1996, 155, 127-144; c) N. Komatsu in Organobismuth Chemistry (Eds.: H. Suzuki, Y. Matano), Elsevier, New York, 2001, chap. 5, pp. 371-440.
[4] a) S. Maeda in The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds (Ed.: S. Patai), Wiley, New York, 1994, chap. 19, pp. 725-759; b) J. Reglinski, in Chemistry of Arsenic, Antimony and Bismuth (Ed.: N. C. Norman), Blackie Academic and Professional, London, 1998, . 8, pp. 403-440.
[5] F. Challenger, O. V. Richards, J. Chem. Soc. 1934, 405-411.
[6] a) D. H. R. Barton, J. P. Kitchin, W. B. Motherwell, J. Chem. Soc. Chem. Commun. 1978, $1099-1100$; b) D. H. R. Barton, D. J. Lester, W. B. Motherwell, M. T. B. Papoula, J. Chem. Soc. Chem. Commun. 1979, $705-707$; c) D. H. R. Barton, J. P. Kitchin, D. J. Lester, W. B. Motherwell, M. T. B. Papoula, Tetrahedron 1981, 37, 73-79 (Supplement 9).
[7] a) V. A. Dodonov, A. V. Gushchin, T. G. Brilkina, Zh. Obshch. Khim. 1985, $55,73-80$; b) V. A. Dodonov, T. G. Brilkina, A. V Gushchin, $Z h$. Obshch. Khim. 1981, 51, 2380.
[8] For instance, the reaction conditions for the oxidations of cinnamyl alcohol and 1-pentanol with a $\left(\mathrm{Ph}_{3} \mathrm{BiCl}\right)_{2} \mathrm{O} /$ base system were reported to be 15 h at $21^{\circ} \mathrm{C}$ and 6 h at $60^{\circ} \mathrm{C}$, respectively..$^{[6 a]}$
[9] Y. Matano, H. Nomura, J. Am. Chem. Soc. 2001, 123, 6443-6444. Compound $\mathbf{1}$ was prepared by the reaction of tris(2-methoxyphenyl)bismuth dichloride with 2 equiv of $t \mathrm{BuOK}$ in the presence of 5 equiv of water.
[10] a) V. A. Dodonov, T. I. Zinov'eva, N. N. Osadchaya, Zh. Obshch. Khim. 1988, 58, 712; b) H. Suzuki, T. Ikegami, J. Chem. Res. (S) 1996, 24-25; c) Y. Matano, H. Nomura, H. Suzuki, M. Shiro, H. Nakano, J. Am. Chem. Soc. 2001, 123, 10954-10965.
[11] H. Suzuki, T. Ikegami, Y. Matano, Tetrahedron Lett. 1994, 35, 8197 8200.
[12] The initially formed $\mathrm{Ar}_{2} \mathrm{BiOBiAr}_{2}$ disproportionated in solution to give $\mathrm{Ar}_{3} \mathrm{Bi}$.
[13] CCDC-182209 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc. cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).
[14] In the $t \mathrm{BuOK}$ system, a long column was necessary to completely remove the $\mathrm{Bi}^{\text {III }}$ by-product $\left(\mathrm{Ar}_{3} \mathrm{Bi}\right)$ from the carbonyl products in cases where their R_{f} values are similar.
[15] A similar mechanism was proposed by Barton et al. for the $\mathrm{Ph}_{3} \mathrm{BiX}_{2}-$ based oxidation of alcohol. ${ }^{[66]}$
[16] J. Matsuo, H. Kitagawa, D. Iida, T. Mukaiyama, Chem. Lett. 2001, 150-151.
[17] Trifluoromethyl carbinols are known to resist oxidation and, at present, only a few methods are available for their conversion into the corresponding trifluoromethyl ketones; see a) R. J. Linderman, D. M. Graves, J. Org. Chem. 1989, 54, 661-668; b) I. E. Markó, P. R. Giles, M. Tsukazaki, I. Chellé-Regnaut, A. Gautier, S. M. Brown, C. J. Urch, J. Org. Chem. 1999, 64, 2433-2439; c) V. Kesavan, D. Bonnet-Delpon, J.-P. Bégué, A. Srikanth, S. Chandrasekaran, Tetrahedron Lett. 2000, 41, 3327-3330.
[18] a) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155-4156; b) D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277-7287.
[19] A. Gillmeister, Chem. Ber. 1897, 30, 2843-2850. In this work, 2 a was prepared by oxidative chlorination of tris(2-methylphenyl)bismuthane with sulfuryl chloride.

Synthesis of Cycloalkanones from Dienes and Allylamines through $\mathbf{C}-\mathbf{H}$ and $\mathrm{C}-\mathrm{C}$ Bond Activation Catalyzed by a Rhodium(I) Complex**

Dae-Yon Lee, In-Jung Kim, and Chul-Ho Jun*

Among numerous examples of transition-metal-mediated cyclization to obtain medium-sized ring compounds, ${ }^{[1]}$ intramolecular hydroacylation provides the most promising way to prepare cyclopentanones from 4-pentenal through the $\mathrm{C}-\mathrm{H}$ bond activation of an aldehyde. ${ }^{[2,3]}$ However, its application has been limited to the synthesis of five-membered rings with a few exceptions, ${ }^{[3]}$ because the competing decarbonylation of the acyl metal hydride intermediate prevails during the formation of the larger ring. In the course of our studies into chelation-assisted $\mathrm{C}-\mathrm{H}$ - and $\mathrm{C}-\mathrm{C}$-bond activation, ${ }^{[4]}$ allylic amine 1a, which bears a coordination site, was devised and used as a masked form of formaldehyde in the hydroacylation of 1-alkenes to synthesize dialkyl ketones. ${ }^{[4 \mathrm{~d}]}$ We envisaged a cyclization of dienes $\boldsymbol{2}^{[5-7]}$ with $\mathbf{1}$ a to furnish cycloalkanones $\mathbf{3}$ with various sizes, since decarbonylation cannot occur in the reaction of $\mathbf{1 a}$ (Scheme 1). Herein we present a facile synthesis of various cycloalkanones from the reaction of allylic amines with dienes through chelation-assisted $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$-bond activation.

Scheme 1. Formation of cycloalkanone $\mathbf{3}$ from the reaction of allylamine 1a and diene 2.

The reactions of $\mathbf{1 a}$ with various dienes (2) are summarized in Table 1. For example, when $\mathbf{1 a}$ was allowed to react with 1,4-pentadiene (2a) in the presence of $\left[\left\{\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2} \mathrm{RhCl}\right\}_{2}\right](\mathbf{4}$, $5 \mathrm{~mol} \%$) and $\mathrm{PCy}_{3}(5,15 \mathrm{~mol} \%)$ at $150^{\circ} \mathrm{C}$ for 2 h , cyclohexanone (3a) and 2-methylcyclopentanone (3b) were obtained in 87% and 13% yield, respectively, after hydrolysis (Table 1, entry 1). Furthermore, the reaction with 1,5 -hexadiene (2b) provided cycloheptanone (3c), 2-methylcyclohexanone ($\mathbf{3 d}$), and 2-ethylcyclopentanone ($\mathbf{3 e}$) in a ratio of 38:40:22 (Table 1, entry 2). ${ }^{[8]}$

The mechanism for this reaction is depicted in Scheme 2. Aldimine 6a is generated by Rh -catalyzed isomerization of 1a. Subsequent intermolecular hydroiminoacylation ${ }^{[9]}$ of $\mathbf{2 b}$

[^0]Entry Dienes $\mathbf{2}$, The cyclization of dienes $\mathbf{2}$ with 1a. ${ }^{[\mathrm{a}]}$
[a] 1a $(0.25 \mathrm{mmol}), \mathbf{2}(0.75 \mathrm{mmol}), \mathbf{4}(0.0063 \mathrm{mmol}), \mathbf{5}(0.039 \mathrm{mmol})$ in toluene (100 mg) at $170^{\circ} \mathrm{C}$. The products were identified after hydrolysis. [b] Yields of isolated cyclohexanones (GC yields are given in parentheses). [c] The reaction temperature was $150^{\circ} \mathrm{C}$. [d] A mixture of alkenyl ketones $\mathbf{8 a}(9 \%)$ and $\mathbf{8 b}$ (9%), which were identified as 1-phenyl-3-nonanone and dihexyl ketone, respectively, were also observed (GC) after hydrogenation. [e] A mixture of alkenyl ketones $\mathbf{8 c}(23 \%)$ and $\mathbf{8 d}(21 \%)$ was also obtained. [f] The ratio of meso-2d/(土-2d (ca. 45:55) was retained in $\mathbf{3 g}$ (determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy). [g] A mixture of alkenyl ketones, identified as a hydrogenated form, 1-phenyl-3-octanone, was obtained (33% yield by GC).
with 6 a gives ketimine 7, which is hydrolyzed to give acyclic ketone $\mathbf{8}$ a. ${ }^{[4 d]}$ Further $\mathrm{C}-\mathrm{C}$-bond activation of 7, and subsequent β-hydrogen elimination leads to iminoacylrhodium(III) hydride $\mathbf{9 a}$, and styrene is liberated. ${ }^{[4 c, d]}$ The intramolecular hydrometalation of $\mathbf{9 a}$ affords ketimines $11 \mathbf{a}-\mathbf{c}$, which furnish corresponding cycloalkanones $\mathbf{3 c - e}$ after hydrolysis. Among the products, ketimine $\mathbf{1 1} \mathbf{a}$ is derived from anti-Markovnikov hydrometalation of 9a via metallacyclic intermediate $\mathbf{1 0 a}$, whereas 11b is formed from Markovnikov reaction of $\mathbf{9 a}$ via $\mathbf{1 0 b}$. Further skeletal isomerization of $\mathbf{1 0 b}$ leads to the formation of $\mathbf{1 1 c}$ via $\mathbf{9 b}$ and $\mathbf{1 0} \mathbf{c}$.
Monitoring the change in the ratio of cycloalkanones in the reaction of $\mathbf{1 a}$ with $\mathbf{2 b}$ revealed that the seven-membered ring

Scheme 2. Postulated mechanism for the cyclization of $\mathbf{2 b}$ with $\mathbf{1 a}$.
$\mathbf{3 c}$ was the sole product after 5 min (Figure 1). The ratio of $\mathbf{3 c}$ decreased while those of $\mathbf{3 d}$ and $\mathbf{3 e}$ increased as the reaction progressed. ${ }^{[10]}$ This type of skeletal rearrangement by $\mathrm{C}-\mathrm{C}$ -

Figure 1. Plot of the ratio of cycloalkanones vs time plot for the reaction of $\mathbf{1 a}$ and $\mathbf{2 b}$ at $150^{\circ} \mathrm{C} . y=$ Ratio of cycloalkanones determined by GC: $\bullet=$ $\mathbf{3 c}, \mathbf{\Delta}=\mathbf{3 d}, \mathbf{\square} \mathbf{e}$.
bond activation, which leads to the spontaneous ring contraction of the seven-membered ring to the more stable sixand five-membered rings, has been already studied. ${ }^{[44,11]}$ However, the initial formation of a seven-membered ring implies that anti-Markovnikiv hydrometalation (Scheme 2,9a to 10a) is favored over Markovnikov hydrometalation (Scheme 2, 9a to $\mathbf{1 0 b}$), maybe as a result of the steric congestion of the (iminoacyl)rhodium system. ${ }^{[4 a]}$

The exclusive formation of a seven-membered ring was observed with substituted dienes. For instance, the reaction of 2-methyl-1,5-hexadiene ($\mathbf{2 c}$) with $\mathbf{1 a}$ gave 3-methylcycloheptanone ($\mathbf{(} \mathbf{f}$) as the sole cyclization product in 56% yield, along with alkenyl ketones $\mathbf{8 c}$ and $\mathbf{8 d}$, which shows that the initial hydroiminoacylation takes place at the less substituted olefin, that is, $\mathrm{C} 5=\mathrm{C} 6$ in 2c (Table 1, entry 3). The subsequent cyclization occurs at $\mathrm{C} 1=\mathrm{C} 2$ in $\mathbf{2 c}$ to form $\mathbf{3 f}$, but further ring contraction did not proceed, becuse the formation of the resulting metallacycle intermediate $\mathbf{1 0 d}$ is disfavored as a result of steric congaestion.

Other 1,5- or 1,4-dienes that bear substituents at C 2 or C 3 also exclusively yielded seven- or six-membered rings, respectively, without forming ring-contraction products (Table 1, entries 4-7). Notably, even the 1,3 -diene piperylene $(\mathbf{2 h})$ also underwent cyclization to give $\mathbf{3 b}$ in good yield (Table 1, entry 8). So far, the hydroacylation of conjugated dienes has been known to afford β, γ-unsaturated ketone via π-allyl intermediates. ${ }^{[12]}$

Another interesting substrate is 3-benzyloxy-1,5-hexadiene (2i), which reacted with $\mathbf{1 a}$ to give cycloalkanones $\mathbf{3 k}$ and $\mathbf{3 1}$ (67:33; Scheme 3). The formation of $\mathbf{3 1}$ instead of $\mathbf{3 m}$ as a ring-contraction product illustrates that initial hydroiminoacylation occurs exclusively at $\mathrm{C} 1=\mathrm{C} 2$ in $\mathbf{2 i}$ to give intermediate $\mathbf{1 2} \mathbf{a}$, which is favored over $\mathbf{1 2 b}$ as a result of the directing effect of the benzyloxy group, thus forming the stable fivemembered metallacycle in $\mathbf{1 2}$ a. ${ }^{[13]}$

Allylic amines that have no coordination site could also be applied to this reaction. For example, N-cinnamylamine (1b) reacted with $\mathbf{2 i}$ in the presence of 2 -amino-3-picoline (13) to give $\mathbf{3 k}$ and $\mathbf{3 1}$ in 72% yield after hydrolysis (Scheme 4). This reaction proceeds through the isomerization of $\mathbf{1 b}$ and subsequent transimination ${ }^{[4 e, 14]}$ of the resulting aldimine $\mathbf{6 b}$ to form $6 \mathbf{a}$.
In summary, the synthesis of various cycloalkanones by the reaction of allylic amines with dienes was achieved through chelation-assisted $\mathrm{C}-\mathrm{H}$ - and $\mathrm{C}-\mathrm{C}$-bond activation. The use of

Scheme 3. Reaction of $\mathbf{2 i}$ with $\mathbf{1 a}$ in the presence of $\mathbf{4}$ and 5.

Scheme 4. Reaction of $\mathbf{1 b}$ and $\mathbf{2 i}$ through transimination.

1a as a masked form of formaldehyde allows the formation of six- and seven-membered cycloalkanones, which has rarely been possible by intramolecular hydroacylation as a result of competing decarbonylation. Furthermore, the reaction with substituted 1,4- or 1,5-dienes exclusively gave cyclohexanones or cycloheptanones, respectively. Even allylic amines that have no coordination site can also be applied to this reaction by utilizing a transimination protocol.

Experimental Section

Reaction of $\mathbf{1 b}$ and $\mathbf{2 i}$: A screw-capped pressure vial (1 mL) was charged with $\mathbf{1 b}(39.2 \mathrm{mg}, 0.190 \mathrm{mmol}), \mathbf{2 i}(44.9 \mathrm{mg}, 0.239 \mathrm{mmol}), \mathbf{1 3}(43.2 \mathrm{mg}$, $0.400 \mathrm{mmol}),\left[\left\{\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2} \mathrm{RhCl}\right\}_{2}\right](4 ; 7.3 \mathrm{mg}, 0.012 \mathrm{mmol})$, tricyclohexylphosphane $(\mathbf{5} ; 10.8 \mathrm{mg}, 0.0599 \mathrm{mmol})$, and the reaction mixture was dissolved in toluene $(100 \mathrm{mg})$. It was stirred in a preheated oil bath $\left(170^{\circ} \mathrm{C}\right)$ for 12 h . Upon completion, the reaction mixture was hydrolyzed (1N HCl) and purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane/ethyl acetate $\left.5: 2\right)$ to afford a mixture of $\mathbf{3 k}$ and $\mathbf{3 1}$ in 84% yield (24.8 mg). The ratio of $\mathbf{3 k} / \mathbf{3 1}$ was determined by GC analysis as 53:47.

Received: March 30, 2002 [Z19011]

[^1]
[^0]: [*] Prof. Dr. C.-H. Jun, D.-Y. Lee, I.-J. Kim
 Department of Chemistry, Yonsei University
 Seoul 120-749 (Korea)
 Fax: (+82) 2-364-7050
 E-mail: junch@yonsei.ac.kr
 [**] This work was supported by the National Research Laboratory Program (2000-N-NL-01-C-271) administered by Ministry of Science and Technology, and by the Korean Science and Engineering Foundation (20004010).
 Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

[^1]: [1] L. Yet, Chem. Rev. 2000, 100, 2963.
 [2] a) K. Sakai, J. Ide, O. Oda, N. Nakamura, Tetrahedron Lett. 1972, 1287; b) R. C. Larock, K. Oertle, G. F. Potter, J. Am. Chem. Soc. 1980, 102, 190; c) D. Milstein, J. Chem. Soc. Chem. Commun. 1982, 1357; d) D. P. Fairlie, B. Bosnich, Organometallics 1988, 7, 936; e) D. P. Fairlie, B. Bosnich, Organometallics 1988, 7, 946; f) B. Bosnich, Acc. Chem. Res. 1998, 31, 667; g) M. Tanaka, M. Imai, M. Fujio, E. Sakamoto, M. Takahashi, Y. Eto-Kato, X. M. Wu, K. Funakoshi, K. Sakai, H. Suemune, J. Org. Chem. 2000, 65, 5806, and references therein.
 [3] a) K. P. Gable, G. A. Benz, Tetrahedron Lett. 1991, 32, 3473; b) A. D. Aloise, M. E. Layton, M. D. Shair, J. Am. Chem. Soc. 2000, 122, 12610 ; c) Y. Sato, Y. Oonishi, M. Mori, Angew. Chem. 2002, 114, 1266; Angew. Chem.Int. Ed. 2002, 41, 1218.
 [4] a) C.-H. Jun, H. Lee, J.-B. Hong, J. Org. Chem. 1997, 62, 1200; b) C.-H. Jun, J.-B. Hong, D.-Y. Lee, Synlett 1999, 1; c) C.-H. Jun, H. Lee, J. Am. Chem. Soc. 1999, 121, 880; d) C.-H. Jun, H. Lee, J.-B. Park, D.-Y. Lee, Org. Lett. 1999, 1, 2161; e) C.-H. Jun, D.-Y. Lee, H. Lee, J.-B. Hong, Angew. Chem. 2000, 112, 3214; Angew. Chem. Int. Ed. 2000, 39, 3070; f) C.-H. Jun, H. Lee, S.-G. Lim, J. Am. Chem. Soc. 2001, 123, 751; g) C.-H. Jun, H. Lee, C. W. Moon, H.-S. Hong, J. Am. Chem. Soc. 2001, 123, 8600.
 [5] For the carbonylative cyclization of a 1,4-diene under hydroformylation conditions, see: a) P. Eilbracht, M. Acker, I. Hädrich, Chem. Ber. 1988, 121, 519; b) P. Eilbracht, E. Balß, M. Acker, Chem. Ber. 1985, $118,825$.
 [6] For the carbonylative cycloaddition of 1,3 -conjugated systems to prepare γ-lactams, see: T. Morimoto, N. Chatani, S. Murai, J. Am. Chem. Soc. 1999, 121, 1758.
 [7] For the transformation of dienes into cycloalkanones by means of hydroboration, see: a) U. P. Dhokte, P. M. Pathare, V. K. Magubdroo, H. C. Brown, J. Org. Chem. 1998, 63, 8276; b) H. C. Brown, E.-i. Negishi, J. Am. Chem. Soc. 1967, 89, 5477.
 [8] A trace amount (ca. 2\%) of 2,5-dimethylcyclopentanone was also observed after 6 h , which might be derived from the skeletal rearrangement of $\mathbf{3 b}$. ${ }^{[44]}$
 [9] J. W. Suggs, J. Am. Chem. Soc. 1979, 101, 489.
 [10] The total yield of cycloalkanones did not increase much after 2 h , but the amounts of $\mathbf{3 d}$ and $\mathbf{3 e}$ kept increasing as that of $\mathbf{3 c}$ decreased. See Supporting Information.
 [11] For the skeletal rearrangement of cycloalkanones through C-C-bond activation, see also: M. Murakami, K. Takahashi, H. Amii, Y. Ito, J. Am. Chem. Soc. 1997, 119, 9307.
 [12] a) T. Kondo, N. Hiraishi, Y. Morisaki, K. Wada, Y. Watanabe, T. Mitsudo, Organometallics 1998, 17, 2131; b) C.-H. Jun, B.-T. Koo, J.-B. Kang, K.-J. Kim, Bull. Korean Chem. Soc. 1994, 15, 1064.
 [13] C.-H. Jun, J.-S. Han, J.-B. Kang, S.-I. Kim, J. Organomet. Chem. 1994, 474, 183.
 [14] C.-H. Jun, J.-B. Hong, Org. Lett. 1999, 1, 887.

