] \end{tabular}$	$\begin{array}{c} \eta_0 \\ 9.2 \times 10^{-4} \\ 3.2 \times 10^{-6} \\ 1.0 \times 10^{-6} \end{array}$	$ \begin{array}{r} 431.4 \\ \eta/mPa \cdot s \\ \hline B \\ 2.2 \times 10^3 \\ 5.8 \times 10^3 \\ 6.9 \times 10^3 \end{array} $	225.1 T_0 -91.5 41.3 74. 7	37.1 <i>Eη</i> /10 ³ eV 190.9 495.4 592.5	0.99993 <i>R</i> ² 0.99997 0.99997 0.99993
$[C_{3}mim][HSC \\ [C_{3}mim] \\ [HCO_{3}] \\ [C_{4}mim] \\ [HCO_{3}] \\ [C_{3}mim] \\ [HCO_{3}] \\ [C_{3}mim] \\ [H_{2}PO_{4}] \\ \end{tabular}$	$\frac{\eta_0}{9.2 \times 10^{-4}}$ 3.2×10^{-6} 1.0×10^{-6} 4.0×10^{-6}	$431.4 \eta/mPa \cdot s$ B 2.2×10^{3} 5.8×10^{3} 6.9×10^{3} 6.0×10^{3}	225.1 T_0 -91.5 41.3 74. 7 60.8	37.1 <i>Eη</i> /10 ³ eV 190.9 495.4 592.5 511.7	0.99993 R ² 0.99997 0.99997 0.999993 0.999992
[C ₃ mim][HSC [HCO ₃] [C ₄ mim] [HCO ₃] [C ₅ mim] [HCO ₃] [C ₃ mim] [H ₂ PO ₄] [C ₄ mim] [H ₂ PO ₄]	$\begin{array}{c} \eta_0 \\ 9.2 \times 10^{-4} \\ 3.2 \times 10^{-6} \\ 1.0 \times 10^{-6} \\ 4.0 \times 10^{-6} \\ 2.1 \times 10^{-5} \end{array}$	$431.4 \eta/mPa \cdot s B 2.2 × 103 5.8 × 103 6.9 × 103 6.0 × 103 5.4 × 103$	$ \begin{array}{c} 225.1 \\ \hline T_0 \\ -91.5 \\ 41.3 \\ 74.7 \\ 60.8 \\ 48.5 \\ \end{array} $	37.1 <i>Eη</i> /10 ³ eV 190.9 495.4 592.5 511.7 464.4	0.99993 R ² 0.99997 0.99997 0.99993 0.99992 0.99988
$[C_{3}mim][HSC$ $[C_{3}mim][HCO_{3}]$ $[C_{4}mim][HCO_{3}]$ $[C_{5}mim][HCO_{3}]$ $[C_{3}mim][H_{2}PO_{4}]$ $[C_{4}mim][H_{2}PO_{4}]$ $[C_{5}mim][H_{2}PO_{4}]$	$\begin{array}{c} \eta_0 \\ 9.2 \times 10^{-4} \\ 3.2 \times 10^{-6} \\ 1.0 \times 10^{-6} \\ 4.0 \times 10^{-6} \\ 2.1 \times 10^{-5} \\ 1.4 \times 10^{-5} \end{array}$	$431.4 \eta/mPa \cdot s B 2.2 × 103 5.8 × 103 6.9 × 103 6.0 × 103 5.4 × 103 5.9 × 103 5.9 × 103 (10)$	$ \begin{array}{c} 225.1 \\ \hline \hline {} T_0 \\ -91.5 \\ 41.3 \\ 74. 7 \\ 60.8 \\ 48.5 \\ 57.8 \\ \end{array} $	37.1 <i>Eη</i> /10 ³ eV 190.9 495.4 592.5 511.7 464.4 505.7	0.99993 R ² 0.99997 0.99997 0.99993 0.99992 0.999988 0.99992
$\begin{bmatrix} C_3 mim \end{bmatrix} [HSC]$ $\begin{bmatrix} C_3 mim \end{bmatrix} [HCO_3]$ $\begin{bmatrix} C_4 mim \end{bmatrix} \\ [HCO_3] \end{bmatrix}$ $\begin{bmatrix} C_5 mim \end{bmatrix} \\ \begin{bmatrix} HCO_3 \end{bmatrix} \end{bmatrix}$ $\begin{bmatrix} C_3 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \end{bmatrix}$ $\begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \end{bmatrix}$ $\begin{bmatrix} C_5 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \end{bmatrix}$ $\begin{bmatrix} C_2 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix}$	$\begin{array}{c} \eta_0 \\ 9.2 \times 10^{-4} \\ 3.2 \times 10^{-6} \\ 1.0 \times 10^{-6} \\ 4.0 \times 10^{-6} \\ 2.1 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 2.9 \times 10^{-6} \end{array}$	$431.4 \eta/mPa \cdot s B 2.2 × 103 5.8 × 103 6.9 × 103 6.0 × 103 5.4 × 103 5.9 × 103 4.8 × 103$	$ \begin{array}{c} 225.1 \\ \hline \hline T_0 \\ -91.5 \\ 41.3 \\ 74. 7 \\ 60.8 \\ 48.5 \\ 57.8 \\ -30.3 \\ \end{array} $	37.1 <i>Eη</i> /10 ³ eV 190.9 495.4 592.5 511.7 464.4 505.7 413.7	0.99993 R ² 0.999997 0.999997 0.999993 0.999992 0.999988 0.999992 0.999992
$\begin{bmatrix} C_3 mim \end{bmatrix} [HSC \\ [HCO_3] \\ [HCO_3] \\ [C_4 mim] \\ [HCO_3] \\ [C_5 mim] \\ [HCO_3] \\ [C_3 mim] \\ [H_2PO_4] \\ [C_4 mim] \\ [H_2PO_4] \\ [C_4 mim] \\ [H_2PO_4] \\ [C_5 mim] \\ [HSO_4] \\ [C_3 mmim] \\ [HSO_4] \\ [HSO$	$\begin{array}{c} \eta_0 \\ 9.2 \times 10^{-4} \\ 3.2 \times 10^{-6} \\ 1.0 \times 10^{-6} \\ 4.0 \times 10^{-6} \\ 2.1 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 2.9 \times 10^{-6} \\ 1.3 \times 10^{-6} \end{array}$	$431.4 \eta/mPa \cdot s B 2.2 × 103 5.8 × 103 6.9 × 103 6.0 × 103 5.4 × 103 5.9 × 103 4.8 × 103 5.9 $	$ \begin{array}{c} 225.1 \\ \hline T_0 \\ -91.5 \\ 41.3 \\ 74. 7 \\ 60.8 \\ 48.5 \\ 57.8 \\ -30.3 \\ 7.5 \\ \end{array} $	37.1 <i>Eη</i> /10 ³ eV 190.9 495.4 592.5 511.7 464.4 505.7 413.7 503.1	0.99993 R ² 0.99997 0.99997 0.99993 0.99992 0.999988 0.99992 0.99995 0.99995 0.99994
$\begin{bmatrix} C_3 mim \end{bmatrix} [HSC \\ \begin{bmatrix} C_3 mim \end{bmatrix} \\ \begin{bmatrix} HCO_3 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} HCO_3 \end{bmatrix} \\ \begin{bmatrix} C_5 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \\ \begin{bmatrix} C_5 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \\ \begin{bmatrix} C_2 mmim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_3 mmim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \end{bmatrix} $	$\begin{array}{c} \eta_0 \\ 9.2 \times 10^{-4} \\ 3.2 \times 10^{-6} \\ 1.0 \times 10^{-6} \\ 4.0 \times 10^{-6} \\ 2.1 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 2.9 \times 10^{-6} \\ 1.3 \times 10^{-6} \\ 3.4 \times 10^{-6} \end{array}$	$431.4 \eta/mPa \cdot s B 2.2 × 103 5.8 × 103 6.9 × 103 6.0 × 103 5.4 × 103 5.9 × 103 4.8 × 103 5.9 × 103 6.1 × 103 6.1 × 103$	$ \begin{array}{c} 225.1 \\ \hline T_0 \\ -91.5 \\ 41.3 \\ 74. 7 \\ 60.8 \\ 48.5 \\ 57.8 \\ -30.3 \\ 7.5 \\ 31.8 \\ \end{array} $	37.1 <i>Eη</i> /10 ³ eV 190.9 495.4 592.5 511.7 464.4 505.7 413.7 503.1 523.7	0.99993 R ² 0.99997 0.99997 0.99993 0.99993 0.99992 0.999988 0.99992 0.99995 0.99994 0.99993
$\begin{bmatrix} C_3 mim \end{bmatrix} [HSC \\ \begin{bmatrix} C_3 mim \end{bmatrix} \\ \begin{bmatrix} HCO_3 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} HCO_3 \end{bmatrix} \\ \begin{bmatrix} C_5 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \\ \begin{bmatrix} C_5 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \\ \begin{bmatrix} C_5 mim \end{bmatrix} \\ \begin{bmatrix} H_2PO_4 \end{bmatrix} \\ \begin{bmatrix} C_2 mim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_3 mmim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_4 mim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_5 mmim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} C_5 mmim \end{bmatrix} \\ \begin{bmatrix} HSO_4 \end{bmatrix} \\ \begin{bmatrix} MSO_4 \end{bmatrix} \end{bmatrix}$	$\begin{array}{c} \eta_0 \\ 9.2 \times 10^{-4} \\ 3.2 \times 10^{-6} \\ 1.0 \times 10^{-6} \\ 4.0 \times 10^{-6} \\ 2.1 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 2.9 \times 10^{-6} \\ 1.3 \times 10^{-6} \\ 3.4 \times 10^{-6} \\ 5.4 \times 10^{-6} \end{array}$	$431.4 \eta/mPa \cdot s B 2.2 × 103 5.8 × 103 6.9 × 103 6.0 × 103 5.4 × 103 5.9 × 103 4.8 × 103 5.9 × 103 6.1 × 103 6.6 × 103 $	$\begin{array}{c} 225.1 \\ \hline T_0 \\ -91.5 \\ 41.3 \\ 74.7 \\ 60.8 \\ 48.5 \\ 57.8 \\ -30.3 \\ 7.5 \\ 31.8 \\ 62.7 \end{array}$	37.1 <i>Eη</i> /10 ³ eV 190.9 495.4 592.5 511.7 464.4 505.7 413.7 503.1 523.7 566.7	0.99993 R ² 0.99997 0.99997 0.99993 0.99992 0.999988 0.999922 0.999985 0.999994 0.999993 0.99993
$\begin{bmatrix} C_3 \text{mmim} \end{bmatrix} \begin{bmatrix} \text{HSC} \\ [\text{HCO}_3] \\ [\text{HCO}_3] \\ [\text{C}_4 \text{mim}] \\ [\text{HCO}_3] \\ [\text{C}_5 \text{mim}] \\ [\text{H}_2 \text{PO}_4] \\ [\text{C}_4 \text{mim}] \\ [\text{H}_2 \text{PO}_4] \\ [\text{C}_3 \text{mim}] \\ [\text{H}_2 \text{PO}_4] \\ [\text{C}_3 \text{mim}] \\ [\text{H}_2 \text{PO}_4] \\ [\text{C}_3 \text{mim}] \\ [\text{HSO}_4] \\ [\text{C}_3 \text{mmim}] \\ [\text{HSO}_4] \\ [\text{C}_5 \text{mmim}] \\ [\text{HSO}_4] \\ \end{bmatrix}$	$\begin{array}{c} \eta_0 \\ 9.2 \times 10^{-4} \\ 3.2 \times 10^{-6} \\ 1.0 \times 10^{-6} \\ 4.0 \times 10^{-6} \\ 2.1 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 2.9 \times 10^{-6} \\ 1.3 \times 10^{-6} \\ 3.4 \times 10^{-6} \\ 5.4 \times 10^{-6} \end{array}$	$431.4 \eta/mPa \cdot s B 2.2 × 103 5.8 × 103 6.9 × 103 6.0 × 103 5.4 × 103 5.9 × 103 4.8 × 103 5.9 × 103 6.1 × 103 6.6 × 103 6.6 × 103 7.5 $	$ \begin{array}{c} 225.1 \\ \hline \hline T_0 \\ -91.5 \\ 41.3 \\ 74. 7 \\ 60.8 \\ 48.5 \\ 57.8 \\ -30.3 \\ 7.5 \\ 31.8 \\ 62.7 \\ \end{array} $	37.1 <i>Eη</i> /10 ³ eV 190.9 495.4 592.5 511.7 464.4 505.7 413.7 503.1 523.7 566.7	0.99993 R ² 0.99997 0.99997 0.99993 0.99992 0.999988 0.999992 0.999992 0.999993 0.999993 0.999993 0.999993

The Λ values of the ILs were listed in Table 3.

Figure 4. Electrical conductivity as a function of temperature for ILs: (a) $[C_{3-5}mim][HCO_3]$; (b) $[C_{3-5}mim][H_2PO_4]$; (c) $[C_{2-5}mmim][HSO_4]$.

Figure 5. Optimized geometries, corresponding interaction energies, and the situation of hydrogen bonding of ILs. Atomic color corresponds to the element symbol: green, C; blue, N; white, H; red, O; orange, P; yellow, S.

The relationship between the conductivity, molar conductivity, and temperature of ILs can also be expressed by the VFT formula which is commonly used for the determination of conductivities of ILs: $^{43-45}$

$$D = D_0 \exp(-E_{\rm D}/(T - T_0))$$
(12)

where D_0 and E_D are adjustable parameters and D is the conductivity or molar conductivity. The best fitted parameters of D_0 , E_D , T_0 , and the correlation coefficients R^2 were listed in Table 6.

Vila et al.⁴¹ have established the fitting parameters of the VFT equation with Arrhenius equation: $\sigma_0 = \sigma_{\infty}$, $B = E_{\sigma}/k_{\rm B}$.

The final version of the VFT equation can be expressed as follows:

$$\sigma = \sigma_{\infty} \exp(-E_{\sigma}/(k_{\rm B}(T - T_0))$$
⁽¹³⁾

The activation energies of electrical conductivity for the ILs were calculated and listed in Table 6.

According to the discussion of Vila et al.,⁴¹ the VFT equation for dynamic viscosity was also linked with the Arrhenius equation. The ultimate expression of the VFT formula displayed as follows:

$$\eta = \eta_{\infty} \cdot \exp(-E_{\eta}/(k_{\rm B}(T - T_0)) \tag{14}$$

Table 7. Interstice Parameters of ILs at 298.15 K

ILs	$\nu \cdot 10^{24} / \text{cm}^3$	$\sum \nu/cm^3$ (formula unit) $^{-1}$	$lpha(ext{cal}) \cdot 10^{-4}/ ext{K}^{-1}$	$\alpha(\exp) \cdot 10^{-4}/\mathrm{K}^{-1}$	$\sum \nu / V$ (%)
[C ₃ mim][HCO ₃]	24.9	30.0	9.5	6.1	18.8
$[C_4 mim][HCO_3]$	28.2	34.0	9.9	6.0	19.6
[C ₅ mim][HCO ₃]	33.0	39.7	10.7	5.9	21.2
$[C_3 mim][H_2 PO_4]$	18.3	22.0	6.0	6.0	11.9
$[C_4 mim][H_2PO_4]$	19.7	23.7	5.9	5.8	11.8
$[C_5 mim][H_2 PO_4]$	21.5	25.8	5.8	5.7	11.7
$[C_2 mmim][HSO_4]$	23.7	28.5	8.0	6.0	16.1
$[C_3 mmim][HSO_4]$	25.6	30.9	8.1	5.7	16.2
$[C_4 mmim][HSO_4]$	28.3	34.0	8.3	5.5	16.5
[C ₅ mmim][HSO ₄]	30.8	37.0	8.4	5.3	16.7

The activation energies of dynamic viscosity for the ILs were obtained from calculations and are listed in Table 6.

3.4. The Structural Effect and Interaction of Ionic Liquids. For a deep understanding of the structural effect of cation/anion on ILs properties, the DFT calculations are performed using Turbomole²⁵ following the COSMO-RS methodology.²⁶ The optimized structure, energy, and hydrogen bonds of these ionic liquids are obtained (see Figure 5). The main differences of structure between these three series of ILs are the alkyl chain, the vicinal methyl on the imidazolium ring, and the species of anion, respectively. The interactions between anions and cations will influence the physicochemical properties inevitably. Ions of these AILs interact via hydrogen bond (HB) forces, vdW forces, and Coulombic, as we know, thus forming directional bonding between the constituent ions.¹⁰

The 2.5 Å of sum vdW atomic radii of hydrogen and oxygen is used as a critical value for determining the existence of a hydrogen bond between hydrogen and oxygen atoms.⁴⁶ Dashed lines are utilized for representing hydrogen bonds, and the the labeled H…O distances are seen in Figure 5. It is found that hydrogen bonds can exist between C2-H or methyl C-H of cations and O atom of anions for the ILs with [HCO₃], $[H_2PO_4]$, and $[HSO_4]$ anions. The C2-H is usually the most active atom for dialkylimidazolium ILs.²⁷ And for the $[C_n mmim][HSO_4]$, due to the vicinal methyl on the imidazolium ring, the H-bonding interaction occurs on the position of C4,5-H. It is shown that the numbers of H-bonds between the ion pairs are different (Figure 5); however, this has no evident influence on the total interaction energy, which indicates that the Coulombic interaction between the cations and anions of these ILs is dominant.

The higher viscosities may be impacted by the ion–ion interaction, vdW interaction, or electrostatic attraction, and the electrical conductivity usually has an opposite tendency.²⁸

3.5. Interstice Model for the Ionic Liquids. To date, several theories have been put forward to describe the structural and transport properties of pure ILs.^{47–50} Herein, for the ours families ionic liquids, a simpler interstice model is employed to estimate.^{51–53}

The interstice volume ν can be obtained based on the classical statistical mechanics as represented by the following equation:

$$v = 0.6791 (k_{\rm b} T/\gamma)^{3/2} \tag{15}$$

where $k_{\rm b}$ is the Boltzmann's constant, and the ν values of the ILs were listed in Table 7.

The molar volume of ILs, *V*, consists of the inherent volume, V_{ν} and the total volume of the all interstices $\sum \nu = 2N\nu$, that is

$$V = 2N\nu + V_i \tag{16}$$

If the expansion of ILs entirely caused by the expansion of the interstices along with temperature increases, the coefficient α can be calculated based on the interstice model:

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = \frac{3N\nu}{VT}$$
(17)

According to the interstice model, all the correlation parameters of the ILs at 298.15 K are estimated and listed in Table 6. Typically, the $\sum \nu/V$ are close to 10% to 15% for a volume change from ion solid to melt, and the results of the studied ILs are very close to the empirical regularities.

The acid radical will form some small interstice in the structure, while the interstice theory considers that the interstice between the anion and cation is bubble, so the deviation of the thermal expansion coefficients may be larger, but still within an order of magnitude. Thus, the interstice theory can also possibly estimate the qualitative nature of voids.

A comparison of the thermal expansion coefficients $\alpha(\exp)$ and $\alpha(\operatorname{cal})$ obtained from experimental and calculated data shows that most of the deviations are about 10–15%, which shows that the interstice model parameters of these ILs were reasonable.

4. CONCLUSION

In this work, we have prepared and characterized 10 kinds of ionic liquids: [C₃₋₅mim][HCO₃], [C₃₋₅mim][H₂PO₄], and $[C_{2-5}mmim][HSO_4]$. The physicochemical properties of the ionic liquids such as density, viscosity, surface tension, and electrical conductivity were measured and thermodynamic parameters were estimated from the experimental data by empiric or semiempiric methods. Then, according to the VFT equation, the temperature dependences of the ILs viscosities and electrical conductivities were described graphically. Furthermore, by DFT calculations, the structural effects from the vicinal methyl and the alkyl chain length on the ILs properties were discussed based on the interactions between cations and anions. It was found that the Coulombic interaction between cation and anion is dominant for these ILs. The interstice model of the ILs was applied to evaluate the internal structure change of ILs, and the interstice parameters were estimated. The results showed that the interstice model could be appropriately applied to these 10 ILs with three types of anions.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.5b00860.

FTIR, ¹HNMR spectra, and EA for ILs in this work (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: zhangqingguo@bhu.edu.cn. Tel.: +86 18641695401. Fax: +86 416 3400310.

Funding

This work was financially supported by the National Nature Science Foundation of China (No. 21003081, 21373002, 21503020).

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Welton, T. Room-Temperature Ionic Liquids Solvents for Synthesis and Catalysis. *Chem. Rev.* **1999**, *99*, 2071–2083.

(2) Hallett, J. P.; Welton, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. *Chem. Rev.* **2011**, *111*, 3508–3576.

(3) Domanska, U.; Marciniak, A. Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate. *J. Phys. Chem. B* 2008, *112*, 11100–11105.

(4) Domańska, U.; Marciniak, A.; Królikowska, M.; Arasimowicz, M. Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 1-Hexyl-3-methylimidazolium Thiocyanate. J. Chem. Eng. Data **2010**, 55, 2532–2536.

(5) Fei, Z. F.; Geldbach, T. J.; Zhao, D. B.; Dyson, P. J. From Dysfunction to Bis-Function: On the Design and Applications of Functionalised Ionic Liquids. *Chem. - Eur. J.* **2006**, *12*, 2122–2130.

(6) Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. Why is CO₂ so Soluble in Imidazolium-Based Ionic Liquids? *J. Am. Chem. Soc.* **2004**, *126*, 5300–5308.

(7) Lethesh, K. C.; Shah, S. N.; Mutalib, M. Synthesis, Characterization, and Thermophysical Properties of 1,8-diazobicyclo[5.4.0]undec-7-ene based Thiocyanate Ionic Liquids. *J. Chem. Eng. Data* **2014**, *59*, 1788–1795.

(8) Singh, S.; Bahadur, I.; Redhi, G. G.; Ebenso, E. E.; Ramjugernath, D. Influence of the Alkyl group on Thermophysical Properties of Carboxylic Acids in 1-butyl-3-methylimidazolium Thiocyanate Ionic Liquid at Various Temperatures. *J. Chem. Thermodyn.* **2015**, *89*, 104–111.

(9) Lukoshko, E.; Mutelet, F.; Domanska, U. Experimental and Theoretically Study of Interaction between Organic Compounds and Tricyanomethanide based Ionic Liquids. *J. Chem. Thermodyn.* **2015**, *85*, 49–56.

(10) Shirota, H.; Mandai, T.; Fukazawa, H.; Kato, T. Comparison between Dicationic and Monocationic Ionic Liquids: Liquid Density, Thermal Properties, Surface Tension, and Shear Viscosity. *J. Chem. Eng. Data* **2011**, *56*, 2453–2459.

(11) Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. *Appl. Catal., A* **2010**, *373*, 1–56.

(12) Chandran, A.; Prakash, K.; Senapati, S. Self-Assembled Inverted Micelles Stabilize Ionic Liquid Domains in Supercritical CO₂. J. Am. Chem. Soc. **2010**, 132, 12511–12516.

(13) MacFarlane, D. R.; Forsyth, M.; Howlett, P. C.; Pringle, J. M.; Sun, J.; Annat, G.; Neil, W.; Izgorodina, E. I. Ionic Liquids in Electrochemical Devices and Processes: Managing Interfacial Electrochemistry. *Acc. Chem. Res.* **200**7, *40*, 1165–1173. (14) Zhang, W.; Xu, K.; Zhang, Q.; Liu, D. L.; Wu, S. Y.; Verpoort, F.; Song, X. M. Oxidative Desulfurization of Dibenzothiophene Catalyzed by Ionic Liquid [Bmim]HSO₄. *Ind. Eng. Chem. Res.* **2010**, 49, 11760–11763.

(15) Vaid, Z.; More, U.; Ijardar, S. P.; Malek, N. I. Investigation on thermophysical and excess properties of binary mixtures of imidazolium based ionic liquids at temperatures (293.15 to 323.15) K: III $[C_n mim][PF_6](n = 4,6,8) + THF.$ J. Chem. Thermodyn. 2015, 86, 143–153.

(16) Shiflett, M. B.; Yokozeki, A. Solubility Differences of Halocarbon Isomers in Ionic Liquid $[emim][Tf_2N]$. J. Chem. Eng. Data 2007, 52, 2007–2015.

(17) Zhang, S. J.; Li, X.; Chen, H. P.; Wang, J. F.; Zhang, J. M.; Zhang, M. L. Determination of Physical Properties for the Binary System of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + H_2O . J. Chem. Eng. Data 2004, 49, 760–764.

(18) Zafarani-Moattar, M. T.; Shekaari, H. Volumetric and Compressibility Behaviour of Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate and Tetrabutylammonium Hexafluorophosphate in Organic Solvents at T = 298.15 K. *J. Chem. Thermodyn.* **2006**, *38*, 624–633.

(19) Zhang, Q. G.; Sun, S. S.; Pitula, S.; Liu, Q. S.; Welz-Biermann, U.; Zhang, J. J. Electrical Conductivity of Solutions of Ionic Liquids with Methanol, Ethanol, Acetonitrile, and Propylene Carbonate. *J. Chem. Eng. Data* **2011**, *56*, 4659–4664.

(20) Moschovi, A. M.; Dracopoulos, V.; Nikolakis, V. Inter- and Intramolecular Interactions in Imidazolium Protic Ionic Liquids. *J. Phys. Chem. B* 2014, *118*, 8673–8683.

(21) Choi, Y. S.; Shim, Y. N.; Lee, J.; Yoon, J. H.; Hong, C. S.; Cheong, M.; Kim, H. S.; Jang, H. G.; Lee, J. S. Ionic Liquids as Benign Catalysts for the Carbonylation of Amines to Formamides. *Appl. Catal., A* **2011**, *404*, 87–92.

(22) Zhang, Q. G.; Wang, N. N.; Wang, S. L.; Yu, Z. W. Hydrogen Bonding Behaviors of Binary Systems Containing the Ionic Liquid 1-Butyl-3-methylimidazolium Trifluoroacetate and Water/Methanol. *J. Phys. Chem. B* 2011, *115*, 11127–11136.

(23) Zhang, Q. G.; Li, M. C.; Zhang, X. Y.; Wu, X. Y. The Thermodynamic Estimation and Viscosity, Electrical Conductivity Characteristics of 1-Alkyl-3-Methylimidazolium Thiocyanate Ionic Liquids. *Z. Phys. Chem.* **2014**, *228*, 851–867.

(24) Lide, D. R. Handbook of Chemistry and Physics, 82nd ed.; CRC Press: Boca Raton, FL, 2002.

(25) Turbomole, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH v6.6 2014; TURBOMOLE GmbH: 2007; available from http://www.turbomole.com. Order date: 10-11-2014 (permanent licence).

(26) Jacquemin, J.; Feder-Kubis, J.; Zorebski, M.; Grzybowska, K.; Chorazewski, M.; Hensel-Bielowka, S.; Zorebski, E.; Paluch, M.; Dzida, M. Structure and Thermal Properties of Salicylate-based-Protic Ionic Liquids as New Heat Storage Media COSMO-RS Structure Characterization and Modeling of Heat Capacities. *Phys. Chem. Chem. Phys.* **2014**, *16*, 3549–3557.

(27) Nockemann, P.; Thijs, B.; Pittois, S.; Thoen, J.; Glorieux, C.; van Hecke, K.; van Meervelt, L.; Kirchner, B.; Binnemans, K. Task-Specific Ionic Liquid for Solubilizing Metal Oxides. *J. Phys. Chem. B* **2006**, *110*, 20978–20992.

(28) Shen, S. M.; Fang, S. H.; Qu, L.; Luo, D.; Yang, L.; Hirano, S. i. Low-viscosity ether-functionalized pyrazolium ionic liquids based on dicyanamide anions: properties and application as electrolytes for lithium metal batteries. *RSC Adv.* **2015**, *5*, 93888–93899.

(29) Rocha, M. A. A.; Coutinho, J. A. P.; Santos, L. M. N. B. F. Evidence of Nanostructuration from the Heat Capacities of the 1,3-Dialkylimidazolium Bis(Trifluoromethylsulfonyl)Imide Ionic Liquid Series. J. Chem. Phys. **2013**, 139, 104502–1–104502–5.

(30) Seddon, K. R.; Stark, A.; Torres, M. J. Viscosity and density of 1alkyl-3-methylimidazolium ionic liquids. *ACS Symposium Series*; ACS Publications: Washington, DC, 2002, *819*, 34–49.

(31) Bhattacharjee, A.; Varanda, C.; Freire, M. G.; Matted, S.; Santos, L. M. N. B. F.; Marrucho, I. M.; Coutinho, J. A. P. Density and

Journal of Chemical & Engineering Data

Viscosity Data for Binary Mixtures of 1-Alkyl-3-methylimidazolium Alkylsulfates + Water. J. Chem. Eng. Data 2012, 57, 3473-3482.

(32) Wang, J. Y.; Jiang, H. C.; Liu, Y. M.; Hu, Y. Q. Density and Surface Tension of Pure 1-ethyl-3-methyl-imidazolium L-lactate Ionic Liquid and its Binary Mixtures with Water. *J. Chem. Thermodyn.* **2011**, 43, 800–804.

(33) Haynes, W. M. Handbook of Chemistry and Physics, 93nd ed.; CRC Press: Boca Raton, 2013.

(34) Glasser, L. Lattice and Phase Transition Thermodynamics of Ionic Liquids. *Thermochim. Acta* **2004**, *421*, 87–93.

(35) Greaves, T. L.; Weerawardena, A.; Krodkiewska, I.; Drummond, C. J. Protic Ionic Liquids: Physicochemical Properties and Behavior as Amphiphile Self-Assembly Solvents. *J. Phys. Chem. B* **2008**, *112*, 896–905.

(36) Krossing, I.; Slattery, J. M. Semi-Empirical Methods to Predict the Physical Properties of Ionic Liquids: An Overview of Recent Developments. Z. Phys. Chem. 2006, 220, 1343–1359.

(37) Wang, H.; Yang, L. J.; Yang, Y. Q.; Fang, D. W.; Zang, S. L. Estimation Physicochemical Property of Ionic Liquid [Smim][HSO₄] by Semi-empirical Method. *Fluid Phase Equilib.* **2013**, *360*, 7–9.

(38) Almeida, H. F. D.; Teles, A. R. R.; Lopes-da-Silva, J. A.; Freire, M. G.; Coutinho, J. A. P. Influence of the Anion on the Surface Tension of 1-Ethyl-3-methylimidazolium-based Ionic Liquids. *J. Chem. Thermodyn.* **2012**, *54*, 49–54.

(39) Sánchez, L. G.; Espel, J. R.; Onink, F.; Meindersma, G. W.; Haan, A. B. D. Density, Viscosity, and Surface Tension of Synthesis Grade Imidazolium, Pyridinium, and Pyrrolidinium Based Room Temperature Ionic Liquids. *J. Chem. Eng. Data* **2009**, *54*, 2803–2812. (40) Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.; Tschersich, A.; Verevkin, S. P.; Heintz, A. Experimental Vapor Pressures of 1-Alkyl-3-methylimidazolium Bis-(trifluoromethylsulfonyl)imides and a Correlation Scheme for Estimation of Vaporization Enthalpies of Ionic Liquids. *J. Phys. Chem. A* **2006**, *110*, 7303–7306.

(41) Vila, J.; Ginés, P.; Pico, J. M.; Franjo, C.; Jiménez, E.; Varela, L. M.; Cabeza, O. Temperature dependence of the electrical conductivity in EMIM-based ionic liquids Evidence of Vogel–Tamman–Fulcher behavior. *Fluid Phase Equilib.* **2006**, *242*, 141–146.

(42) Wu, T. Y.; Su, S. G.; Gung, S. T.; Lin, M. W.; Lin, Y. C.; Lai, C. A.; Sun, I. W. Ionic liquids containing an alkyl sulfate group as potential electrolytes. *Electrochim. Acta* **2010**, *55*, 4475–4482.

(43) Carpio, R. A.; King, L. A.; Kibler, F. C.; Fannin, A. A. Conductivities of AlCl₃-Rich Molten AlCl₃-LiCl Mixtures. *J. Electrochem. Soc.* **1979**, *126*, 1650–1654.

(44) Wei, Y.; Jin, Y.; Wu, Z. J.; Yang, Y.; Zhang, Q. G.; Kang, Z. H. Synthesis and Physicochemical Properties of Amino Acid Ionic Liquid 1-Butyl-3-methylimidazolium Aspartate and Binary Mixture with Methanol. *J. Chem. Eng. Data* **2013**, *58*, 349–356.

(45) Liu, Q. S.; Li, P. P.; Welz-Biermann, U.; Chen, J.; Liu, X. X. Density, dynamic viscosity, and electrical conductivity of pyridiniumbased hydrophobic ionic liquids. *J. Chem. Thermodyn.* **2013**, *66*, 88–94.

(46) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: New York, 1960.

(47) Fürth, R. On the theory of the liquid state. Math. Proc. Cambridge Philos. Soc. 1941, 37, 252–280.

(48) Bockris, J. O.; Hooper, G. W. Self-diffusion in Molten Alkali Halides. *Discuss. Faraday Soc.* **1961**, *32*, 218–236.

(49) Bockris, J. O'M.; Reddy, A. K. N. *Modern Electrochemistry*. Vol. 1 Ionics, 2nd ed.; Plenum Press: New York, 2000.

(50) Varela, L. M.; Carrete, J.; Turmine, M.; Rilo, E.; Cabeza, O. Pseudolattice Theory of the Surface Tension of Ionic Liquid-Water Mixtures. *J. Phys. Chem. B* **2009**, *113*, 12500–12505.

(51) Fang, D. W.; Guan, W.; Tong, J.; Wang, Z. W.; Yang, J. Z. Study on Physicochemical Properties of Ionic Liquids Based on Alanine $[C_nmim]$ [Ala] (n = 2,3,4,5,6). J. Phys. Chem. B **2008**, 112, 7499–7505. (52) Zhang, Q. G.; Yang, J. Z.; Lu, X. M.; Gui, J. S.; Huang, M. Studies on an ionic liquid based on FeCl₃ and its properties. Fluid Phase Equilib. **2004**, 226, 207–211. (53) Yang, J. Z.; Zhang, Q. G.; Wang, B.; Tong, J. Study on the Properties of Amino Acid Ionic Liquid EMIGly. J. Phys. Chem. B 2006, 110, 22521–22524.